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ABSTRACT
The evolution of rotating stars with zero-age main-sequence (ZAMS) masses in the range 8È25 isM

_followed through all stages of stable evolution. The initial angular momentum is chosen such that the
starÏs equatorial rotational velocity on the ZAMS ranges from zero to D70% of breakup. The stars
rotate rigidly on the ZAMS as a consequence of angular momentum redistribution during the preÈmain-
sequence evolution. Redistribution of angular momentum and chemical species are then followed as a
consequence of Eddington-Sweet circulation, instability, the Goldreich-Schubert-FrickeSolberg-HÔiland
instability, and secular and dynamic shear instability. The e†ects of the centrifugal force on the stellar
structure are included. Convectively unstable zones are assumed to tend toward rigid rotation, and
uncertain mixing efficiencies are gauged by observations. We Ðnd, as noted in previous work, that rota-
tion increases the helium core masses and enriches the stellar envelopes with products of hydrogen
burning. We determine, for the Ðrst time, the angular momentum distribution in typical presupernova
stars along with their detailed chemical structure. Angular momentum loss due to (nonmagnetic) stellar
winds and the redistribution of angular momentum during core hydrogen burning are of crucial impor-
tance for the speciÐc angular momentum of the core. Neglecting magnetic Ðelds, we Ðnd angular
momentum transport from the core to the envelope to be unimportant after core helium burning. We
obtain speciÐc angular momenta for the iron core and overlying material of 1016È1017 cm2 s~1. These
values are insensitive to the initial angular momentum and to uncertainties in the efficiencies of rotation-
al mixing. They are small enough to avoid triaxial deformations of the iron core before it collapses, but
could lead to neutron stars which rotate close to breakup. They are also in the range required for the
collapsar model of gamma-ray bursts. The apparent discrepancy with the measured rotation rates of
young pulsars is discussed.
Subject headings : hydrodynamics È methods : numerical È stars early-type È stars : evolution È

stars : interiors È stars rotation

1. INTRODUCTION

The quantitative theory of stellar structure is more than
100 years old (see, e.g., Emden 1907), and our understanding
of the stellar interior has improved dramatically during this
time, especially since it became possible to construct
detailed stellar models with the help of computers in the
1950s. However, even today, our understanding of many
observable properties of massive stars (MZAMS Z 8 M

_
,

remains rudimentary.log L /L
_

Z 4)
Aside from comparatively minor uncertainties remaining

in the opacities and nuclear physics, the major frontiers in
the study of stars, and indeed stellar evolution in general,
are proper treatments of convection, mass loss, and rota-
tion. This paper is the Ðrst in a series concerning the e†ects
of rotation and angular momentum transport on the evolu-
tion of stars massive enough that a single one can become a
supernova (M Z 8 M

_
).

The Ðrst to recognize the importance of rotation for celes-
tial bodies was Sir Isaac Newton. Early studies of rotating,
self-gravitating, incompressible Ñuids were carried out by
Maclaurin, Jakobi, and Schwarzschild. Addi-Poincare� ,
tional important contributions to the numerical treatment
of rotating stars were provided by Kippenhahn & Thomas
(1970). Kippenhahn et al. (1970) performed calculations
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taking these e†ects into account using a simple model for
angular momentum transport. Studies with artiÐcial rota-
tion laws were carried out by Endal & SoÐa (1976). In their
pioneering work, Endal & SoÐa (1978) considered several
rotationally induced instabilities, made order-of-magnitude
estimates for their efficiencies, and performed time-
dependent stellar evolution calculations of rotating massive
stars up to the ignition of carbon burning. Later, Pinson-
neault et al. (1989) introduced a parameterization of the
poorly known efficiencies of the rotationally induced trans-
port processes of Endal & SoÐa (1978) and gauged them to
solar models. The formalism we shall employ here is based
largely upon these two works. We di†er, however, in using
more recent data to calibrate the uncertain efficiencies for
angular momentum and composition transport in this for-
malism and especially in following the stars past carbon
burning, all the way to the presupernova state.

Our formalism (discussed in detail in ° 2) is relatively
simple compared to others used in recent studies of rotation
during hydrogen and helium burning (e.g., Langer 1992 ;
Denissenkov 1994 ; Eryurt et al. 1994 ; Chaboyer & Zahn
1992 ; Zahn 1992 ; Urpin et al. 1996 ; Talon et al. 1997 ;
Meynet 1997 ; and Maeder & Zahn 1998), but easier to
understand and implement, and more easily extrapolated to
the late stages of stellar evolution. Indeed, our poor under-
standing, especially during the late stages of stellar evolu-
tion, of both convection and possible modiÐcations to
angular momentum transport by magnetic Ðelds (not con-
sidered in the present work or in the papers cited above),
suggests that it is worth trying something simple Ðrst.
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Most of the rotation physics described in ° 2 can already
be found, with slight modiÐcations, in previous papers.
However, since this is the Ðrst in a series of papers, it will
facilitate our presentation to have all the relevant equations
collected in one place. We also correct several errors in
previous publications (e.g., in the equation for the secular
shear instability) and cast the results in a consistent nota-
tion.

Following a summary of how we model various rotation-
ally induced instabilities (° 2) and a discussion of the uncer-
tain parameters of the model (° 3), we discuss the
implementation of this physics in the stellar codes in ° 4 and
give an overview of the initial models in ° 5. The evolution
during hydrogen burning and helium burning is discussed
in ° 6 and ° 7. In ° 8 we compare our results to the works of
other authors. The late evolution is discussed in ° 9, and the
Ðnal angular momentum distribution at the presupernova
stage is given in ° 10. Its implications are discussed in ° 11,
and a summary and our conclusions are given in ° 12.

Discussion of the details of observable parameters
(evolution in the H-R diagram, surface abundances,
lifetimes) and presupernova nucleosynthesis are deferred to
future papers.

2. ROTATION AND MIXING IN MASSIVE STARS

2.1. ModiÐcation to the Stellar Structure Equations
In rotating stars, centrifugal forces act on the matter and

lead to deviations from spherical symmetry. For slow to
moderate rotation these deformations remain rotationally
symmetric (Tassoul 1978). Only if the rotational energy
exceeds a notable fraction of the binding energy of the star
does genuine triaxial deformation result.

In this work we consider only the case of ““ slow ÏÏ rota-
tion, i.e., where no triaxial deformations are expected. Some
stars may reach ““ critical ÏÏ rotation velocity (° 2.6) at their
surfaces during brief stages of their evolution (Heger &
Langer 1998). However, except for possibly modifying the
mass-loss rate (° 2.6), this a†ects only the very outermost
layers and is not expected to have a big inÑuence on the
results of this paper.

Even for slow rotation, the shapes of surfaces of constant
pressure, constant density, and constant temperature are
a†ected by the centrifugal potential and thus deviate from
spherical symmetry. The momentum equation and the
energy transport equation for spherically symmetric stars
must be modiÐed to take this e†ect into account.

In this work, the centrifugal force is included following
Kippenhahn & Thomas (1970) in the approximation of
Endal & SoÐa (1976) and applied to the hydrodynamic
stellar structure equations (Fliegner 1993). In this approach,
mass shells correspond to isobars instead of spherical shells.
Corrections are applied to the acceleration and the radi-
ative temperature gradient. According to Zahn (1975), Cha-
boyer & Zahn (1992), and Zahn (1992), anisotropic
turbulence acts much stronger on isobars than in the per-
pendicular direction. This enforces ““ shellular ÏÏ rotation
rather than cylindrical rotation (Meynet & Maeder 1997),
and it sweeps out compositional di†erences on isobars.
Therefore it can be assumed that matter on isobars is
approximately chemically homogeneous. Together with the
shellular rotation, this allows us to retain a one-dimensional
approximation. The speciÐc angular momentum, j, of a
mass shell is treated as a local variable, and the angular

velocity, u, is computed from the speciÐc moment of inertia,
i. The time-dependent angular momentum redistribution is
discussed in ° 2.5, and its inÑuence on transport processes in
° 2.3. We begin here by describing the modiÐcation to the
stellar structure equations of nonrotating stars (see also
Endal & SoÐa 1976 ; Meynet & Maeder 1997).

Let be the volume enclosed by a surface of constantV
Ppressure, P, and its surface area. Then itsS

P
4 LV

P““ radius, ÏÏ is deÐned as the radius of a sphere of the samer
P
,

volume, and the equation of continuityV
P
\ 4nr

P
3/3,
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a quantity, x, varying on isobars, a mean value is deÐned by

SxT 4
1
Sp
Q
Sp

x dp , (2)

where dp is an element of isobaric surface area. The e†ective
gravitational acceleration, g, is normal to For the equa-S
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where G is the gravitational constant, P the pressure, t the
time, and the inertia term (last term) is added here. The
inÑuence of rotation is described by the quantity f

P
:
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where g 4 o g o . The radiative temperature gradient then
takes the form
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where i is the opacity, T the temperature, a the radiation
constant, and the energy Ñux through The last factorL

P
S
P
.

on the right-hand side is included to account for inertia as it
follows from the momentum equation (Fliegner 1993), and

f
T

4
A4nr

P
2

S
P

B2
(SgTSg~1T)~1 . (6)

For the derivation of these formulae and for a numerical
evaluation of and see Endal & SoÐa (1976). The equa-f

T
f
Ptions for and are solved iteratively with the stellarf

T
f
Pstructure equations in order to obtain consistent models

(Endal & SoÐa 1976 ; Fliegner 1993). In the rest of this work,
the subscript P is omitted (except for f

P
).

There is, in principle, an inconsistency between the
assumption of shellular rotation and the method described
by Kippenhahn & Thomas (1970) ; i.e., the assumption of
shellular rotation does not generally lead to a conservative
potential as it does for a constant rotation rate on cylinders,
which is used by Kippenhan & Thomas (1970). However,
Meynet & Maeder (1997) show that replacing the average
SxT by ““ appropriate mean values,ÏÏ i.e., reinterpreting the
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quantities describing the stellar structure as the mean values
over the isobars, allows one to keep the formalism of Kip-
penhahn & Thomas (1970) as a good approximation.

2.2. Ordinary Mixing in the Absence of Rotation
Compositional mixing is generally treated as a di†usive

process and implemented by solving the di†usion equation

ALX
n

Lt
B
m

\
A L
Lm
B
t

C
(4nr2o)2D

ALX
n

Lm
B
t

D
]
AdX

n
dt
B
nuc

, (7)

where D is the di†usion coefficient constructed from the
sum of individual mixing processes and is the mass frac-X

ntion of species n. The second term on the right-hand side
accounts for nuclear reactions. At the inner and outer
boundary reÑecting conditions are used :

ALX
n

Lm
B
t

K
m/0

\ 0 \
ALX

n
Lm
B
t

K
m/M(t)

. (8)

Mixing, burning, and mass loss are treated as separate,
sequential operations. The di†erent contributions to the dif-
fusion coefficient, D, are discussed in the following sections.

2.2.1. Convection and Overshooting

Convection occurs when the temperature gradient
exceeds the adiabatic condition, as modiÐed by any gra-
dient in mean molecular weight, k (Fig. 1). That is, a stratiÐ-
cation is stable against convection (assuming an ideal gas

FIG. 1.ÈSchematic representation of the regions of di†erent insta-
bilities in a plane spanned by the stabilizing subadiabatic temperature
gradient (horizontal axis), and the stabilizing mean molecular weight gra-
dient (vertical axis). Both axes have identical units. Convection is indi-+kcated by dark gray shading, semiconvection (at positive mean molecular
weight gradients) and thermohaline convection (at negative k-gradients)
are displayed by light gray shading. The radiatively stable regime is shown
in white. Rotationally induced instabilities are indicated by hatched areas.
The dynamical shear instability (wide thick hatching) acts only up to a
certain distance to the Ledoux-unstable region, which is determined by the
amount of shear (Fig. 2). The secular shear instability (narrow Ðne hatching)
can penetrate in regions further away from the convective instability since
it allows for thermal adjustment of displaced mass elements. It can also
penetrate into the region of stabilizing k-gradients, but to a much smaller
extent since in stars it is usually is the critical Rey-8/(P

r
R

e,c)? 1 (R
e,cnolds number and the Prandtl number ; cf. °° 2.3.1 and 2.3.3).P

r

with radiation) if

+ad[ +] r
d
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(e.g., Kippenhahn & Weigert 1991). This is the so-called
Ledoux criterion for convection. Here the common deÐni-
tions are used :
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The index ““ ad ÏÏ stands here for ““ at constant entropy and
composition.ÏÏ

The di†usion coefficient for composition mixing is
treated according to the mixing-length theory (Vitense
1953 ; 1958) :Bo� hm-Vitense

Dconv 4 aMLTH
P
vconv/3 , (12)

where is the convective velocity. The pressure scalevconvheight is deÐned for the hydrostatic case by

H
P
4 [ dr

d ln P
\ P

og
. (13)

The local gravitational acceleration is given by g \ Gm/r2.
In this work a mixing-length parameter of aMLT\ 1.5
(Langer 1991) is used.

The mixing performed by convection is fast in compari-
son to most of the other timescales relevant for the stellar
evolution. It operates on the local dynamical timescale and
usually manages to smooth out any compositional inhomo-
geneities in the regions where it is active. Only when the
timescale of thermonuclear burning becomes comparable to
that of convection, as, e.g., during central silicon and shell
oxygen burning, can notable gradients persist.

In the present work ““ overshooting ÏÏ of the convection
into the convectively stable regime deÐned by equation (9) is
neglected. It will be shown that rotation leads to mixing
above the convective core of massive stars during central
hydrogen burning and thereby to the formation of more
massive helium cores later in the evolution. In order to
obtain such mixing, large overshooting is often introduced
in literature (e.g., Chin & Stothers 1991 ; Schaller et al.
1992), but moderate rotation can lead to similar e†ects.

2.2.2. Semiconvection

Semiconvection is a secular instability which can occur in
nonrotating stars. According to a local, linear stability
analysis by Kato (1966), it is an oscillatory instability which
appears in regions where an unstable temperature gradient
is stabilized against convection by a sufficiently large gra-
dient in the mean molecular weight (k-gradient), i.e., it lives
in the regime

r
d

+k º +[ +adº 0 (14)

(Kippenhahn & Weigert 1991 ; and Fig. 1). Heat transfer
between a displaced mass element and its surrounding
causes the growth of the instability on the local thermal
time scale.

In the code STERN (see ° 4.1), semiconvection is treated
following Langer et al. (1983). The di†usion coefficient for
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this process is computed from

Dsem \ asem K
6c

P
o

+[ +ad
+ad[ +] (r/d)+k

, K \ 4acT 3
3io

, (15)

where K is the thermal conductivity and the speciÐc heatc
Pat constant pressure. As proposed by Langer (1991), an effi-

ciency parameter of is adopted here.asem \ 0.04
In KEPLER (see ° 4.2) semiconvection is computed from

(Weaver et al. 1978 ; Weaver & Woosley 1993)

Dsem@ \ 16 aMLT 2vsem H
P

, (16)

where the velocity is determined throughvsem
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S
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Pd
go2
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. (17)

The di†usion coefficient is limited to a fraction, of theasem,
radiative di†usion coefficient,

Drad\ K
oc

V
, (18)

by means of

Dsem \ asem DradDsem@
Dsem@ ] asemDrad

. (19)

As usual, denotes the speciÐc heat at constant volume. Inc
Vthis work a value of is used in KEPLER, whichasem \ 10~4

results in a comparable efficiency for semiconvection as the
value used for STERN.

2.3. Rotationally Induced Mixing
In this work, the mixing processes discussed in Endal &

SoÐa (1978) are included in a parametric way, following the
work of Pinsonneault et al. (1989). Five di†erent processes
are considered. To account for the uncertain mixing effi-
ciency of each, they are weighed by efficiency factors
(Pinsonneault et al. 1989 ; ° 3) and then added to the di†u-
sion coefficient, D, in the di†usion equation (7).

2.3.1. Dynamical Shear Instability

Dynamical shear instability occurs when the energy that
can be gained from the shear Ñow becomes comparable to
the work that has to be done against the gravitational
potential for the adiabatic turnover of a mass element
(““ eddy ÏÏ). This means that it is stabilized by density gra-
dients. Since there is no work required to mix on isobars,
this instability can work very efficiently on those (horizontal
turbulence ; Zahn 1992) and thus enforce rigid rotation
horizontally (Endal & SoÐa 1978 ; Pinsonneault et al. 1989).
Thus chemical inhomogeneities are smoothed on isobars.
This, together with the so-called baroclinic instability,
which also acts barotropic for shear on isobars on a
dynamical timescale (Zahn 1983), justiÐes the assumption of
shellular rotation and that the composition is only a func-
tion of the isobars (° 2.1).

The linear condition for stability is given by

R
i
4

od
P
A
+ad[ +] r

d
+k
BA

g
d ln r
du
B2

[ R
i,c B

1
4

(20)

for the case of a rotating Ñuid (Zahn 1974 ; Fig. 2). Here, u is
the angular velocity, Richardson number, and itsR

i
, R

i,c,critical value, about Note that the term for in equation14. +k

FIG. 2.ÈRegion of instability due to dynamical shear (light gray) in the
plane of stabilizing temperature and composition stratiÐcation (horizontal
axis) and destabilizing shear (vertical axis). Both axes have the same units.
Instability due to convection is indicated by dark gray shading. See also
Fig. 1.

(20) was omitted in the original work by Endal & SoÐa
(1978) and Pinsonneault et al. (1989). The corresponding
di†usion coefficient is computed from the spatial extent of
the unstable region, limited to a pressure scale height,dinst,and the local dynamical timescale (see also Endal & SoÐa
1978),

DDSI\
C
min Mdinst, H

P
N
A
1 [ max

G R
i

R
i,c

, 0
HBD2N

qdyn ,

(21)

where the dynamical timescale is deÐned by

qdyn4 Jr3/(Gm) . (22)

Furthermore, it is assumed that the instability is weaker
when the deviation from the Richardson criterion is smaller.
This is accounted for by a factor which is(1 [ R

i,c/Ri
)2,

limited to the range [0, 1]. For the Ñow isR
i
[R

i,c,assumed to be stable against the dynamical shear instability
and thus is set to 0.DDSI

Instability2.3.2. Solberg-HÔiland

The instability arises if an adiabaticallySolberg-HÔiland
displaced mass element experiences a net force (the sum of
gravity, buoyancy, and centrifugal force) that has com-
ponents in the direction of the displacement only.

(1946) gives a condition for the stabilityWasiutyn� ski
against axisymmetric adiabatic perturbations of this kind. It
separates into two scalar conditions. At the equator the
condition for stability in the vertical direction is

RSH 4
g
o
CAdo

dr
B
ad

[ do
dr
D

] 1
r3

d
dr

(r2u)2º 0 (23)

(Tassoul 1978 ; Endal & SoÐa 1978). If the speciÐc angular
momentum, j D r2u, is constant with r, the last term on the
left-hand side vanishes and the Ledoux criterion resultsÈ
not the Schwarzschild criterion as stated by Endal & SoÐa
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(1978). This can be seen by rewriting the condition for sta-
bility,

RSH4
gd
H

P

A
+ad[ +] r

d
+k
B

] 1
r3

d
dr

(r2u)2 º 0 (24)

and comparing it with equation (9). If, on the other hand,
the medium is marginally stable to convection, the Ðrst term
on the right-hand side vanishes and the Rayleigh criterion
results (Tassoul 1978 ; Kippenhahn & Weigert 1991). Note
that this instability only occurs in regions of decreasing
speciÐc angular momentum (Fig. 3) and is strongly sup-
pressed in stable stratiÐcations [+ \ +ad] (r/d)+k].The di†usion coefficient resulting from the Solberg-

instability is estimated in a way similar to that forHÔiland
the dynamical shear instability. The extent of the unstable
region, limited to the pressure scale height, is used asdinst,the characteristic length scale, and the dynamical timescale
is used as characteristic timescale :

DSHI\
C
min Mdinst, H

P
N
ArRSH

g
BD2N

qdyn . (25)

Again, as for the dynamical shear instability, a factor of
order unity was introduced to smoothly turn on the(rRSH/g)
instability as the criterion for stability gets increasingly vio-
lated, and is set to 0 wherever the stability criterion isDSHIfulÐlled.

2.3.3. Secular Shear Instability

The strict criterion for dynamical shear instability can be
relaxed considerably by allowing for thermal adjustment of
radial perturbations. However, this process then operates
only on a thermal timescale, and is therefore a secular
process. Gradients in the mean molecular weight, which
may inhibit the occurrence of the instability, also have to be
taken into account.

FIG. 3.ÈRegion of instability according to the cri-Solberg-HÔiland
terion (light gray) in the plane of stabilizing temperature and composition
stratiÐcation (horizontal axis) and stabilizing increasing speciÐc angular
momentum ( jD r2u) (vertical axis). Both axes have identical units. Insta-
bility due to convection is indicated by dark gray shading. The Solberg-

instability can occur in regions where the speciÐc angular momen-HÔiland
tum decreases outwards.

According to Endal & SoÐa (1978), the following two
conditions have to be violated simultaneously for this insta-
bility to set in (Fig. 1) :

Ris,14
P

r
R

e,c
8

od
P

(+ad[ +)
A
g

d ln r
du
B2

[ R
i,c (26)

(Townsend 1958 ; Zahn 1975), because of the relaxed condi-
tion for the temperature gradient, and

Ris,24
or+k

P
A
g

d ln r
du
B2

[ R
i,c , (27)

since the condition for the k-gradient is not relaxed. The
latter formula follows from the physical arguments of Endal
& SoÐa (1978), but corrects an error in their equation (10).
For the critical Reynolds number, a value of 2500 isR

e,c,assumed in this work (but see also Richard & Zahn 1999).
The Prandtl number, is deÐned as the ratio of theP

r
,

thermal di†usion timescale to the angular momentum di†u-
sion timescale, and is estimated according to Tassoul
(1978) :

P
r
\ c

V
(k

p
] k

r
)

s
, (28)

where the coefficients of shear viscosity of the plasma and
by radiation are computed according to

k
p
B 0.406

Jm
i
(kB T )5

(Z
i
e)4 ln "

, k
r
\ 4aT 4

15cio
(29)

(Spitzer 1962 ; Tassoul 1978), respectively. The quantity " is
the ratio of the cuto† length for ion collisions, which is
taken as the ratio of the Debye length, to the impact param-
eter for a n/2 deÑection for Rutherford scattering of the
ions, i.e.,

"\ 2
3e3
Sm

i
(kB T )3
noZ

i
5

(30)

(for details, see Spitzer 1962). Here, e is the charge of the
electron in esu, c the velocity of light, BoltzmannÏs con-kBstant, the charge number of the ion, and its mass. ItZ

i
m

ishould be noted that for burning phases beyond hydrogen
burning, as well as for helium, carbon, or oxygen stars, it is
important to take the of the plasma viscosityZ

i
-dependence

into account. The quantity " enters only logarithmically
and ln " is D25. At temperatures below the Fermi tem-
perature, depending somewhat on the chemical composi-
tion, the ion viscosity dominates over the electron
contribution. For the evaluation of the formulae above,
complete ionization is assumed.

If magnetic Ðelds and neutrinos are neglected, the
thermal conductivity is given by s BK (eq. [15] ; Tassoul
1978). The opacity, i, used in this work takes into account
the energy transport by radiation as well as heat conduction
by degenerate electrons. Following Endal & SoÐa (1978),
the circulation velocity associated with this process is com-
puted from the timescale and the length scale of the turbu-
lent elements,

vSSI\
S l

R
e,c

du
d ln r

, (31)



No. 1, 2000 PRESUPERNOVA EVOLUTION OF ROTATING MASSIVE STARS. I. 373

limited to the adiabatic sound velocity, The kinematicc
s
.

viscosity, l, is given by (Tassoul 1978)

l\ k
P
] k

r
o

. (32)

For the typical length scale the velocity scale height of the
Ñow is assumed,

H
v,SSI4

K dr
d ln vSSI

K
, (33)

limited to the pressure scale height. The resulting di†usion
coefficient is given by

DSSI \ min MvSSI, c
s
N min MH

v,SSI, H
P
N

]
A
1 [ max MRis,1, Ris,2N

R
i,c

B2
. (34)

Again, the instability is smoothly turned on with increasing
violation of the stability criteria (term in the last bracket).

In recent work, Maeder & Meynet (1996), Maeder
(1997a), and Maeder & Zahn (1998) reconsidered the inter-
action of thermal di†usivity, horizontal turbulence (due to
the baroclinic instability), and vertical shear. An important
conclusion that can be drawn from their work is that k-
gradients might not completely suppress the occurrence of
the shear instability, since the medium is already turbulent
due to the baroclinic instability. Consequently, some mixing
can occur (Maeder 1997a). In the present work, we param-
eterize the efficiency of the secular shear instability for
chemical mixing and of the k-gradients in suppressing its
occurrence (° 3).

2.3.4. Eddington-Sweet Circulation

As Ðrst shown by von Zeipel (1924a, 1924b) for rigid
rotation, and later by Baker & Kippenhahn (1959) for a
general rotation law, a rotating star cannot be in hydro-
static and radiative thermal equilibrium at the same time.
This is because surfaces of constant temperature and con-
stant pressure do not coincide. Consequently, large-scale
circulations develop. Since inhomogeneities on isobars are
quickly smoothed out by the horizontal turbulence only the
perpendicular (Bradial) component of the circulation
velocity is considered here, and the process is approximated
by di†usion along the radial coordinate.

Kippenhahn (1974) estimated the circulation velocity as

v
e
4

+ad
d(+ad[ +)

u2r3l
(Gm)2

C2(e
n
] el)r2
l

[ 2r2
m

[ 3
4nor

D
. (35)

In the presence of k-gradients, meridional circulation has
to work against the potential and thus might be inhibited or
suppressed (Mestel 1952, 1953). Formally, this can be
written as a ““ stabilizing ÏÏ circulation velocity,

vk 4
H

P
qKH*

r+k
d(+[ +ad)

(36)

(Kippenhahn 1974 ; Pinsonneault et al. 1989), where

qKH* 4
Gm2

r(l[ mel)
(37)

is the local Kelvin-Helmholtz timescale, used here as an
estimate for the local thermal adjustment timescale of the
currents (Pinsonneault et al. 1989). The spatial extent of the

currents is typically of the order of the radius coordinate r.
Here, neutrino losses are taken into account, because they
reduce the thermal timescale in the late stages of the stellar
evolution signiÐcantly. Note that is deÐned as the energyelgeneration rate due to neutrino losses and therefore is nega-
tive. This increases the numerator in the deÐnition of the
local Kelvin-Helmholtz timescale and thus decreases qKH* .

For the evaluation of the di†usion coefficient, the sign of
the circulation velocity does not matter, but the stabilizing
““ currents ÏÏ due to k-gradients always point in the direction
opposite to the meridional Ñow, thus resulting in a
reduction of the e†ective circulation velocity. The velocity is
then computed from

vES 4 max M o v
e
o[ o vk o , 0N (38)

(Endal & SoÐa 1978 ; and Fig. 4). The di†usion coefficient is
calculated as the product of the circulation velocity and a
typical length scale for the circulation. This is assumed to be
the minimum of the extent of the instability and thedinstvelocity scale height,

H
v,ES 4

K dr
d ln vES

K
(39)

(Endal & SoÐa 1978), i.e.,

DES4 min Mdinst, H
v,ESNvES . (40)

In recent work, Chaboyer & Zahn (1992) ; Zahn (1992) ;
Urpin et al. (1996) ; Talon et al. (1997) ; and Maeder & Zahn
(1998) have discussed several improvements to the theory of
meridional circulation and its interaction with the baroclin-
ic instability. In contrast to the present work, their method
requires the solution of a fourth-order di†erential equation
in u, which is numerically very involved. So far this method
has only been used to investigate main-sequence stars. An
interesting result of these work for the Eddington-Sweet
circulation is that the stabilizing e†ect of k-gradients, enter-

FIG. 4.ÈRegion of instability due to Eddington-Sweet circulation (dark
gray) and the Goldreich-Schubert-Fricke instability (hatching) in the plane
of residual Eddington-Sweet circulation velocity (horizontal axis) and the
factor (vertical axis) of Goldreich-Schubert-Fricke velocity relativev

g
/v

eto Eddington-Sweet circulation velocity in the absence of k-gradients.
The boundary of the GSF-unstable region intersects the x-axis at

i.e., whereo v
e
o [ o vk o\ o v

e
o , o vk o\ 0.
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ing through in (eqs. [35] and [38]), may be reducedv
e

vES(° 3). The second important change to the above estimate is
that the interaction of the baroclinic instability and the
large-scale meridional reduces the mixing efficiency of the
Eddington-Sweet circulation in agreement with the numeri-
cal studies by Pinsonneault et al. (1989) for the Sun. We
consider these e†ects when we perform an empirical cali-
bration of the mixing efficiencies in ° 3.

2.3.5. Goldreich-Schubert-Fricke Instability

Goldreich & Schubert (1967) and Fricke (1968) per-
formed an analysis of stability against axisymmetric pertur-
bations (GSF instability). For the inviscid limit (P

r
> 1),

which can be well assumed in the interior of stars, they
derive two conditions for stability in chemically homoge-
neous stars (Kippenhahn 1969) :

Lj
Lr

º 0 and
Lu
Lz

\ 0 . (41)

The Ðrst condition is the secular analogue to the Solberg-
stability criterion equation (24), where the stabili-HÔiland

zation by the temperature gradient is removed due to
thermal conduction. This is similar to the relation between
the secular and the dynamical shear instability. The second
condition in equation (41) is the analogue to the Taylor-
Proudman theorem for slowly rotating incompressible
Ñuids (Kippenhahn 1974 ; Tassoul 1978). If the rotational
velocity depends on the distance from the equatorial plane,
i.e., the rotation proÐle is not conservative, meridional Ñows
will be driven. Also in this case, the buoyancy force, which
acts to suppress the instability, can be removed by heat
conduction. However, this occurs only on a thermal time-
scale. Interestingly, the typical velocities for both the above
processes are quite similar (Kippenhahn 1974).

Since the second condition of equation (41) is in general
in contradiction with the shellular rotation law enforced by
the baroclinic instability, except for the case of solid body
rotation, the GSF instability will tend to enforce uniform
rotation in chemically homogeneous regions (Endal & SoÐa
1978).

The dependence of the GSF instability on di†erential
rotation is stronger than that of Eddington-Sweet circula-
tion, and the large-scale circulation velocity in the equato-
rial plane can be estimated by

v
g
\ 2H

T
r

H
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2
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1 ] 2

d ln r
d ln u

B~1
v
e
\ 2H
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H

j

d ln u
d ln r

v
e

(42)

(Endal & SoÐa 1978 ; James & Kahn 1970, 1971). Here
is the temperature scale height andH

T
4 [(dr)/(d ln T )

the scale height of the angular momentumH
j
4 (dr)/(d ln j),

distribution. The GSF instability has the same k-
dependence as Eddington-Sweet circulation (Endal & SoÐa
1978) and therefore the resulting circulation velocity is com-
puted in the same way, taking the stabilizing e†ect of the
k-gradient into account :

vGSF 4 max M o v
g
o[ o vk o ,0N . (43)

Again, the di†usion coefficient is determined from the circu-
lation velocity, and the minimum of the circulationvGSF,velocity scale height, and the extent, of theH

v,GSF, dinst,instability :

DGSF 4 min Mdinst, H
v,GSFNvGSF , (44)

where we deÐne in the same way as above

H
v,GSF4

K dr
d ln vGSF

K
. (45)

Figure 4 compares the parameter space in which the GSF
and the Eddington-Sweet instability operate. For small
angular velocity gradients the Eddington-Sweet circulation
dominates, while the GSF instability becomes more impor-
tant as the di†erential rotation increases. Note that for
strong di†erential rotation the shear instability also occurs
(cf. Fig. 1).

2.4. Other Instabilities
The Ðve instabilities discussed in the previous section are

not a complete list of all rotationally induced instabilities
for massive stellar evolution. However, they appear to be
the most relevant ones, or at least the best understood.

For the ABCD-instability (Spruit et al. 1984) and the
triply di†usive instability (Knobloch & Spruit 1983), no reli-
able estimates of efficiency exist. Furthermore, non-
axisymmetric instabilities may also exist, but are poorly
investigated so far.

Another important issue is the interaction of the di†erent
instabilities, and the interaction of rotation and rotationally
induced instabilities with the instabilities listed in ° 2.2. The
interaction of the shear instabilities and the Eddington-
Sweet circulation has been investigated by, e.g., Chaboyer &
Zahn (1992) ; Zahn (1992) ; Urpin et al. (1996) ; Meynet &
Maeder (1997) ; Maeder (1997a) ; Talon & Zahn (1997) ;
Talon et al. (1997) ; and Maeder & Zahn (1998) ; and semi-
convection has recently also been included by Maeder
(1997a) and Maeder & Zahn (1998). However, the e†ects of
the interactions are not large and therefore not taken into
account in the present work.

Perhaps most importantly, we have neglected magnetic
Ðelds. Magnetic Ðelds might transport angular momentum
by torques H. C. Spruit 1997, private(Dr3B

r
BÕ ;

communication), or cause instabilities by magnetic buoy-
ancy resulting from the winding up of magnetic Ðeld lines
by di†erential rotation. This could be e†ective even if the
initial Ðeld strength is small (H. C. Spruit 1997, private
communication ; Spruit & Phinney 1998). Unfortunately,
little is known about either the strength of the initial Ðeld or
the efficiency of instabilities in amplifying the magnetic Ðeld.
The Velikhov-Chandrasekhar instability depends only on
the presence of magnetic Ðelds, not on their strength, but it
is efficiently suppressed by k-gradients (Acheson 1978 ; H. C.
Spruit 1997, private communication). Detailed studies of
the action of magnetic Ðelds inside stars must be left to
future investigations.

2.5. Angular Momentum Transport
Following Endal & SoÐa (1978) and Pinsonneault et al.

(1989), we formulate the transport of angular momentum as
a di†usive process,
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(Endal & SoÐa 1978), where l is the turbulent viscosity and
i, the speciÐc angular momentum of a shell at mass coordi-
nate m. For a spherical shell of constant density, inner
radius, and outer radius, the speciÐc moment ofr

i
, r

o
,
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inertia, i, is given by for a thini\ 0.4(r
o
5[ r

i
5)/(r

o
3] r

i
3) ;

shell of radius r this simpliÐes to i\ 2/3r2. The last term in
equation (46), an advection term, accounts for contraction
or expansion of the layers at constant mass coordinate. The
factor in the last bracket on the right hand side vanishes if
the gyration constant, k 4 i/r2, does not depend on r.

Equation (46) is essentially a di†usion equation for u
along the ““ moment of inertia coordinate, ÏÏ

I(m)4
P
0

m
i(m@)dm@ , (47)

deÐned analogously to the mass coordinate (e.g., Kippen-
hahn & Weigert 1991). This equation conserves angular
momentum and leads to rigid rotation in a region of extent
l whenever the di†usion timescale, is short inq

D
4 l2/l,

comparison to structural changes of the star. Since the
Eddington-Sweet circulation may redistribute angular
momentum by advection rather than by viscous stress
(Zahn 1992), the equilibrium solution might deviate from
rigid rotation assumed here in regions where it is the domi-
nant process. However, for consistency to Endal & SoÐa
(1978), Pinsonneault et al. (1989), and for simpliÐcation of
the numerical treatment we stick with the prescription out-
lined above. Compared to Talon & Zahn (1997) we get very
similar results at the end of central hydrogen burning
(see ° 8).

At the inner and outer boundary, reÑecting conditions
similar to those given in equation (7) for the compositional
mixing are used. At the surface of the star, the angular
momentum contained in the layers which are lost due to
stellar winds is removed from the star (° 2.7).

The turbulent viscosity, l, is determined as the sum of the
convective and semiconvective di†usion coefficients, and
those from rotationally induced instabilities (Endal & SoÐa
1978 ; ° 3). In contrast to Endal & SoÐa (1978) and Pinson-
neault et al. (1989), in the present work the transport equa-
tion for angular momentum is solved for the entire star as a
whole.

Since the evolutionary timescale of the star is in most
cases much longer than the convective timescale, equation
(46) results in rigid rotation in those regions. Unlike com-
position, which can show signiÐcant gradients even inside
convective regions due to burning (e.g., during central
silicon burning), angular momentum is locally conserved,
and therefore convective regions can more easily reach rigid
rotation than chemical homogeneity during hydrostatic
burning phases. This, however, does not hold if the respec-
tive layers are contracting or expanding rapidly.

The approximation that convection leads to rigid rota-
tion rather than constant speciÐc angular momentum seems
to be justiÐed, at least if the rotational period is long in
comparison to the convective timescale, and it may also
hold for more rapid rotation if convective blobs can be
assumed to scatter elastically (Kumar et al. 1995). The lati-
tudinally averaged rotation rate of the solar convection
zone deviates from solid body rotation by less than 5% (e.g.,
Antia et al. 1997).

2.6. Enhanced Mass L oss due to Rotation
Mass loss from the stellar surface (stellar winds) signiÐ-

cantly a†ects the evolution of massive stars (Chiosi &
Maeder 1986). In the present work, the empirical mass-loss
rate of Nieuwenhuijzen & de Jager (1990) is used. For Wolf-
Rayet stars, the prescription of Langer (1989) is applied.

The uncertainties in these mass-loss rates are considerable
due to the uncertainties in the observational data and their
interpretation.

These mass-loss rates are further modiÐed to account for
the e†ect of stellar rotation according to Friend & Abbott
(1986),

M0 (u) 4 M0 (u\ 0)]
A 1
1 [ )

Bm
, m B 0.43 , (48)

where

)4
v

vcrit
(49)

is the ratio of the equatorial surface rotation rate to the
critical rotation rate deÐned by

vcrit2 4
Gm
r

(1[ !) . (50)

The Eddington factor,

!4
iL

4ncGm
, (51)

is evaluated only in the radiative part of the optical depth
range (Lamers 1993 ; Langer 1997), whereq ½ [23, 100]

dr has the usual deÐnition.q(r) \ /
r
= io

The quantitative result for the )-dependence of the mass
loss rate obtained by Friend & Abbot (1986) was ques-
tioned by Owocki et al. (1996), who performed hydrody-
namic simulations of the winds of rotating hot stars
including the e†ect of nonradial radiation forces and
gravity-darkening in the approximation of von Zeipel
(1924a, 1924b). In any case, the latitude dependence of the
surface properties (temperature, radiation Ñux, etc.) of
rapidly rotating luminous stars is largely unknown as Kip-
penhahn (1977) showed in a generalization of the von Zeipel
theorem that they depend strongly on the details of the
internal rotation law (see also Maeder 1999). However, the
only crucial ingredient for our model calculations, which is
conÐrmed by Owocki & Gayley (1997), is the fact that the
latitudinally integrated mass-loss rate increases strongly as
the star approaches the )-limit, so that the star cannot
exceed critical rotation, but rather loses more mass and
angular momentum (Langer 1998).

2.7. Angular Momentum L oss
The loss of angular momentum from the surface due to

stellar winds is approximated by removing of the angular
momentum along with the surface layer, i.e.,

J0 \ M0 jsurf , (52)

where is the latitudinally averaged speciÐc angularjsurfmomentum at the surface of the star when the mass loss is
assumed independent of latitude.

3. CALIBRATION OF THE MIXING EFFICIENCIES

The di†usion coefficients used in this work are subject to
considerable uncertainties, as they result from order-of-
magnitude estimates of some of the relevant timescales and
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length scales. Therefore, efficiency factors of order unity are
introduced, in order to calibrate the di†usion coefficients
with observational data. This is similar to the treatment of
Pinsonneault et al. (1989).

The Ðrst adjustable parameter is the ratio of the turbulent
viscosity to the di†usion coefficient, The contribu-f

c
4 D/l.

tion of the rotationally induced instabilities to the di†usion
coefficient is assumed to be reduced by the factor whilef

c
,

their full value enters the turbulent viscosity,

D\ Dconv ] Dsem ] f
c

] (DDSI] DSHI] DSSI] DES ] DGSF) , (53)

l\ Dconv] Dsem ] DDSI] DSHI] DSSI] DES ] DGSF.

(54)

The second parameter, described the sensi-fk ½ [0, 1],
tivity of the rotationally induced mixing to k-gradients, i.e.,

is replaced by+k fk +k.In order to reproduce the surface 7Li abundance in the
Sun, Pinsonneault et al. (1989) introduced the factor f

c
½

[0, 1]. They found a clue of for their best Ðt.f
c
\ 0.046

From theoretical work Chaboyer & Zahn (1992) found a
similar value, for the combined action of shearf

c
\ 1/30,

and meridional circulation. This is the value chosen for
most of the models presented in this work (cf. Table 3).

The best observational probe of rotationally induced
mixing in stars is the evolution of the surface composition
during central hydrogen burning. While lithium and boron
are depleted early during this phase (Venn et al. 1996 ; Flieg-
ner et al. 1996), since they are destroyed at relatively low
temperatures, 14N is only produced at higher temperature,
i.e., much deeper inside the star. Therefore, an increase of
nitrogen at the surface should be accompanied by a
decrease of carbon (12C) or, in the case of even deeper
mixing, oxygen (16O), which is destroyed at even higher
temperatures.

An enrichment of nitrogen of order 2È3, is observed for
evolved stars of about 10È20 (Gies & Lambert 1992 ;M

_Herrero 1994 ; Vrancken et al. 1998). Since observations can
only give the projected rotation rate and are also restricted
to low projected rotational velocities (Gies & Lambert
1992 ; Vrancken et al. 1998), only a qualitative comparison
with our models is possible.

The processing of carbon to nitrogen which occurs at
core hydrogen ignition does not introduce large k-
gradients. Therefore, the occurrence of a surface nitrogen
enrichment and carbon depletion is rather insensitive to fk.In contrast, any enrichment of helium in O stars (Herrero et
al. 1992, 1998) strongly restricts Unfortunately, heliumfk.abundances are hard to measure and correspondingly
uncertain (Herrero 1994).

For purposes of calibration, we computed evolutionary
sequences for solar metallicity stars in the mass range 4È60

through core hydrogen burning, adopting a typicalM
_zero-age main-sequence rotational velocity of D200 km s~1

(Slettebak 1970 ; Fukuda 1982 ; Lang 1991 ; Halbedel 1996 ;
Penny 1996). Figure 5 shows the surface values of helium,
carbon, nitrogen, and oxygen at core hydrogen exhaustion
as function of the initial stellar mass for various com-
binations of andfk f

c
.

A value of reproduces an enhancement of nitro-fk \ 0.05
gen by a factor of 2È3 in the mass range 10È20 andM

_
,

FIG. 5.ÈSurface abundances at core hydrogen exhaustion as function
of the initial stellar mass for models with an equatorial surface rotation
rate of D200 km s~1 at hydrogen ignition. Thin lines correspond to di†er-
ent values of (° 3) for Ðxed The thick gray line corresponds tofk f

c
\ 1/30.

and In panels aÈc, the change of the mass fractions off
c
\ 1/100 fk \ 0.

carbon, nitrogen, and oxygen, respectively, relative to the initial values are
shown; panel d shows the surface helium mass fractions. Models with
initial masses of 12, 15, 20, 30, 45, and 60 have been calculated with theM

_KEPLER code. For (solid thin line) and (gray thick line),fk \ 0.05 fk \ 0
additional 5, 8, and 10 stars are computed, and for the case alsoM

_
fk \ 0

a 4 model is calculated.M
_
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FIG. 6.ÈSurface abundances at core hydrogen exhaustion as a function
of for 12 stars with an equatorial rotational velocity at the surfacef

c
, M

_of D200 km s~1 at hydrogen ignition. The thin dotted, solid, and dashed
lines give the logarithm of the surface abundance of carbon, nitrogen, and
oxygen, respectively, relative to their initial values (left scale). The thick
gray line shows the surface mass fraction of helium (right scale). Model
sequences have been computed for 0.025, 0.03 1/30, 0.04, and 0.05f

c
\ 0.01,

with the KEPLER code.

results in a surface helium mass fraction of D40% for the 60
star, while the enrichment remains quite small for starsM

_below 20 For nitrogen and helium areM
_

. fk \ 0.01,
clearly enriched too much for stars below 30 On theM

_
.

other hand, the nitrogen enrichment might be too low for
values of Certainly, for and thefk º 0.1. fk\ 0.25 fk \ 1.0
nitrogen abundance for the most massive stars (30È60 M

_
)

is inconsistent with the observations. The same is true for
the helium abundances.

In summary, seems to be the best valuefk\ 0.05
(provided see above). This set of parameters isf

c
\ 1/30,

used in the present work for the models whose name ends
with B (Table 3). The consequences of a variation of (forf

cÐxed is shown in Figure 6 for a 12 star. Forfk \ 0.05) M
_small values of the nitrogen abundance is too low, whilef

cfor large values, helium becomes quite high.
As discussed above, too much surface enrichment occurs

with for small values of Nevertheless, itf
c
\ 1/30 fk([ 0.01).

is interesting to investigate the case where k-gradients are
completely neglected, since the calibration of and is notf

c
fkunambiguous, and di†erent combinations might result in

similar surface enrichments. The surface abundance,
however, are the only clear observational constraint, while
the degree of internal mixing is not directly observable.
Therefore, a second parameter set of and isf

c
\ 0.01 fk\ 0

also used. The resulting surface abundances (displayed as
thick gray line in Fig. 5) show quite similar enrichments.
Models with this choice of and do not carry a B at thef

c
fkend of their name (Table 3). A value of for isf

c
\ 0.01 fk\ 0

also supported by calibrations of the lithium, beryllium, and
boron surface abundance for the sun by Fliegner (1993).

4. NUMERICAL SOLUTION

Two di†erent numerical codes were used here to follow
the stellar evolution. We now brieÑy describe each.

4.1. ST ERN
The STERN code is a pseudo-Lagrangian, implicit

hydrodynamic code (Langer et al. 1988), based on the
stellar evolution code.ÏÏ For numerical solution,““ Go� ttinger

relative mass coordinate q 4 m/M is used instead of the
mass coordinate m, which allows to reserve the distribution
of computational grid in the presence of mass loss.

The equation of state includes radiation, ionization, rela-
tivistic electron degeneracy, and electron-positron pairs.
Ions are treated as a Boltzmann gas (El Eid & Langer 1986).

The chemical evolution due to thermonuclear burning is
traced by 35 isotopes : n, 1,2H, 3,4He, 6,7Li, 7,9Be, 8,10,11B,
11,12,13C, 12,14,15N, 16,17,18O, 19F, 20,21,22Ne, 23Na,
24,25,26Mg, 26,27Al, 28,29,30Si, and 56Fe. Except for 19F,
26Al, and 56Fe, reactions between them are solved in a 32
isotope network. These reaction rates are also used to deter-
mine the nuclear energy generation rate. The Ne/Na and
Mg/Al hydrogen-burning cycles are solved separately using
a 13 isotope network including, 1H, 18O, 19F, 20,21,22Ne,
23Na, 24,25,26Mg, 26,27Al, 28Si, and 16O (Braun 1997). The
neutrino losses are determined according to Munakata et
al. (1985).

The reaction networks are solved separately for each
zone between the individual stellar structure integration
time steps. This allows for subcycling of the reaction
network with Ðne time steps wherever needed.

4.2. KEPL ER
In the KEPLER code (Weaver et al. 1978, 1984 ; Woosley

& Weaver 1988) the equation of state includes a crude treat-
ment of Coulomb corrections, beyond what is used in
STERN (Weaver et al. 1978). A 19 isotope network is
employed through oxygen burning, including the elements
1H, 3He, 4He, 12C, 14N, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar,
40Ca, 44Ti, 48Cr, 52Fe, 54Fe, 56Ni, and neutrons and
protons from photodisintegration. Silicon burning is fol-
lowed using a quasi-equilibrium network of 137 isotopes, in
which subgroups of elements are treated in nuclear sta-
tistical equilibrium while reactions between these sub-
groups are considered explicitly. Beyond silicon burning full
nuclear statistical equilibrium is assumed. A more detailed
description of the reaction networks in KEPLER can be
found in Weaver et al. (1978). However, an improvement of
the treatment of hydrogen burning has been implemented
(Appendix A).

For the present work, angular momentum has been
added to KEPLER as a new local variable, and rotationally
induced mixing processes incorporated according to ° 2.3.
However, because changes to the structural model calcu-
lations on KEPLER would be difficult, the modiÐcations to
the momentum balance and the energy transport (° 2.1)
applied in STERN are not included into KEPLER. The
same opacities (Iglesias & Rogers 1996) used in STERN are
also included in KEPLER (an update to previous versions
of the code), which allows for more consistency between the
two calculations. For temperatures above 109 K the opa-
cities used in KEPLER are still chieÑy due to electron scat-
tering with corrections due to relativity and degeneracy
(Weaver et al. 1978).
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As outer boundary conditions a Ðnite (or zero) boundary
pressure is often utilized in KEPLER. The radius of the
photosphere is determined as the location where an optical
depth of is reached. This treatment of the outer boundary23condition, but also the mass loss, is less accurate than that
implemented in STERN (Heger 1998). For this reason, the
stellar evolution from the preÈmain sequence until a central
temperature of 109 K, i.e., before central neon ignition, is
followed by STERN, and the rest of the evolution until core
collapse by KEPLER. At this stage of evolution, the total
mass lost in its remaining lifetime yr) prior to core([100
collapse is negligible. The stellar envelope, and therefore the
outer appearance of the star, hardly changes. However,
stellar models followed form the preÈmain sequence using
KEPLER give results similar to those obtained by STERN.

5. INITIAL MODELS

The initial model for the calculations presented in this
work is that of a fully convective, rigidly rotating (following
our assumption that convection does lead to rigid rotation)
preÈmain-sequence star. In the Hertzsprung-Russell (H-R)
diagram such stars are located on their Hayashi line. These
models are constructed from the Lane-Emden equation
(e.g., Kippenhahn & Weigert 1991) with a polytropic index
of n \ 3/2. Typically, initial stellar radii around 100 areR

_used. This kind of initial condition is for computational
convenience only and is not intended to reproduce the true
preÈmain-sequence evolution (see also Beech & Mitalas
1994 ; Bernasconi & Maeder 1996).

The inÑuence of rotation on the stellar structure is negli-
gible in the initial models, but it becomes more important
when the stars contract towards central hydrogen ignition.
On the zero-age main sequence (ZAMS) close-to-rigid rota-
tion establishes throughout the star, due mainly to the
action of Eddington-Sweet circulation (° 2.3.4) and the
Goldreich-Schubert-Fricke instability (° 2.3.5). These pro-
cesses are sufficiently efficient in the early stellar evolution
that rigid rotation is established virtually independent of
the initial angular momentum distribution assumed.
Almost no angular momentum is lost before the star
reaches the main sequence.

All models in this work use an approximately solar initial
chemical composition with a mass fraction of all elements
heavier than helium (““ metals ÏÏ) of Z\ 0.02. The mass frac-
tions of hydrogen and helium are set to X \ 0.7 and
Y \ 1 [ X [ Z\ 0.28, respectively. In STERN (° 4.1), the
abundance ratios of the isotopes within each of these groups
are chosen to have the solar system meteoritic abundance
ratios according to Grevesse & Noels (1993) (see Table 1).
Calculations performed with the KEPLER code (° 4.2) start
on the preÈmain sequence with a relative distribution of the
metals according to Anders & Grevesse (1989) as given in
Table 2.

For the main set of models in this work the initial angular
momentum is determined such that the stars reach a rota-
tional velocity of D200 km s~1 on the ZAMS. This is a
typical observed value for stars in the mass range 8È25 M

_(Slettebak 1970 ; Fukuda 1982 ; Halbedel 1996 ; Penny 1996 ;

TABLE 1

INITIAL ISOTOPIC MASS FRACTIONS FOR MODELS COMPUTED WITH STERN

Isotope Mass Fraction Isotope Mass Fraction Isotope Mass Fraction

1H . . . . . . . 7.00] 10~1 14N . . . . . . . 1.07] 10~3 24Mg . . . . . . 5.60] 10~4
3He . . . . . . 3.78] 10~5 15N . . . . . . . 3.92] 10~6 25Mg . . . . . . 7.09] 10~5
4He . . . . . . 2.80] 10~1 16O . . . . . . . 1.04] 10~3 26Mg . . . . . . 7.81] 10~5
6Li . . . . . . 6.69] 10~10 17O . . . . . . . 3.95] 10~6 27Al . . . . . . . 6.24] 10~5
7Li . . . . . . 9.63] 10~9 18O . . . . . . . 2.08] 10~5 28Si . . . . . . . 7.08] 10~4
9Be . . . . . . 1.72] 10~10 19F . . . . . . . 3.89] 10~7 29Si . . . . . . . 3.58] 10~5

10B . . . . . . . 1.04] 10~9 20Ne . . . . . . 1.77] 10~3 30Si . . . . . . . 2.37] 10~5
11B . . . . . . . 4.92] 10~9 21Ne . . . . . . 4.31] 10~6 56Fe . . . . . . . 1.37] 10~3
12C . . . . . . . 3.62] 10~3 22Ne . . . . . . 1.29] 10~4
13C . . . . . . . 4.03] 10~5 23Na . . . . . . 3.60] 10~5

NOTE.ÈInitial isotopic mass fractions for the models computed with the STERN code (° 4.1) are
taken from Grevesse & Noels 1993. The initial abundances of the radioactive isotopes 7Be, 8B, 11C,
12N, and 26Al, and that of 2H are set to zero.

TABLE 2

INITIAL ISOTOPIC MASS FRACTIONS FOR MODELS COMPUTED WITH KEPLER

Isotope Mass Fraction Isotope Mass Fraction Isotope Mass Fraction

1H . . . . . . . 7.0000] 10~1 16O . . . . . . . 1.0175] 10~2 36Ar . . . . . . 1.0176] 10~4
3He . . . . . . 2.9798] 10~5 20Ne . . . . . . 1.8545] 10~3 40Ca . . . . . . 6.9515] 10~5
4He . . . . . . 2.7997] 10~1 24Mg . . . . . . 7.3366] 10~4 48Cr . . . . . . 3.1177] 10~6

12C . . . . . . . 3.2467] 10~3 28Si . . . . . . . 8.1332] 10~4 52Fe . . . . . . 1.9180] 10~5
14N . . . . . . . 1.1732] 10~3 32S . . . . . . . . 4.5056] 10~4 54Fe . . . . . . 1.3594] 10~3

NOTE.ÈInitial isotopic mass fractions for the models computed with the KEPLER code
(° 4.2). The initial abundances of the radioactive isotopes 44Ti and 56Ni, which are also in the network,
are set to zero.
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Howarth et al. 1997). It corresponds to D35% of their
““ critical ÏÏ rotation speed (° 2.6). Also models with di†erent
initial rotation rates are computed, in order to investigate
the inÑuence of this parameter on the evolution of massive
stars (see Table 3).

6. CENTRAL HYDROGEN BURNING

6.1. Chemical Mixing : T he Example of 20 StarsM
_

In Figure 7 the internal proÐles of the most abundant
isotopes in a nonrotating star and two rotating 20 M

_models are compared at core hydrogen exhaustion. Con-
vection causes Ñat proÐles in the innermost few solar
masses. Small convective and/or semiconvective regions
(similar to Model D15 in Fig. 17) cause steps in the proÐle
above the convective core.

In the nonrotating case no mixing occurs in the envelope.
In contrast, the rotating models mix thermonuclear pro-
cessed matter into the envelope. If no inhibition of rotation-
ally induced instabilities by k-gradients is assumed, an
extended gradient in helium (along with other species)
reaches from the upper edge of the convective core up to the
surface (Model E20 in Fig. 7a). Due to the increase of the
mean molecular weight in the whole envelope, as a conse-
quence of helium enrichment, the mass of the hydrogen-

depleted core of Model E20 is about 1.5 larger than inM
_the nonrotating case.

The dominant rotationally induced mixing process
during central hydrogen burning is Eddington-Sweet circu-
lation. It is fast enough to keep the whole star close to rigid
rotation (° 6.2), and thus renders shear instabilities unim-
portant. The GSF instability remains 1È2 orders of magni-
tude less efficient than the Eddington-Sweet circulation.
The k-gradients above the convection core in Model E20
(see also Fig. 18) are strong enough to suppress the
occurrence of extended semiconvective structures. The
secular shear instability occurs only in a small layer close to
the surface, and never contributes signiÐcantly to the
mixing.

If k-gradients are taken into account for the rotationally
induced instabilities (Model E20B; Figs. 7b and 19), the
k-gradient which forms at the upper edge of the convective
core is not smoothed out fast enough, but instead almost
completely chokes o† any mixing between core and
envelope quite early during core hydrogen burning. There-
fore, below m\ 10 the composition of Model E20BM

_remains quite similar to that of Model D20. The higher
concentration of carbon in Model E20B, however, shows
the occurrence of some mixing early on.

Above the ““ barrier ÏÏ due to the k-gradient (k-barrier)

TABLE 3

PARAMETERS OF THE MODEL SEQUENCES

Minitial Jinitial vZAMS
Model (M

_
) (1052 erg s) (km s~1) f

c
fk Evolution Followed until

D10 . . . . . . . 10 0 0 . . . . . . Carbon shell burning
D12 . . . . . . . 12 0 0 . . . . . . O†-center neon burning
D15 . . . . . . . 15 0 0 . . . . . . Core collapse
D20 . . . . . . . 20 0 0 . . . . . . Core collapse
D25 . . . . . . . 25 0 0 . . . . . . Core collapse

E08 . . . . . . . . 8 0.53 205 0.01 0 Carbon shell burning
E10 . . . . . . . . 10 0.80 207 0.01 0 Core collapse
E12 . . . . . . . . 12 1.10 206 0.01 0 Core collapse
E15 . . . . . . . . 15 1.60 206 0.01 0 Core collapse
E20 . . . . . . . . 20 2.50 201 0.01 0 Core collapse
E25 . . . . . . . . 25 3.50 205 0.01 0 Core collapse

G12 . . . . . . . 12 0.55 100 0.01 0 Core hydrogen exhaustion

F12 . . . . . . . . 12 1.65 327 0.01 0 Core hydrogen exhaustion

E12B . . . . . . 12 1.10 206 1/30 0.05 O†-center neon burning
E15B . . . . . . 15 1.60 206 1/30 0.05 Core collapse
E20B . . . . . . 20 2.50 201 1/30 0.05 Core collapse

F12B . . . . . . 12 1.65 328 1/30 0.05 Carbon shell burning
F15B . . . . . . 15 2.40 323 1/30 0.05 Core collapse
F20B . . . . . . 20 3.75 307 1/30 0.05 Core collapse

G12B . . . . . . 12 0.55 99 1/30 0.05 Carbon shell burning
G15B . . . . . . 15 0.80 102 1/30 0.05 Core collapse
G20B . . . . . . 20 1.25 103 1/30 0.05 Core collapse

H12B . . . . . . 12 2.20 474 1/30 0.05 Carbon shell burning
H15B . . . . . . 15 3.20 457 1/30 0.05 Core hydrogen exhaustion
H20B . . . . . . 20 5.00 425 1/30 0.05 Core helium burning

NOTE.ÈShown are the model name (left column), the initial mass the initial angular momen-Minitial ,tum the equatorial rotational velocity at the surface at central hydrogen ignition and twoJinitial , vZAMS,parameters of rotationally induced mixing, and The last column gives the Ðnal evolutionary stagef
c

fk.to which the models are evolved.
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FIG. 7.ÈMass fractions of di†erent isotopes as a function of the mass coordinate, m, at core hydrogen exhaustion. Compared are the chemical structures
of rotating (thick lines) and a nonrotating (thin lines ; same in both panels ; Model D20) 20 models. The rotating models have a ZAMS equatorialM

_rotational velocity of D200 km s~1. Panel a : Model E20, where rotationally induced mixing is not inhibited by k-gradients. Panel b : Model E20B, where
rotationally induced mixing is inhibited by k-gradients ( fk \ 0.05).

mixing is efficient (see the small slope of the composition
proÐles in the envelope of Model E20B; Fig. 7b), and
stronger than for Model E20, since the efficiency for com-
positional mixing is assumed to be in Model E20Bf

c
\ 1/30

instead of for Model E20.f
c
\ 1/100

The relative contributions of the di†erent rotationally
induced mixing processes above the k-barrier are similar in
Models E20 and E20B, except that close to the k-barrier the
GSF instability becomes important in Model E20B. Within
the k-barrier, almost all rotationally induced mixing is sup-
pressed and the mixing is dominated by semiconvection.
The secular shear instability is inhibited by the k-gradient.

Strong angular velocity gradients at the boundaries of
convective layers cause, in principle, layers where the shear
Ñow can overcome the stabilizing e†ect of the k-gradients.
However, they are too thin to be resolved in the present
calculations.

6.2. Transport of Angular Momentum
Similar to chemical mixing, the transport of angular

momentum depends strongly on the inhibition of rotation-
ally induced mixing by k-gradients. Figure 8 compares the
internal angular velocity proÐle of two 15 starsM

_(Models E15 and E15B) which were computed with di†er-
ent values of (° 3).fkIn model E15, the di†erence between surface and core
angular velocity remains less than 30% during core H-
burning. The overall decrease of the rotation rate by a
factor of D3 is caused by two e†ects : mass loss from the
surface, which carries away D40% of the initial angular
momentum, and the expansion of the stellar envelope,
which increases the total moment of inertia by a factor of
D2. At the same time, the stellar core contracts. The persist-
ence of almost rigid rotation during core hydrogen burning
implies transport of angular momentum from the core to
the envelope. This is conÐrmed by Figure 8c, which shows a
decrease of the core speciÐc angular momentum with time
(see also Fig. 8e). Because of its small radial extent, the core
contains only a small fraction of the total angular momen-

tum of the star (Figs. 8e and 8f ). For higher mass-loss rates,
i.e., for more massive stars, the spin-down (decrease of u) is
dominated by the mass loss, while at lower mass it is domi-
nated by the expansion of the envelope.

Figure 8b shows that the inhibition of rotational mixing
leads to di†erential rotation during core hydrogen burning.
The ratio of the core to envelope angular velocity in model
E15B becomes D4 at core hydrogen exhaustion. The
envelope rotates slightly faster than in Model E15 since the
star loses only 20% of the initial total angular momentum,
i.e., about half as much as Model E15. This is due to the
lower luminosity of Model E15B during core hydrogen
burningÈdue to less efficient chemical mixing (° 6.1)Èand
consequently about 60% less mass loss than in Model E15.
Figures 8d and 8f show that in Model E15B the core
angular momentum is constant throughout core hydrogen
burning.

Figures 8e and 8f compare the angular momentum dis-
tribution of Model E15 and Model E15B at various evolu-
tionary stages using the variable J(m)/m5@3, with J(m)4

Since for a rigidly rotating body of constant/0M j(m@)dm@.
density, the angular momentum, J(m), enclosed by theo0,mass coordinate, m, is

J(m) \ 3uk
5
A 3
4no0

B2@3
m5@3 P m5@3 , (55)

the curves in Figures 8e and 8f are more or less Ñat. The
evolution of J(m) illustrates the transport of angular
momentum throughout stellar evolution. J(m) drops when
angular momentum is transported through the mass shell
m. If no transport of angular momentum through the mass
shell m occurs, J(m), and also J(m)/m5@3, remain constant.
Furthermore, following a line of constant J from one evolu-
tionary stage to a subsequent one shows to what mass coor-
dinate angular momentum has been transported in the star
during the time between the two evolutionary stages. We
will refer more to Figures 8e and 8f in the discussion of the
angular momentum transport during the later evolutionary
phases.
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FIG. 8.ÈAngular velocity (panels a, b), speciÐc angular momentum (panels c, d), and integrated angular momentum, divided by m5@3J(m)\ /0m j(m@)dm@,
(thick lines ; panels e, f ) as a function of the mass coordinate m at di†erent evolutionary stages for two 15 stars with a ZAMS equatorial rotational velocityM

_of D200 km s~1. Panels a, c, and e show Model E15 (inefficient k-barrier), and panels b, d, and f Model E15B (efficient k-barrier). The thin lines in panels e
and f give a logarithmic scale of levels of constant J, labeled with log (J/erg s).

6.3. InÑuence of the Initial Rotation Rate
Figure 9 shows the evolution of angular velocity and

speciÐc angular momentum in Models G15B and F15B,
which both contain the inhibition of rotational mixing due

to k-gradients. The latter model initially has 3 times more
angular momentum than the Ðrst.

While this di†erence of a factor of 3 in the rotation rate is
conserved in the envelope throughout core hydrogen
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FIG. 9.ÈAngular velocity (panels a, b), speciÐc angular momentum (panels c, d), and integrated angular momentum, divided by m5@3J(m)\ /0m j(m@)dm@,
(thick lines ; panels e, f ) as a function of the mass coordinate m at di†erent evolutionary stages for two 15 stars. The evolution of stars with a ZAMSM

_equatorial rotational velocity of D100 km s~1 (left ; Model G15B) and D300 km s~1 (right ; Model F15B) are depicted. In both models, the e†ect of
k-gradients on rotational mixing is taken into account. The thin lines in panels e and f give a logarithmic scale of levels of constant J, labeled with log
(J/erg s).

burning, it becomes much smaller in the cores. The faster
rotation of Model F15B sustains the transport of angular
momentum out of the core for a longer time than in Model
G15B, where the core angular momentum is almost com-

pletely conserved (Fig. 9). That is, the angular momentum is
less efficiently trapped in the fast rotating Model F15B than
in the Models G15B and E15B (Figs. 8 and 9). This feed-
back process leads to a convergence of the core rotation
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rates. We note already here that this convergence persists
during the later burning stages and leads to very similar
iron core angular momenta for a wide range of initial rota-
tion rates (cf. ° 10 below).

The stronger core angular momentum depletion in faster
rotating models occurs simultaneously with rotationally
induced mixing across the k-barrier : the masses of the con-
vective cores at the end of central hydrogen burning are 2.4

2.5 2.6 and 2.8 for Models D15, G15B,M
_

, M
_

, M
_

, M
_E15B, and F15B, respectively. However, Model E15, where

the k-barrier was assumed to be inefficient, has a core of
about 3.5 Thus, even for very rapid rotation theM

_
.

assumption of k-barriers inhibiting rotationally induced
mixing strongly restricts the core growth due to rotation
(see also Figs. 17, 18, and 19).

7. CENTRAL HELIUM BURNING

After core hydrogen exhaustion, the models become red
supergiants (except for Model H12B which Ðrst burns
helium as a blue supergiant for some time) and their
extended hydrogen-rich envelopes become convective. The
pulsational properties of these envelopes have been dis-
cussed by Heger et al. (1997) and the evolution of the surface
rotation rates, especially during blue loops, by Heger &
Langer (1998). In the following, we investigate the evolution
of the cores, using the 15 models as example.M

_The importance of rotation in the postÈmain-sequence
evolution can be estimated from Table 4, which compares
the Eddington-Sweet timescale,

qES D qKH
AuKep

u
B2

, uKep 4 JGm/r3 . (56)

(Zahn 1992), in the cores of our Models E15 and E15B
during the various burning stages with the respective
nuclear timescales. For the amount of di†erential rotation
in our models, the characteristic timescale for mixing due to
the GSF instability (° 2.3.5) is comparable to the
Eddington-Sweet timescale.

The core hydrogen burning phase is the only one where
mixing and nuclear timescale are comparable. During core
helium burning, the mixing timescale is 1 or 2 orders of
magnitude larger than the nuclear timescale, which may still
allow for some e†ects of rotational mixing. The later phases
are too short to allow for any rotationally induced mixing
in the cores ; note, however, that at the core boundaries
some e†ects of rotational mixing may still be possible in
case of strong gradients in the angular velocity (cf. ° 9.1
below).

An energetic limit to the amount of mixing due solely to
shear instabilities can be obtained by comparing the rota-
tional energy of the core with the potential energy required
to lift processed matter from the upper edge of the convec-
tive core to the hydrogen-burning shell source (Heger 1998).
For a typical value of and a di†erence in theu/uKep\ 0.05
mean molecular weight of fully ionized carbon relative to
helium of D0.3 (oxygen would be even heavier), an enrich-
ment of carbon by at most is possible. This assumes[0.5%
the carbon to be homogeneously distributed throughout
the radiative layer and that all the rotational energy of the
core is used to supply the buoyancy energy. Note that this
limit does not apply to instabilities which tap the energy
Ñux in the star like the Eddington-Sweet circulation.

7.1. Chemical Mixing
In a nonrotating star using the Ledoux criterion for con-

vection (° 2.2.2) prevents the growth of the convective
helium core that would occur if the Schwarzschild criterion
were assumed. Instead, several convective regions, separat-
ed by semiconvective layers, form above the convective core
(Figs. 10c and 17). In the rotating models with fk \ 0.05
(e.g., Model E15B in Figs. 10b and 19) the shear across the
semiconvective layers is not strong enough to overcome the
stabilizing k-gradient, even for the fast rotating Model
F15B.

If rotationally induced mixing is assumed to be insensi-
tive to k-gradients (i.e., Model E15 in Figs. 10a andfk \ 0 ;
18) the dynamical shear instability operates in the semi-
convective regions and dissolves them, similar to the case of
Schwarzschild convection. In this case, the rotational
mixing leads to considerably more massive helium cores.
The resulting higher burning temperatures in the cores lead
to lower central carbon-to-oxygen ratios at core helium
exhaustion.

An interesting issue is the mixing (and angular momen-
tum transport) in the radiative helium layer between the
convective core and the hydrogen-burning shell. If the pro-
ducts of helium burning could be mixed upward into the
hydrogen-burning shell, primary production of 14N could
occur. If hydrogen were transported down into the helium-
burning center, a much stronger than normal s-process
could result and build up more heavy or neutron-rich ele-
ments. On the other hand, strong instabilities in this region
could also lead to a signiÐcant slowing down of the core.

The dominant mixing process present in this layer is
Eddington-Sweet circulation, with some contribution from
the GSF instability. During the early stages of core helium
burning of models with (e.g., Model E15), the secularfk \ 0

TABLE 4

EVOLUTION AND MIXING TIMESCALES OF MODELS E15 AND E15B

E15 E15B

qKH* qES qburn qKH* qES qburn
CENTRAL BURNING PHASE (yr) u/uKep (yr) (yr) (yr) u/uKep (yr) (yr)

Hydrogen . . . . . . . . . . . . . . . . . . 5 ] 104 5 ] 10~2 2 ] 107 1 ] 107 5 ] 104 5 ] 10~2 2 ] 107 1 ] 107
Helium . . . . . . . . . . . . . . . . . . . . . 5] 104 2 ] 10~2 1 ] 108 1 ] 106 7 ] 104 6 ] 10~2 2 ] 107 1 ] 106
Carbon . . . . . . . . . . . . . . . . . . . . . 4 ] 104 3 ] 10~2 4 ] 107 4 ] 102 6 ] 104 8 ] 10~2 9 ] 106 4 ] 103
Oxygen . . . . . . . . . . . . . . . . . . . . 1] 101 5 ] 10~2 3 ] 103 1 ] 100 3 ] 101 1 ] 10~1 3 ] 103 5 ] 100
Silicon . . . . . . . . . . . . . . . . . . . . . . 3 ] 101 8 ] 10~2 5 ] 101 1 ] 10~2 3 ] 10~1 2 ] 10~1 1 ] 101 3 ] 10~2

NOTE.ÈValues of the Kelvin-Helmholtz timescale (eq. [37]), the ratio of angular velocity to the Keplerian angular velocity,qKH*
the Eddington-Sweet circulation timescale, (Zahn 1992), and the burning timescale, for the core region during theu/uKep , qES, qburn,major nuclear burning phases, for Models E15 (left) and E15B (right).



384 HEGER, LANGER, & WOOSLEY Vol. 528

FIG. 10.ÈMass fraction of the dominant species of three 15 modelsM
_at the end of central helium burning as a function of the mass coordinate,

m. Panels a and b refer to Models E15 and E15B, respectively, which have a
ZAMS equatorial rotational velocity of D200 km s~1, but di†erent
assumptions for the parameters of rotationally induced mixing. Panel c
shows the nonrotating Model D15.

shear instability dominates slightly over the Eddington-
Sweet circulation at the upper edge of the helium core.
Towards central helium exhaustion, the mixing is domi-
nated by the GSF instability. In the case of thefk \ 0.05,
secular shear instability is suppressed by k-gradients.

Figure 10b illustrates that some mixing occurs during
core helium burning : A gradient in 12C and 16O extends
from the convective core up to the edge of the helium core.
In this model, the increase in 12C or 16O is not sufficient to
result in any signiÐcant primary nitrogen production in the
hydrogen burning shell. Even though this e†ect is not
notably more pronounced in the initially faster rotating
Model F15BÈdue to the convergence of the core rotation
rates ; cf. ° 6.3Èor for the di†erent initial masses investi-
gated here, such a primary nitrogen production appears
possible in more favorable conditions, e.g., for higher
mixing efficiencies or at lower metallicity.

In Model E15 (Fig. 10a) the rotation of the helium core is
slower, and the 12C and 16O gradients are much steeper,
leveling o† to the CNO equilibrium values a few tenths of a
solar mass above the convective core. In the nonrotating
Model D15 (Fig. 10c), no enrichment of 12C and 16O
appears at all above the outermost semiconvective layer of
the convective core.

Even though the strong entropy gradient at the location
of the hydrogen-burning shell suppresses rotationally
induced mixing between the helium core and the hydrogen
burning shell, some mixing occurs due to the large angular
velocity gradient. This can be seen in Figure 19 : The tail of
the energy generation rate at the lower bound of the
hydrogen-burning shell source in Model E15B penetrates
into the helium core, i.e., some hydrogen is mixed down-
ward. Since the protons burn quite fast as they are mixed
deeper inside the helium core, they cannot reach the central
convective region. However, some protons may survive and
get mixed into the convective helium shell later on (° 9.1). In
Model E15 (Fig. 18), where the core is rotating slower, and
also in the nonrotating Model D15 (Fig. 17), this feature is
not found.

7.2. Transport of Angular Momentum
After core hydrogen exhaustion, the stars undergo a

phase of major restructuring as the core contracts and the
envelope expands. This leads to a spin-up of the core (Figs.
8a, 8b, 9a, and 9b) and a spin-down of the envelope. At the
same time, the convective envelope grows in mass and its
bottom approaches the helium core. A steep rise in the
speciÐc angular momentum occurs at the bottom of the
rigidly rotating envelope that persists throughout core
helium burning and beyond (Figs. 8c, 8d, 9c, and 9d). The
entire helium core stays close to rigid rotation during
central helium burning (Figs. 8a, 8b, 9a, and 9b).

Up to core helium exhaustion, the speciÐc angular
momentum of the helium core drops appreciably with time
(Figs. 8 and 9). Three processes contribute to this e†ect.
First, angular momentum is removed from the core during
the starÏs restructuring phase between core hydrogen deple-
tion and helium ignition. Second, the core grows in mass
due to hydrogen shell burning and engulfs regions of lower
speciÐc angular momentum (Figs. 8c and 8d). The reasons
for the low speciÐc angular momentum above the core are
secular shear instabilities, the Ðrst dredge-up, and short-
lived convective regions which temporarily extend down to
mass coordinates smaller than the Ðnal helium core mass.
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The regions of outwards decreasing speciÐc angular
momentum are stable due to strong stabil-Solberg-HÔiland
izing entropy and composition gradients. Third, some
angular momentum is transported from the helium core
into the envelope through the hydrogen-burning shell. The
models of the B series lose less angular momentum during
the restructuring phase because of the inhibiting e†ect of the
k-gradients, but more during central helium burning, due to
their considerably faster rotation.

The relative loss of angular momentum in Models G15B,
E15B, and F15B during helium burning increases with the
initial amount of angular momentum left at the end of
central hydrogen burning. Consequently all three models
end up with very similar core angular momenta and
rotation rates (Fig. 9), about 3 times that of Model E15 (Fig.
8).

8. COMPARISON WITH PREVIOUS WORK

In contrast to Kippenhahn et al. (1970), who investigated
rapidly rotating 9 stars km s~1), our modelsM

_
(vZ 400

do not become secularly unstable at the end of central
helium burning, since, according to our assumptions, k-
barriers are less efficient in suppressing angular momentum
transport compared to Kippenhahn et al. (1970).

Endal & SoÐa (1978) followed the evolution of 7 andM
_10 stars with a ZAMS rotational velocity of D200 kmM

_s~1 using essentially the same method as in the present
work, except for some improvements in the input physics of
the individual processes applied here (° 2.2 and Endal &
SoÐa 1978). They used the Schwarzschild criterion for con-
vection, however, and did not include mass loss. In their
work, the k-barrier above the convective hydrogen-burning
core suppressed mixing and transport of angular momen-
tum almost completely. Therefore, their stellar cores lose
very little angular momentum during central hydrogen
burning. Although we use and the inhibiting e†ect offk\ 1
the k-gradients is smaller, a similar k-barrier forms during
central hydrogen burning. However, we obtain some mixing
between the core and the envelope early during core hydro-
gen burning, some angular momentum loss from the core to
the envelope, and in most cases some enrichment of the
surface with H-burning products. In an earlier work, Endal
& SoÐa (1976) disregarded rotationally induced angular
momentum transport, but imposed various rotation laws.
In this case an even more extreme result was obtained : all
models reached critical rotation before carbon ignition.

Eryurt et al. (1994) considered turbulent di†usion accord-
ing to Zahn (1983) in their computation of a rotating 20 M

_stars with a metallicity of Z\ 0.008. They found a sur-
prisingly large surface 14N enrichment at the end of core
hydrogen burning of more than 2% by mass. Since the
CNO cycle conserves the total mass of the CNO isotopes,
this result appears implausible and cannot be reproduced in
the present work.

Meynet & Maeder (1997) used a prescription for the
Eddington-Sweet circulation according to Zahn (1992), and
a modiÐed Richardson criterion to account for thermal
e†ects (Maeder 1995 ; Maeder & Meynet 1996). They com-
puted the hydrogen-burning evolution of stars from 9 to 60

and found a strong inhibiting e†ect of the k-gradientsM
_on the rotationally induced mixing, which resulted in

stronger di†erential rotation at core hydrogen exhaustion
than found in our models of the B series. Their models did
not show any surface enrichment of helium.

These models were superseded by those of Meynet (1997),
who computed the main-sequence evolution of 20 andM

_40 stars, using improved physics of rotationallyM
_induced mixing as discussed by Meynet & Maeder (1997),

and Maeder (1997b). The inhibiting e†ect of k-gradients on
shear mixing and Eddington-Sweet circulation was strongly
reduced in the new formulation. MeynetÏs rotating 20 M

_model showed a larger envelope helium enrichment than
the comparable Model E20, and a similar mass of the
hydrogen-depleted core. The physics used in Meynet (1997)
has been revised again by Maeder & Zahn (1998) for a more
consistent treatment of k-gradients. Models with this pre-
scription are not yet available.

Talon et al. (1997) followed the main-sequence evolution
of 9 stars with ZAMS rotation rates of 100 km s~1 andM

_300 km s~1 until end of central hydrogen burning, using the
prescription for the Eddington-Sweet circulation by Zahn
(1992). The helium enrichment in the envelope showed a
smooth proÐle, similar to our Models E08 and E10. At core
hydrogen exhaustion, their models showed steep composi-
tion gradients close to the stellar surface. This may have
resulted from the low-mass loss assumed in their calculation
in combination with inefficient mixing close to the surface.
With a slightly larger mass-loss rate, their rapidly rotating
model would have a much stronger surface enrichment.
Due to the downward advection of angular momentum by
meridional circulation in the theory of Zahn (1992), Talon
et al. (1997) found a somewhat stronger envelope di†erential
rotation compared to our Models E08 and E10, but a com-
parable one to, e.g., Model E12B. We conclude that this
downward advection is not a strong e†ect, which may
justify its neglect in the present work.

Summarizing, the prescription for rotationally induced
mixing used in the models of Kippenhahn et al. (1970) corre-
sponds roughly to in terms of the present for-fk\ f

c
\O

mulation. Endal & SoÐa (1978) used about fk \ f
c
\ 1.

Neither work obtained any surface enrichment during core
hydrogen burning due to the strong inhibiting e†ect of
k-gradients (Meynet & Maeder 1997). The recent picture of
interacting Eddington-Sweet circulation, anisotropic turbu-
lence, and shear instabilities (Chaboyer & Zahn 1992 ;
Maeder & Zahn 1998) has been continuously improved in
the last years (e.g., Urpin et al. 1996 ; Maeder 1997b ; Talon
& Zahn 1997 ; Talon et al. 1997). The most recent work in
this series, Maeder & Zahn (1998), includes an improved
treatment of compositional gradients, but this type of
description for rotationally induced mixing is complex,
computationally expensive, and has not yet been suc-
cessfully tested for postÈhydrogenÈburning stars. However,
the results obtained in earlier work (Talon et al. 1997 ;
Meynet 1997) for massive main-sequence stars are not sig-
niÐcantly di†erent from those of the present work (J.
Meynet 1999, private communication).

9. LATE EVOLUTION UNTIL CORE COLLAPSE

After core helium exhaustion, the carbon-oxygen core
(CO core) contracts and subsequently phases of carbon,
neon, oxygen, and silicon central convective and shell
burning follow inside this core.

Table 5 gives some key parameters of the Ðnal models :
the Ðnal mass of the star, the masses of the helium, CO, and
iron cores, and the angular momenta contained in these
cores. For the iron core additionally the average speciÐc
angular momentum is given. Models D10, D12, E08, G12B,
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TABLE 5

PROPERTIES OF FINAL MODELS OF VARIOUS SEQUENCES

Minitial Mfinal MHe MCO MFe vZAMS Jinitial Jfinal JHe JCO JFe jFe
Model (M

_
) (M

_
) (M

_
) (M

_
) (M

_
) (km s~1) (erg s~1) (erg s~1) (erg s~1) (erg s~1) (erg s~1) (cm2 s~1)

D10 . . . . . . . 10 9.61 1.24a 1.22 . . .b 0 0 0 0 0 0 0
D12 . . . . . . . 12 11.42 2.85 1.42 . . .b 0 0 0 0 0 0 0
D15 . . . . . . . 15 13.55 3.82 1.77 1.33 0 0 0 0 0 0 0
D20 . . . . . . . 20 16.31 5.68 2.31 1.64 0 0 0 0 0 0 0
D25 . . . . . . . 25 18.72 7.86 3.11 1.36 0 0 0 0 0 0 0

E08 . . . . . . . . 8 7.65 1.38a 1.35 . . .b 205 5.30] 1051 2.49] 1051 2.40] 1049 2.36] 1049 . . .b . . .b
E10 . . . . . . . . 10 9.23 2.84 1.78 1.36 207 8.00] 1051 2.09] 1051 8.04] 1049 3.89] 1049 2.13] 1049 7.87] 1015
E12 . . . . . . . . 12 10.35 3.63 2.37 1.34 206 1.10] 1052 1.29] 1051 1.20] 1050 5.32] 1049 1.50] 1049 5.63] 1015
E15 . . . . . . . . 15 10.86 5.10 3.40 1.46 206 1.60] 1052 1.38] 1051 2.30] 1050 1.15] 1050 1.86] 1049 6.40] 1015
E20 . . . . . . . . 20 11.00 7.71 5.01 1.73 201 2.50] 1052 7.15] 1050 3.95] 1050 1.82] 1050 1.92] 1049 5.58] 1015
E25c . . . . . . . 25 5.45 5.45 4.07 1.69 205 3.50] 1052 1.40] 1050 1.40] 1050 7.52] 1049 1.05] 1049 3.12] 1015

G12B . . . . . . 12 11.32 2.68 1.41 . . .b 99 5.50] 1051 3.07] 1051 1.15] 1050 4.18] 1049 . . .b . . .b
G15B . . . . . . 15 13.46 3.63 1.79 1.34 102 8.00] 1051 3.99] 1051 2.36] 1050 6.80] 1049 3.28] 1049 1.23] 1016
G20B . . . . . . 20 16.03 5.55 2.61 1.38 103 1.25] 1052 3.49] 1051 5.33] 1050 1.24] 1050 3.13] 1049 1.14] 1016

E12B . . . . . . 12 11.25 2.72 1.46 . . .b 206 1.10] 1052 4.92] 1051 1.29] 1050 4.94] 1049 . . .b . . .b
E15B . . . . . . 15 13.26 3.69 1.89 1.40 206 1.60] 1052 6.96] 1051 2.73] 1050 8.77] 1049 4.07] 1049 1.46] 1016
E20B . . . . . . 20 15.19 5.71 2.69 1.38 201 2.50] 1052 5.10] 1051 6.36] 1050 1.55] 1050 3.47] 1049 1.26] 1016

F12B . . . . . . 12 10.93 3.04 1.61 . . .b 328 1.65] 1052 3.43] 1051 1.72] 1050 5.98] 1049 . . .b . . .b
F15B 15 12.89 3.88 2.01 1.38 323 2.40] 1052 7.90] 1051 3.01] 1050 9.69] 1049 3.66] 1049 1.33] 1016
F20B . . . . . . 20 14.76 5.99 2.75 1.36 307 3.75] 1052 5.45] 1051 7.42] 1050 1.71] 1050 3.71] 1049 1.37] 1016
H12B . . . . . . 12 9.77 3.81 1.78 . . .b 474 2.20] 1052 1.41] 1051 2.59] 1050 6.93] 1049 . . .b . . .b

NOTE.ÈListed are the initial and Ðnal stellar mass, and the Ðnal masses of the helium core, of the carbon/oxygen, core, and ofMinitial Mfinal, MHe, MCO,
the iron core, Then the equatorial surface rotation velocity at core hydrogen ignition, is given. Furthermore, the initial stellar angularMFe. vZAMS,momentum is given, and the Ðnal angular momentum of the star and the helium, CO, and iron cores. In the last column the average speciÐc angular
momentum in the iron core is shown.

a Dredge-up of helium core.
b Not evolved to precollapse stage.
c Star becomes a Wolf-Rayet star during central helium burning.

E12B, and F12B develop degenerate neon-oxygen cores and
central neon burning starts o†-center. Due to the computa-
tional difficulties (and expense) these models were not fol-
lowed until core collapse, but stopped during neon or
oxygen shell burning or even before neon ignition. In Model
D10 even carbon burning ignites o†-center. Models D10
and E08 experience a dredge-up of almost the entire helium
shell by the convective envelope. Therefore the Ðnal helium
core is small and has little angular momentum. The remain-
ing helium shell above the CO core at the point where the
calculation is ended is only a few hundredths of a solar
mass. The masses of the helium cores before the dredge-up
are 2.25 and 2.1 respectively. Model E25 loses itsM

_
M

_
,

hydrogen-rich envelope during central helium burning and
becomes a Wolf-Rayet star. Strong Wolf-Rayet mass loss
sets in and further decreases the mass of the star. It ends up
with only 5.45 at the time of core collapse and veryM

_little angular momentum.
Note that in Table 5 the masses of some of the helium

cores in the nonrotating models are apparently larger than
those of the slowly rotating models of the B series. This is an
artifact due to the criterion used to measure the mass of the
helium core. We deÐne the helium core by the mass coordi-
nate at which the hydrogen mass fraction drops below
10~3. In the rotating models of the B series, the hydrogen
gradient at the top of the helium core is signiÐcantly shallo-
wer. If, instead, hydrogen mass fraction of 10~2 is chosen,
the helium core masses are similar or even larger for the

rotating models. Note that the size of the CO core is deÐned
in a similar way : by the mass coordinate at which the
helium mass fraction drops below 10~3.

9.1. Chemical Mixing in the Helium Shell
After core helium exhaustion, the CO core contracts and

the burning of helium continues in a shell. At the same time,
the outer layers of the helium-rich shell cool down and the
hydrogen shell source goes out. Since this implies a reduced
entropy barrier, rotationally induced mixing through the
hydrogen-helium interface can now operate more effi-
ciently. The protons which are mixed downward into the
helium shell do not burn immediately. When later the
helium-burning driven convective shell extends upwards, it
dredges these protons down into the hot, helium-burning
layers (see Fig. 19). This mechanism can open new channels
of nucleosynthesis. This will be investigated in more detail
in forthcoming papers (see Langer et al. 1999 for a Ðrst
report).

9.2. Chemical Mixing inside the CO Core
During the Ðnal remaining stellar burning phases, rota-

tional mixing inside the CO core is unimportant. The
strongest instabilities are again the Eddington-Sweet circu-
lation and the GSF instabilities, at about same order of
magnitude. From Table 4 it can be seen that their timescale
is too long in order to be signiÐcant.
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Also, the mixing of traces of material into regions of
neighboring burning phase is not expected to introduce
qualitatively new nucleosynthesis channels, since all abun-
dant nuclear species in one burning phase are anyway
present in the neighboring one (e.g., mixing traces of oxygen
into neon burning is not exciting).

In the fast rotating cores of the models of the B series,
secular shear instabilities arise above several of the central
and shell convection zones for a limited time, but they do
not become efficient enough to cause any noticeable mixing.

9.3. Transport of Angular Momentum
As for the chemical mixing, rotationally induced mixing

cannot e†ectively remove angular momentum from the core
during the late burning stages. In particular, transport is
too inefficient to keep the CO core in rigid rotation. Strong
di†erential rotation occurs (Figs. 8a, 8b, 9a, and 9b). At this
time, the only instability capable of enforcing rigid rotation
is convection. Since the radii of the lower boundaries of the
major convection zones of carbon, oxygen, and silicon
burning are much smaller than that of their upper edges,
large di†erences in the speciÐc angular momentum exist
between the bottom and the top of the convection zone.
Thus, angular momentum is mainly carried outwards. The
typical signature of such a convection zone is a steep drop
of the speciÐc angular momentum as its bottom, accompa-
nied by a large increase at its top (Figs. 8, 9, and 12).

Convection zones that subsequently overlap can trans-
port angular momentum efficiently over scales larger than
their individual extent. This is most efficient when the lower
boundary of a convective shell overlaps with the upper
boundary of a preceding convection zone. For the models
investigated in this work, such an overlap occurs rather

FIG. 11.ÈRatio of integrated rotational energy, Erot(m)\
to integrated gravitational potential energy,12 /0m u(m@) j(m@)dm@, Epot(m)\

as a function of the mass coordinate m for di†erent 15/0m Gm@/r(m@)dm@, M
_stars. The thin solid line corresponds to Model E15B, the thick gray line

refers to Model E15. The dotted line shows the limit for secular instability
to triaxial deformations in Maclaurin spheroids (Ostriker & Bodenheimer
1973).

infrequently (Appendix B). Subsequent shells, which are
driven by nuclear burning, tend to form their lower bound-
ary at the upper edge of a preceding shell, where the fuel for
their burning is not yet depleted. The most prominent
example of this is the sequence of carbon-burning shells
(e.g., Fig. 18). Exceptions occur only for some of the late
carbon-burning shells, and for the oxygen-burning shells in
Models G15B and E15B.

Convective angular momentum transport does not
operate across the boundary of the CO core. These cores
retain their angular momentum after core helium exhaus-
tion. Some redistribution, mainly due to convection, occurs
inside the cores. For example, Figure 8e shows that after
core helium exhaustion in Model E15 no angular momen-
tum is transported through the shells at mB 3.4 andM

_mB 5.1 i.e., the boundaries of the helium and the COM
_

,
core, respectively.

In models with more rapidly rotating cores (Models
G15B, E15B, and F15B; Figs. 8f, 9e, and 9f ), the helium
core does lose some angular momentum, even though its
upper boundary (at mB 3.7 remains a signiÐcantM

_
)

barrier for angular momentum transport as indicated by
the spike in Figure 8f. The loss of angular momentum from
the helium core is correlated with the mixing of hydrogen
into the helium shell described in ° 9.1. No signiÐcant
angular momentum was transported across the boundary
of the CO core in any of the models (Figs. 8e, 8f, 9e, and 9f ).

9.4. Stability to Triaxial Deformations
As described in ° 2.1, the approximations employed in

this work are limited to slow rotation in the sense that no
triaxial deformation appear. In the KEPLER code, the
inÑuence of the centrifugal forces on the structure is com-
pletely neglected. However, when models from calculations
with STERN, where centrifugal forces are included, are con-
tinued by KEPLER at a central temperature of 109 K, the
evolution usually proceeds smoothly, i.e., these forces are
not important at this late stage of evolution. On the ZAMS,
the rotational energy of the star is negligible in com-Erotparison to its gravitational binding energy for allEpotmodels, even for those which are close to critical rotation at
their surface (Erot/ oEpot o> 1%).

However, in the course of their evolution the stellar
models contract andÈas outlined in ° 9.3 aboveÈthe trans-
port of angular momentum out of the core is inhibited or
slow, with the consequence of rapidly rotating cores (Figs.
8a, 8b, 9a, 9b, and Table 6). For local angular momentum
conservation in a shell with given speciÐc angular momen-
tum, j, the ratio of angular velocity of Keplerian angular
velocity scales as

u
uKep

\ j

kJGmr
D r~1@2 , k B 23 . (57)

The ratio of the speciÐc rotational energy to the gravita-
tional potential is then given by

erot
/grav

\ 1
2
A u
uKep

B2
. (58)

This ratio is displayed for several 15 precollapseM
_models in Figure 11.

A uniformly rotating, self-gravitating, incompressible,
and inviscid Ñuid (McLaurin spheroid) becomes secularly
unstable to triaxial deformations when the ratio of
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FIG. 12.ÈSpeciÐc angular momentum as a function of the mass coordi-
nate, m, for 15 stars at the onset of core collapse. The thin lines showsM

_Models G15B, E15B, and F15B with ZAMS rotational velocity of D100
km s~1 (dotted), D200 km s~1 (solid), and D300 km s~1 (dashed), respec-
tively. The thick gray line shows the Model E15.

rotational to gravitational potential energy,

Erot
Epot

\ 1
2
P
0

m
u2(m@)dm@

NP
0

m
uKep2 (m@) dm@ , (59)

exceeds D0.1375 (e.g., Ostriker & Bodenheimer 1973 ;

Tassoul 1978). If this ratio exceeds D0.26, the object
becomes dynamically unstable to nonaxisymmetric insta-
bilities and Ðssion may occur (Ostriker & Tassoul 1969 ;
Ostriker & Bodenheimer 1973). The stars simulated in the
present work are well below these limits even at the precol-
lapse stages of the critical value), and(Erot/Epot [ 30%
therefore no triaxial instabilities arise.

10. ANGULAR MOMENTUM PRIOR TO CORE COLLAPSE

Our model sequences are terminated at the onset of core
collapse, deÐned by the infall velocity inside the iron core
exceeding 9] 102 km s~1. At this stage of evolution the
investigated stars typically have central densities of [1010
g cm~3. From the previous discussions it is clear that the
distribution of angular momentum in the star at onset of
core collapse strongly reÑects its recent convective struc-
ture. Figure 12 shows the distribution of the speciÐc angular
momentum at the precollapse stage of 15 stars withM

_di†erent initial rotation rates (Models G15B, E15B, and
F15B).

These three models show a very similar Ðnal angular
momentum distribution (cf. also Fig. 13a), due to a simi-
larity entire chemical structure. The reason for this is the
convergence of the core rotation rates, i.e., their indepen-
dence from the initial rotation rates, already during hydro-
gen and helium burning, as outlined in ° 6.3.

In contrast, Model E15 has much less angular momen-
tum left in the core (see also Table 5). It grows a larger
helium and CO core due to the lack of sensitivity to k-
gradients.

The total angular momentum in the Ðnal models is domi-
nated by that of the envelope (Table 5). Models G15B,
E15B, and F15B show that for initially faster rotation, a
slightly larger helium core results (Table 5) and therefore

FIG. 13.ÈIntegrated angular momentum, divided by m5@3 as a function of the mass coordinate, m, for di†erent ZAMS rotationalJ(m)\ /0m j(m@)dm@,
velocities (thick lines) at core collapse. The two panels show stars of initial masses of 15 (panel a : Models G15B, E15B, and F15B) and 20 (panel b :M

_
M

_Models G20B, E20B, and F20B). The thin lines have the same meaning as in Figs. 8e and 8f.
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FIG. 14.ÈIntegrated angular momentum, divided by m5@3 as a function of the mass coordinate, m, for di†erent initial masses (thickJ(m)\ /0m j(m@)dm@,
lines) at core collapse. The stars have a ZAMS equatorial rotational velocity of D200 km s~1. Panel a displays the Models E10, E12, E15, E20, and E25.
Panel b gives the Models E15B and E20B. The thin lines have the same meaning as in Figs. 8e and 8f.

the stars become more luminous. This in turn causes more
mass and angular momentum loss, which can, for the rapid
rotators or for more massive stars, decrease the total
angular momentum by a larger factor (Figs. 13b and 14b).

At hydrogen ignition, the total and even the mean speciÐc
angular momentum of models with a given surface rotation-
al velocity are larger for larger initial masses (Table 5). On
the contrary, the Ðnal total angular momentum decreases

FIG. 15.ÈMagniÐcation of the innermost 4.2 of Fig. 14M
_
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TABLE 6

EVOLUTION OF THE CORE ROTATION OF MODEL E20

Evolutionary J(m)/m r o
c

u
State (cm2 s~1) (cm) (g cm~3) (rad s~1) u/uKep

H ignition . . . . . . . . . . 5.5 ] 1016 5.8] 1010 4.8 5.0] 10~5 4.6] 10~2
H exhaustion . . . . . . . 1.0 ] 1016 4.3] 1010 12.5 1.6] 10~5 1 ] 10~2
He exhaustion . . . . . . 6.5 ] 1015 7.2] 109 3 ] 103 3.8] 10~4 1.5] 10~2
Precollapse . . . . . . . . . 5.6] 1015 2.2] 108 3.9] 109 3.7] 10~1 0.08
Neutron star . . . . . . . (5 ] 1015) (1.2] 106) D4 ] 1014 1 ] 104 0.9

NOTE.ÈEvolution of the radius, r, the angular velocity, u, and its ratio to the Keplerian rotational
velocity, all at a mass coordinate of m\ 1.7 and the mass of the iron core atuKep \ (Gm/r3)1@2, M

_
,

core collapse of Model E20. The second column gives the speciÐc angular momentum, J(m)/m, of the
inner 1.7 The central density, is given for comparison. The initial model has a mass of 20M

_
. o

c
, M

_and a ZAMS rotational velocity of D200 km s~1. Assuming that the neutron star gets a radius of
about 12 km and retains about the angular momentum of the iron core at core collapse, it evolves
close to critical rotation. It is assumed that the moment of inertia of the rigidly rotating neutron star of
radius R and mass M is given by The geometrical factor corresponds to a solid sphere of0.825MR2. 25constant density, and the numerical factor 0.8 is found from a neutron star model provided by T. Eberl
(1997, private communication).

for larger initial mass (Table 5 and Fig. 14). This trend is
only interrupted between 12 and 15 since our modelsM

_with initial masses of 12 or less undergo a blue loopM
_during core helium burning which leads to an additional

strong angular momentum loss (Heger & Langer 1998). As
in the limit of vanishing mass loss, the angular momentum
of our models is conserved, the decrease of the total angular
momentum for higher initial masses is solely due to the
increase of the mass-loss rate for larger initial masses.

The total angular momentum of the helium and CO cores
increases with the initial stellar mass of our models (Table
5). However, this trend is much weaker for the speciÐc
angular momentum of the helium cores, the speciÐc angular
momenta of the CO cores even decreases a little with
increasing initial mass. This illustrates that angular momen-
tum transport from the core into the envelope is stronger
for larger cores.

Finally, we Ðnd that the speciÐc angular momenta of the
iron cores are rather insensitive to the initial mass and rota-
tion rate (Table 5 and Fig. 15), due to the convergence of the
core rotation rates discussed in ° 6.3. In the models with

angular momentum transport was efficient and Ðnalfk \ 0,
values of cm2 s~1 are found. The value forjFe ^ 6 ] 1015
Model E25 is signiÐcantly lower since its CO core was spun
down in a Wolf-Rayet phase. The models with allfk \ 0.05
end up with cm2 s~1.jFe^ 1.2] 1015

Note that, unless the iron core that forms after central
silicon burning is already large enough to collapse, one or
more subsequent phases of silicon shell burning occur until
the critical iron core mass is exceeded. The sizes of these
shells depend on the details of the preceding evolution. As a
result, the iron core mass does not necessarily increase
monotonically with initial mass or rotation. For example,
the iron core of Model D20 is larger than those of the 20

models of the B series.M
_

11. IMPLICATIONS FOR YOUNG PULSARS AND

SUPERNOVAE

Table 6 shows, for times during the evolution, the speciÐc
angular momentum contained in the innermost 1.7 (theM

_mass of the iron core at core collapse) for Model E20. Due
to the continuous contraction of the central region of the
star, it spins up and gets closer to critical rotation (eq. [57]).
If the precollapse value of the speciÐc angular momentum is

applied to a neutron star with an assumed radius of 12 km,
it would rotate with 90% of Keplerian rotation (Table 6).
Model E20 has the largest iron core mass of all our models
(Table 5), and a lower core speciÐc angular momentum than
the models computed with Those models havefk \ 0.05.
even much more angular momentum in the collapsing iron
core than a neutron star can possibly carry (u/uKepP

This much angular momentum would certainly bejm~1@2).
important in the dynamics of core collapse, and it is
expected that signiÐcant deviations from spherical sym-
metry will arise (Imshennik 1995 ; Aksenov et al. 1997 ;
Zwerger & 1997 ; Rampp et al. 1998).Mu� ller

11.1. Comparison with Observed Young Pulsars
At 90% of Keplerian angular velocity, the neutron star

which might form in the collapse of the iron core of Model
E20 would have a rotation period of 1 ms (Table 6). In
Table 7 the periods of the four known young neutron stars
associated with supernova remnants (Marshall et al. 1998)
are given along with their speciÐc angular momentum (with
the same assumption regarding moment of inertia as
above). Comparing this to the speciÐc angular momentum
in the iron cores found in the precollapse models in Table 5,
we see that the iron cores of our models have D20È100
times more speciÐc angular momentum than found in these
neutron stars. Triaxial deformations and gravitational radi-
ation would resultÈeven during the explosion. Still it might
be expected that the resulting neutron stars would spin
much faster than observed.

However, the observed ““ young ÏÏ neutron stars have ages
of several hundred years. They might have spun much faster

TABLE 7

ROTATIONAL PERIODS OF KNOWN YOUNG PULSARS

Period j(R\ 12 km)
Pulsar (ms) (cm2 s~1)

PSR B0531]21 (Crab) . . . . . . . . . . . . . . . . . . 33 8.8] 1013
PSR B0540[69 (LMC) . . . . . . . . . . . . . . . . . 50 5.8] 1013
PSR B1509[58 . . . . . . . . . . . . . . . . . . . . . . . . . . 150 1.9] 1013
PSR J0537[6910 (N157B; LMC) . . . . . . 16 1.8] 1014

NOTE.ÈRotational periods of known young pulsars associated with
supernova remnants (Marshall et al. 1998) and their speciÐc angular
momentum, j\ J/M, for an assumed radius of R\ 12 km, if rigid
rotation and a moment of inertia of I\ 0.32MR2 is assumed (see Table
6).
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immediately after their formation. In fact, it has been pro-
posed recently that rapidly rotating hot neutron stars are
spun down on a timescale of one year by r-mode oscil-
lations and accompanying emission of gravitational radi-
ation. These oscillations are supposed to cease at spin
periods compatible with those observed in the young
neutron stars (Lindblom et al. 1998 ; Owen et al. 1998).

Alternatively, an important angular momentum trans-
port mechanism might be missing in our models (see also
° 2.4). Spruit & Phinney (1998) have assumed, without com-
puting detailed models, that the winding up of weak mag-
netic Ðelds by di†erential rotation can cause enough
Maxwell stress to keep the entire star in uniform rotation
until the end of central carbon burning. This scenario
approaches the problem of the young neutron star periods
from the other side : It implies initial spin periods of D100 s.
Since this is much larger than observed, they employed o†-
center ““ kicks ÏÏ during the supernova explosion to spin them
up to the observed rotation rates. This scenario is specula-
tive at present, since neither the evolution of magnetic insta-
bilities in the stellar interior nor the neutron star kicks have
been adequately investigated.

11.2. Formation of Kerr Black Holes?
If the large angular momenta obtained for the iron cores

in this work pose a problem for pulsars, they are very favor-
able for the collapsar model for c-ray bursts (Woosley 1993).
If the cores of the stars would collapse to a black hole, the
angular momentum calculated here would be enough to
support matter in a stable disk outside (Shapiro & Teu-
kolsky 1983 ; Novikov 1997). This is indicated in Figure 16,
where the distribution of the speciÐc angular momentum at
the precollapse stage of the two 20 Models E20 andM

_E20B is shown. Thin dashed and dash-dotted lines indicate
the speciÐc angular momenta of the last stable orbit around

a nonrotating and a maximum rotating black hole with a
mass equal to the mass coordinate. If the matter in the star
has more angular momentum than necessary to get into the
last stable orbit, an accretion disk must form, and may
efficiently transform gravitational binding energy into heat,
up to 42.3% of the rest mass for a maximum rotating black
hole (Shapiro & Teukolsky 1983 ; Novikov 1997). Note that
the speciÐc angular momentum displayed in Figure 16 is the
latitudinal average over a shell. Its actual value at the
equator is higher than that by 50%, while it is zero at the
pole. Therefore matter might fall in almost freely along the
rotation axis, while it hits the centrifugal barrier at the
equator. In case a prompt supernova explosion fails and a
black hole forms instead of a neutron star, this might be a
mechanism for an efficient energy source for supernovae or
even a c-ray burst (Woosley 1993 ; Popham et al. 1998 ;
MacFadyen & Woosley 1999).

12. SUMMARY AND CONCLUSIONS

We have presented the Ðrst complete numerical simula-
tion of the evolution of rotating stars from the ignition of
nuclear burning until the supernova stage. Emphasis has
been placed on the modiÐcation of the evolution induced by
rotation. This includes an examination of the transport pro-
cesses responsible for redistributing each angular momen-
tum and composition and the resultant changes that occur
in the stellar structure and nucleosynthesis. The distribution
of angular momentum in the presupernova stage is of par-
ticular interest.

Two di†erent one-dimensional hydrodynamic stellar
evolution codes were modiÐed to include angular momen-
tum as a new local variable. The e†ects of centrifugal forces
on the stellar structure were treated in latitudinally aver-
aged way. Rotationally induced instabilities were included
(° 2.2) : secular and dynamic shear instabilities, the Solberg-

FIG. 16.ÈSpeciÐc angular momentum, j, in the star (thick line) as a function of the mass coordinate, m, at the onset of core collapse of a 15 star with aM
_ZAMS equatorial rotational velocity of D200 km s~1. Panels a and b show Models E15 and E15B, respectively, and compare the resulting proÐles of stars

with di†erent assumptions about the parameters of rotationally induced mixing. The dash-dotted line gives the speciÐc angular momentum needed to get into
the last stable orbit around a nonrotating Schwarzschild black hole of (rest) mass equal to the mass coordinate. The dashed line give the same but for a
maximum-rotating Kerr black hole (spin parameter Jc/[Gm]4 a \ m). If assumed that all (rest) mass below a given m has fallen into a black hole and added
its angular momentum to it, the dotted line results for the j needed to get into the last stable orbit ; where this approximation would lead to values of a [ m
the curve is truncated to the Kerr limit. For the Model E15B shown in panel b this is the case everywhere. A derivation of these limits can be found in Shapiro
& Teukolsky (1983) or Novikov (1997). It has to be noted, however, that this plot is for giving a measure of the amount of angular momentum in the
precollapse model only. This shall not imply that these stars will form black holes.
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instability, the Eddington-Sweet circulation, andHÔiland
the Goldreich-Schubert-Fricke instability. The uncertain
parameters of rotationally induced mixing were calibrated
using observational constraints on the surface abundances
(° 3). Observed surface enrichments with CNO-processed
matter were reproduced for stars in the mass range from 5
to 60 for typical initial stellar rotation rates. StellarM

_
,

mass loss and its dependence on the surface rotation rate
were also taken into account (° 2.6).

The evolution of stars of approximately solar composi-
tion in the mass range from 10 to 25 was modeled up toM

_iron core collapse, the immediate presupernova stage.
Models that used di†erent assumptions regarding the sta-
bilizing e†ect of gradients in the mean molecular weight on
rotationally induced instabilities were computed and com-
pared. Observations indicate that gradients in the mean
molecular weight inhibit rotationally induced mixing much
less than in the pioneering models of Endal & SoÐa (1978).
This conclusion is also supported by recent investigations of
the physics of meridional circulations, shear instabilities,
and semiconvective mixing (Maeder & Zahn 1998).

12.1. Internal Stellar Structure
During central hydrogen burning, the products of the

burning are mixed into the stellar envelope and new fuel is
supplied to the convectively burning stellar core by rota-
tionally induced mixing. Since this mixing proceeds on a
timescale comparable to the thermonuclear time scale of
hydrogen burning, a gradient of processed matter builds up
inside the radiative envelope. The processed matter has a
higher mean molecular weight, k, than the pristine matter of
the star, and therefore a gradient of the mean molecular
weight results.

If rotationally induced mixing occurs by processes that
depend sensitively upon these gradients, they act as a
barrier (k-barrier), and mixing between the core and the
envelope is inhibited. Exactly when this inhibition becomes
important depends on the initial angular momentum of the
star. The amount of mixing that occurs between the core
and the envelope is a†ected accordingly. Mixing inside the
envelope also increases for larger initial angular momen-
tum, since the dominant mixing process, Eddington-Sweet
circulation, has an efficiency that increases as the square of
the stellar rotation rate.

As the evolution of the star proceeds to later stages, the
timescale for rotationally induced mixing becomes too long
in comparison to the evolutionary timescales to constitute
an important source of large-scale mixing. Also, the mixing
is not able to dissolve the molecular weight barrier that
forms in the core during central helium burning. In general,
rotationally induced mixing does not strongly a†ect the
stellar structure after central helium ignition. The evolution
of the star from this point until core collapse is similar to
that of a nonrotating star of same structure at this time,
except for the di†erences in the nucleosynthesis discussed
below.

For models where rotationally induced mixing is
assumed to be insensitive to gradients in the mean molecu-
lar weight, no k-barrier inhibits the mixing. This a†ects the
mixing between the core and the envelope during central
hydrogen burning. The k-barrier in the superadiabatic part
of the core during central helium burning is eroded by shear
instabilities. Consequently, the convective core can grow
unhindered. As a result, the helium cores are more massive,

corresponding to nonrotating stars with about 25% higher
initial mass. Inside this helium core, the CO core is also
larger than that of a nonrotating star with same helium core
mass. Toward the end of central helium burning, fresh
helium is mixed into the convective core both by the contin-
uing growth of this core and by rotationally induced
mixing. The fresh helium preferentially converts carbon into
oxygen instead of producing new carbon by the triple-a
process. This reduces the carbon abundance in the core.
Except for this, the e†ect of rotationally induced mixing is
small after helium ignition for the reason outlined above. In
particular, also in this case, the hydrogen-burning shell con-
stitutes an efficient barrier for mixing processesÈindeed
even more efficientÈbecause the core rotates slower as in
the case where k-gradients were considered (see below). A
consequence of the enlarged cores is that the limit on the
initial stellar mass for core collapse supernovae is somewhat
smaller for higher initial rotation rates.

12.2. Angular Momentum
At central hydrogen ignition, the stars establish almost

uniform rotation. If a molecular weight barrier forms as
hydrogen burning progresses, angular momentum is
trapped inside the core and di†erential rotation results, with
up to a factor of D3 variation in the rotation rate between
the core and the envelope. If k-barriers are unimportant for
the rotationally induced mixing, the stars stay close to rigid
rotation until the end of central hydrogen burning. Since
this barrier forms later in the faster rotators, stars having
di†erent initial rotation rates may end up with similar spe-
ciÐc angular momenta in the core at the end of central
hydrogen burning (Figs. 8d, 9c, and 9d). Due to angular
momentum transport during core helium burning, they may
become even more similar in the precollapse stage (Fig. 12).
Some angular momentum gets lost from the core during the
restructuring that occurs after core hydrogen exhaustion,
but during central helium burning the hydrogen-burning
shell constitutes an efficient barrier that inhibits the trans-
port of angular momentum out of the core. Even so, the
average angular momentum of the core may decrease some-
what, since it grows into regions with lower speciÐc angular
momentum on top of it. The helium core itself stays close to
uniform rotation (Figs. 8a and 8b). During central helium
burning rotationally induced mixing processes already
become slow compared to the evolution, and after core
helium exhaustion they do not cause any relevant transport
of angular momentum.

Only convective processes are rapid enough to notably
redistribute angular momentum during the late stages of
stellar evolution. Within the assumptions made, rigid rota-
tion results in convective regions, transporting angular
momentum from their bottom to their top. Subsequent
phases of convective central and shell burning stages give
some outward transport of angular momentum inside the
carbon-oxygen core. Since none of the convective shells
penetrates through the outer boundary of the CO core, the
angular momentum remains trapped inside (Figs. 8f, 9e, and
9f). The outer boundary of the helium core constitutes a
similar barrier.

This has interesting consequences for the Ðnal angular
momentum in the core. First, the di†erent convective
burning shells leave their Ðngerprint not only in the chemi-
cal composition, but also in the angular momentum dis-
tribution : a spiky proÐle results at the onset of core collapse
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(Fig. 12). The high peaks correspond to the upper edges of
the most recently active convection zones and the deep
valleys to their bottoms. Shells of similar composition tend
to rotate almost rigidly. Second, even the slowest rotating
core of the Type II supernova progenitor stars considered
here would result in a neutron star rotating close to
breakup if angular momentum were conserved during the
collapse. This is not necessarily in contradiction with obser-
vations of young neutron stars in supernova remnants, even
though the fastest of these rotates much slower. These
pulsars are already hundreds of years old, and recent theo-
retical investigations of hot, newly born neutron stars indi-
cate they may spin down to the observed rotation rates
within about a year by emitting gravitational waves
(Lindblom et al. 1998). The electromagnetic radiation ema-

nating from pulsars is trapped inside the supernova ejecta
during that time, but the gravitational radiation of these
very young neutron stars might become detectable in the
future (Owen et al. 1998).
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APPENDIX A

IMPROVEMENT OF HYDROGEN BURNING IN THE KEPLER CODE

The treatment of nuclear burning in KEPLER was improved by taking into account neutrino losses and corrections to the
energy released during hydrogen burning.

In general, until oxygen burning, KEPLER calculates the nuclear energy generation rate by simple subtraction of the total
nuclear binding energy of the composition before and after a time step. However, during hydrogen burning weak interactions
are present, with implications for the energy generation which do not occur in other preoxygen burning stages. In particular,
the mass di†erence of n and p ] e~ of 782.3 MeV c~2 has to be taken into account. This reduces the energy release per 4He
formed by twice that value, i.e., from 28.296 MeV for the binding energy of two protons and two neutrons, to 26.731 MeV for
the total di†erence in rest mass. That is a relative reduction of the energy generation rate of hydrogen burning by 5.85%.

Additionally, within the CNO main cycle the weak reaction releases in average 0.71 MeV in the form of13N(b`l
e
)13C

neutrinos, releases 1.0 MeV, and the reaction of the secondary CNO cycle, which has a probabil-15O(b`l
e
)15N 17F(b`l

e
)17O

ity of only D10~4 relative to the main cycle, 0.94 MeV (Clayton 1968). On average, 1.71 MeV are lost due to neutrinos for
each four 1H burned, reducing the e†ective energy release by another 6.4% from 26.731 MeV to about 24.97 MeV per 4He
formed. KEPLER was also corrected for the appropriate neutrino losses of the three p-p chains, but they do not contribute in
the high-mass stars of the present work.

These two e†ects sum up to a total reduction of the energy release of hydrogen burning by 13.32%. However, this alters the
structure of zero-age main-sequence stars only slightly, since the energy generation rate for CNO hydrogen burning depends
on a high power of the temperature (16È18) and thus a slight increase of the central temperature compensates the lower energy
generation rate. The nucleosynthesis, as far as the ratios of the CNO isotopes are concerned, are not altered notably by the
higher temperature.

The lower total energy release of hydrogen burning reduces the lifetime of the star during central hydrogen burning by
about the same factor. The convective mixing in the core is not a†ected by the shorter duration of central hydrogen burning,
since the convective mixing timescale is still much shorter. For mixing processes which act on a timescale comparable to that
of central hydrogen burning, e.g., semiconvection, the reduction of the main-sequence lifetime can become noticeable. It is
particularly important for rotationally induced mixing and mass loss from the stellar surface. Mass-loss rates mostly depend
only on stellar surface properties (° 2.6) and thus, to Ðrst approximation, the total mass loss scales with the evolutionary
timescale. The stellar angular momentum loss from the surface is also altered by this and the amount of products of hydrogen
burning exposed to the surface of the star depends on both the time available for the rotationally induced mixing processes to
transport them to the surface and the amount of matter removed from the surface. Furthermore, a higher angular momentum
loss from the surface can introduce more shear and correspondingly more mixing.

After termination of core hydrogen burning, hydrogen continues burning in a shell above the helium core. Since the stellar
structure determines the rate at which energy has to be released by hydrogen burning, more hydrogen is burned in order to
release the same amount of energy using the corrected energy generation rate. This increases the rate at which the helium core
grows and thus its Ðnal size.

In all models computed with KEPLER in the present work, the corrected treatment of hydrogen burning was employed.

APPENDIX B

DIAGRAMS FOR THE EVOLUTION OF THE INTERNAL STELLAR STRUCTURE

The ““Kippenhahn diagrams ÏÏ of this Appendix (Figs. 17È19) show the convective structure and the nuclear energy gener-
ation rate as a function of time for selected model sequences. In these plots the time axis gives the logarithm of the time left
until core collapse (in yr). From the infall velocities occurring in the last computed models and from the radius at which the



FIG. 17.ÈEvolution of Model D15 until core collapse. Convection and net nuclear energy generation. See Appendix B for details.

FIG. 18.ÈEvolution of Model E15 until core collapse. Convection and net nuclear energy generation. See Appendix B for details.
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FIG. 19.ÈEvolution of Model E15B until core collapse. Convection and net nuclear energy generation. See Appendix B for details.

maximum infall velocity occurs (D103 km s~1 and 103 km, respectively) we estimated 10~7.5 yr (D1 s) for the time until ““ core
bounce. ÏÏ

The y-axis gives the (interior) mass coordinate, m, in units of the solar mass. The total mass of the star is indicated by a thick
solid line and shows the mass loss from the stellar surface. Note that because of the way the time axis is chosen, the slope of
this curve does not directly correspond to the mass-loss rate.

Diagonal hatching indicates convective regions. In order to better visualize the boundaries of convection zones they are
framed by thin lines. Semiconvection is indicated by narrow cross-hatching.

The net nuclear contribution to the energy generation rate including neutrino losses are shown as gray shading. Increas-
ingly darker gray-scale levels correspond to increasing orders of magnitude of the energy generation rate. The lightest gray
shows regions with an energy generation rate of 10~1 erg g~1 s~1 or more, the next darker shade of gray underlies regions
with an energy generation rate of 100 erg g~1 s~1 or above, and so forth.

The sequence of central convective burning phases is (from left to right) hydrogen, helium, carbon, neon, oxygen, and silicon
burning.

REFERENCES
Acheson, D. J. 1978, Philos. Trans. R. Soc. London, A, 289, 40
Aksenov, A. G., Zabrodina, E. A., Imshennik, V. S., & Nadezhin, D. K.

1997, Astron. Lett., 23, 779
Anders, E., & Grevesse, N. 1989, Geochim. Cosmochim. Acta, 53, 197
Antia, H. M., Basu, S., & Chitre, S. M. 1997, MNRAS, 298, 543
Baker, N., & Kippenhahn, R. 1959, Z. Astrophys., 48, 140
Beech, M., & Mitalas, R. 1994, ApJS, 95, 517
Bernasconi, P. A., & Maeder, A. 1996, A&A, 307, 829

E. 1958, Z. Astrophys., 46, 108Bo� hm-Vitense,
Braun, H. 1997, Ph.D. thesis, Ludwig-Maximilians-Univ. Mu� nchen
Chaboyer, B., & Zahn, J.-P. 1992, A&A, 253, 173
Chin, C.-W., & Stothers, R. B. 1991, ApJS, 77, 299
Chiosi, C., & Maeder, A. 1986, ARA&A, 24, 329
Clayton, D. D. 1968, Principles of Stellar Evolution and Nucleosynthesis

(New York : McGraw-Hill)
Denissenkov, P. A. 1994, A&A, 287, 113
El Eid, M. F., & Langer, N. 1986, A&A, 176, 274
Emden, R. 1907, Gaskugeln : Anwendungen der mechanischen

auf kosmologische und meteorologische ProblemWa� rmetheorie
(Leipsig : Teubner)

Endal, A. S., & SoÐa, S. 1976, ApJ, 210, 184
ÈÈÈ. 1978, ApJ, 220, 279

Eryurt, D., K•rb•y•k, H., N., Civelek, R., & Weiss, A. 1994, A&A,K•z•log‘ lu,
282, 485

Fliegner, J. 1993, diploma thesis, Univ. Sternw. Go� ttingen
Fliegner, J., Langer, N., & Venn, K. 1996, A&A, 308, L13
Fricke, K. 1968, Z. Astrophys., 68, 317
Friend, D. B., & Abbott, D. C. 1986, ApJ, 311, 701
Fukuda, I. 1982, PASP, 94, 271
Gies, D. R., & Lambert, D. L. 1992, ApJ, 387, 673
Goldreich, P., & Schubert, G. 1967, ApJ, 150, 571
Grevesse, N., & Noels, A. 1993, in Origin and Evolution of the Elements,

ed. N. Prantzos, E. Vangioni-Flam, & M. Casse (Cambridge : Cambridge
Univ. Press), 13

Halbedel, E. 1996, PASP, 108, 833
Heger, A. 1998, Ph.D. thesis, Technische Univ. Mu� nchen
Heger, A., Jeannin, L., Langer, N., & Bara†e, I. 1997, A&A, 327, 224
Heger, A., & Langer, N. 1998, A&A, 334, 210
Herrero, A. 1994, Space Sci. Rev., 66, 137
Herrero, A., Kudritzki, R. P., Vilchez, J. M., Kunze, D., Butler, K., &

Haser, S. 1992, A&A, 261, 209
Herrero, A., Villamariz, M. R., & E. L. 1998, in ASP Conf. Ser. 131,Mart•� n,

Proc. 2d Boulder-Munich Workshop on Hot Stars, ed. I. Howarth et al.
(San Francisco : ASP), 159



396 HEGER, LANGER, & WOOSLEY

Howarth, I. D., Siebert, K. W., Hussain, G. A. J., & Prinja, R. K. 1997,
MNRAS, 284, 265

Iglesias, C. A., & Rogers, F. J. 1996, ApJ, 464, 943
Imshennik, V. S. 1995, Space Sci. Rev., 74, 325
James, R. A., & Kahn, F. D. 1970, A&A, 5, 232
ÈÈÈ. 1971, A&A, 12, 332
Kato, S. 1966, PASJ, 18, 374
Kippenhahn, R. 1969, A&A, 2, 309
ÈÈÈ. 1974, in IAU Symp. 66, Late Stages of Stellar Evolution, ed. R. J.

Taylor & J. E. Hesser (Dordrecht : Reidel), 20
ÈÈÈ. 1977, A&A, 58, 267
Kippenhahn, R., Meyer-Hofmeister, E., & Thomas, H. C. 1970, ApJ, 5, 155
Kippenhahn, R., & Thomas, H.-C. 1970, in IAU Colloq. 4, Stellar Rota-

tion, ed. A. Slettebak (Dordrecht : Reidel), 20
Kippenhahn, R., & Weigert, A. 1991, Stellar Structure and Evolution (2d

ed. ; Berlin : Springer)
Knobloch, E., & Spruit, H. C. 1983, A&A, 125, 59
Kumar, P., Narayan, R., & Loeb, A. 1995, ApJ, 453, 480
Lamers, H. J. G. L. M. 1993, in ASP Conf. Ser. 35, Massive Stars : Their

Lives in the Interstellar Medium, ed. J. P. Cassinelli & E. B. Churchwell
(San Francisco : ASP), 517

Lang, K. R. 1991, Astrophysical Data (New York : Springer)
Langer, N. 1989, A&A, 220, 135
ÈÈÈ. 1991, A&A, 252, 669
ÈÈÈ. 1992, A&A, 265, L17
ÈÈÈ. 1997, in ASP Conf. Ser. 120, Luminous Blue Variables : Massive

Stars in Transition, ed. A. Nota & H. J. G. L. M. Lamers (San Francisco :
ASP), 83

ÈÈÈ. 1998, A&A, 329, 551
Langer, N., Heger, A., Woosley, S. E., & Herwig, F. 1999, in Nuclei in the

Cosmos V, ed. N. Prantzos (Paris : Editions in pressFrontières),
Langer, N., Kiriadidis, M., El Eid, M. F., Frick, K. J., & Weiss, A. 1988,

A&A, 192, 177
Langer, N., Sugimoto, D., & Fricke, K. J. 1983, A&A, 126, 207
Lindblom, L., Owen, B. J., & Morsink, S. M. 1998, Phys. Rev. Lett., 80,

4843
MacFadyen, A. I., & Woosely, S. E. 1999, ApJ, 524, 262
Maeder, A. 1995, A&A, 299, 84
ÈÈÈ. 1997a, A&A, 321, 134
ÈÈÈ. 1997b, in ASP Conf. Ser. 131, 2d Boulder-Munich Workshop on

Hot Stars, ed. I. Howarth et al. (San Francisco : ASP), 85
ÈÈÈ. 1999, A&A, 347, 185
Maeder, A., & Meynet, G. 1996, A&A, 313, 140
Maeder, A., & Zahn, J.-P. 1998, A&A, 334, 1000
Marshall, F. E., Gotthelf, E. V., Zhang, W., Middleditch, J., & Wang, Q. D.

1998, ApJ, 499, L179
Mestel, L. 1952, MNRAS, 112, 598
ÈÈÈ. 1953, MNRAS, 113, 716
Meynet, G. 1997, in ASP Conf. Ser. 131, 2d Boulder-Munich Workshop on

Hot Stars, ed. I. Howarth et al. (San Francisco : ASP), 96
Meynet, G., & Maeder, A. 1997, A&A, 321, 465
Munakata, H., Kohyama, Y., & Itoh, N. 1985, ApJ, 296, 197
Nieuwenhuijzen, H., & de Jager, C. 1990, A&A, 231, 134

Novikov, I. 1997, in Advanced Course 25, Stellar Remnants, ed.Saas-Fe� e
G. Meynet & D. Schaerer (Berlin : Springer), 237

Ostriker, J. P., & Bodenheimer, P. 1973, ApJ, 180, 171
Ostriker, J. P., & Tassoul, J. L. 1969, ApJ, 155, 987
Owen, B. J., Lindblom, L., Cutler, C., Schutz, B. F., Vecchio, A., & Anders-

son, N. 1998, Phys. Rev. D, 58, 084020
Owocki, S. O., Cranmer, S. R., & Gayley, K. G. 1996, ApJ, 472, L151
Owocki, S. P., & Gayley, K. G. 1997, in ASP Conf. Ser. 120, Lumi-

nous Blue Variables : Massive Stars in Transition, ed. A. Nota &
H. J. G. L. M. Lamers (San Francisco : ASP), 121

Penny, L. R. 1996, ApJ, 463, 737
Pinsonneault, M. H., Kawaler, S. D., SoÐa, S., & Demarque, P. 1989, ApJ,

338, 424
Popham, R., Woosley, S. E., & Fryer, C. 1998, ApJ, 518, 356
Rampp, M., E., & Ru†ert, M. 1998, A&A, 332, 969Mu� ller,
Richard, D., & Zahn, J.-P. 1999, A&A, 347, 734
Schaller, G., Schaerer, D., Meynet, G., & Maeder, A. 1992, A&AS, 96, 269
Shapiro, S. L., & Teukolsky, S. A. 1983, Black Holes, White Dwarfs, and

Neutron Stars (New York : Wiley)
Slettebak, A. 1970, in Stellar Rotation, ed. A. Slettebak (Dordrecht :

Reidel), 3
Spitzer, L. J. 1962, Physics of Fully Ionized Gases (New York : Wiley)
Spruit, H. C., Knobloch, E., & Rozburgh, I. W. 1984, Nature, 304, 520
Spruit, H. C., & Phinney, E. S. 1998, Nature, 393, 139
Talon, S., & Zahn, J.-P. 1997, A&A, 317, 749
Talon, S., Zahn, J.-P., Maeder, A., & Meynet, G. 1997, A&A, 322, 209
Tassoul, J.-L. 1978, Theory of Rotating Stars (Princeton : Princeton Univ.

Press)
Townsend, A. A. 1958, J. Fluid Mech., 5, 361
Urpin, V. A., Shalybkov, D. A., & Spruit, H. C. 1996, A&A, 306, 455
Venn, K. A., Lambert, D. L., & Lemke, M. 1996, A&A, 307, 894
Vitense, E. 1953, Z. Astrophys., 32, 135
von Zeipel, H. 1924a, MNRAS, 84, 684
ÈÈÈ. 1924b, MNRAS, 84, 665
Vrancken, M., Lennon, D. J., Dufton, P. L., & Lambert, D. L. 1998, A&A,

in preparation
J. 1946, Astrophys. Norvegica, 4, 1Wasiutyn� ski,

Weaver, T. A., & Woosley, S. E. 1993, Phys. Rep., 227, 65
Weaver, T. A., Woosley, S. E., & Fuller, G. M. 1984, in Numerical Astro-

physics, ed. J. Centrella, J. LeBlanc, & R. Bowers (Boston : Jones and
Bartlett), 374

Weaver, T. A., Zimmerman, G. B., & Woosley, S. E. 1978, ApJ, 225, 1021
Woosley, S. E. 1993, ApJ, 405, 273
Woosley, S. E., & Weaver, T. A. 1988, Phys. Rep., 163, 79
Zahn, J.-P. 1974, in IAU Symp. 59, Stellar Instability and Evolution, ed.

P. Ledoux, A. Noels, & A. W. Rogers (Dordrecht : Reidel), 185
ÈÈÈ. 1975, Mem. Soc. R. Sci. 8, 31Liège,
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