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1 Introduction

Numerous observations provide evidence that the standard picture, in which
convective mixing is limited to the unstable layers of a star, is incomplete. The
mixing layers in real stars are significantly more extended than what the standard
models predict. Some of the observations require changing the thermal structure
of the stellar model, e.g. the poorly-fitting evolutionary tracks of intermediate-
mass and massive stars, or the “inflated” cores of OB stars seen by asteroseismic
techniques. On the other hand, there are effects that can be explained by some
form of weak mixing with no influence the structure of the star, e.g. the Li and Be
depletion in low-mass stars, or the abundance anomalies observed in red giants.
Both kinds of mixing have traditionally been covered be the umbrella term “con-
vective overshooting,” although the physics involved is clearly different. There is
a need to look at the overshooting problem from a more fundamental perspective.
In this thesis, we investigate two mixing process, which could explain the Li and
Be depletion in low-mass stars (“convective settling,” Chaps. 2 and 3) and con-
tribute to slow mixing at the boundaries of internal convection zones in a whole
range of different stars (“differential heating,” Chap. 4).

1.1 Stellar convection

Whatever their mass, stars contain various convection zones during their early
formation phases, on the main sequence, and also in the late stages of their evol-
ution. This represents a wide range of conditions from the fluid-dynamics point
of view. Nevertheless, it is useful to distinguish two fundamental kinds of con-
vection zone:

1. A convective envelope extends from some point in the star’s interior all the
way to its surface. The density ratio between the bottom and the top of
such a convection zone is typically huge (106 in the Sun), the range of relev-
ant length scales is wide (from 102 km at the surface to 105 km at the bottom
in the Sun) as is the range of relevant time scales (from minutes at the sur-
face to a month at the bottom in the Sun). The flow can become supersonic
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1 INTRODUCTION

close to the surface, but its Mach number is very low at the bottom. Envel-
ope convection is driven from the top. The strong radiative cooling in the
photosphere creates low-entropy downdrafts, which rapidly sink back to
the interior. The upflow occurs due exclusively to mass conservation and is
almost isentropic.

2. A convective core or shell is typically much less stratified than a convect-
ive envelope. Consequently, the range of relevant length and time scales
is rather narrow. The driving of convection is provided by energy over-
production, which is usually concentrated to the hottest layers at the bot-
tom. All entropy fluctuations are several orders of magnitude smaller that
those at the top of a convective envelope, because a convective core or shell
is by definition fully embedded in the star. The convective flow is charac-
terised by a low Mach number.

Current stellar-evolution models do not make this distinction. Convection is gen-
erally described by the mixing-length theory (MLT) of Böhm-Vitense (1958) or a
variant thereof. The MLT is an order-of-magnitude estimate of the convective
flux. It is based on a picture, in which a large “blob” of fluid is accelerated by
its buoyancy in the local mean stratification. The blob disintegrates after having
travelled a distance of lm, the so-called mixing length. This distance is taken to be
a constant multiple of the local pressure scale height, lm = αMLT Hp, where αMLT
is a tuning parameter. The value of αMLT is usually obtained by the calibration of
the standard solar model to the current solar radius and luminosity,1 which leads
to 1.5 ! αMLT ! 2.0. There is no physical reason for αMLT to be constant. Indeed,
numerical simulations of stellar surface convection show a dependence of αMLT
on the local physical conditions in the convection zone (Trampedach et al. 2014;
Magic et al. 2015).

One of the main deficiencies of the MLT is its being local, i.e. that all its pre-
dictions are based on local quantities only. Consequently, it predicts zero ve-
locities outside the region of linear instability against convection. Convection,
however, is non-local by definition. Several physical processes can extend the
mixing effect of convective motions to the neighbouring stable stratification, see
Sect. 1.3. There are two wide-spread methods of treating this so-called overshoot-
ing in stellar-evolution codes. In the first, a layer of thickness

lov = αov Hp (1.1)

beyond the convection zone is assumed to be isentropic and fully mixed with the
convection zone. This parametrisation is motivated by the phenomenon of con-
vective penetration, see Sect. 1.3. The other popular parametrisation represents

1The other free parameter in the calibration is the initial He abundance.
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1.2 OBSERVATIONAL EVIDENCE OF OVERSHOOTING

overshooting as a diffusive process with a diffusion coefficient

D(z) = D0 exp
(
−2z
fov Hp

)
, (1.2)

where D0 is the diffusion coefficient at the convective boundary (estimated us-
ing the MLT just inside the convection zone), z the distance from the convective
boundary, and fov a tuning parameter. This formulation is motivated by the res-
ults of numerical simulations of Freytag et al. (1996). Both αov and fov are typically
calibrated so as to reproduce a pre-selected set of observations and assumed to
be constant for all stars. Neither of the parametrisations takes into account that
the physical mechanism responsible for overshooting may depend on the type of
convection zone and on the properties of its boundary.

There is a whole class of models (e.g. Kuhfuss 1986; Xiong & Deng 2001;
Kupka & Montgomery 2002; Marik & Petrovay 2002; Deng & Xiong 2008), which
employ the Reynolds-averaged Navier-Stokes equations in an attempt to describe
the non-locality of convection. The averaging procedure leads to a set of equa-
tions containing higher-order correlations in the turbulent field. These correla-
tions have to be expressed in terms of known quantities by the so-called closure
conditions, which involve further assumptions about the transport and mixing
processes. Models of this kind usually predict substantial overshoot. This comes
about because they describe the convection zone and the overshoot region in the
same way, but the mixing effect of overturning convection is quite different from
that of internal gravity waves.

1.2 Observational evidence of overshooting

Colour–magnitude diagrams of open clusters The shape of stellar isochrones
depends on the amount and type of core overshooting included in the calcula-
tion. The turn-off region is influenced the most. Numerous studies of open-
cluster stars have shown that a certain amount of overshooting is needed for the
theoretical isochrones to fit the colour-magnitude diagrams of the clusters (Gim
et al. 1998; Rosvick & Vandenberg 1998; Pietrinferni et al. 2004; VandenBerg &
Stetson 2004). The best-fit models with overshooting, however, generally give a
different age estimate for the cluster compared with the standard models without
overshooting.

Double-lined eclipsing binaries If spectral lines of both components of an ec-
lipsing binary are detected it is possible to derive the masses and radii of both
stars. A subset of these binaries happen to be composed of a star just beyond
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1 INTRODUCTION

the terminal-age main sequence and a main-sequence companion. Such systems
provide tight constraints on convective core overshooting, because the position
of the evolved component in the Teff – log g plane (Kiel diagram) at a given age
varies significantly with the amount of core overshooting whereas the position of
its companion does not. Various authors typically derive 0.1 ! αov ! 0.5, but it
is unclear whether αov depends on the stellar mass or not (Schroder et al. 1997;
Ribas et al. 2000; Guinan et al. 2000; Claret 2003, 2007; Lacy et al. 2008; Tkachenko
et al. 2014; Stancliffe et al. 2015).

Li and Be depletion The abundances of Li and, to a much lesser extent, also
of Be in the photospheres of low-mass stars decrease continually during their
main-sequence lives (Baumann et al. 2010; Meléndez et al. 2010; Delgado Mena
et al. 2012; Monroe et al. 2013; Meléndez et al. 2014). The standard solar model
(SSM) and the standard models of other low-mass stars cannot reproduce these
observations, because the convection zones in them do not reach the Li- and Be-
burning layers (see e.g. Schlattl & Weiss 1999). Thus, there must be a process that
provides a slow mass exchange between these layers and the convection zone.
Observations of open clusters suggest that there may actually be two distinct
mixing processes at work, one that is responsible for the smooth, global decrease
in the Li abundance towards low effective temperatures and another one that is
responsible for the sudden drop in Li abundances in stars of Teff ≈ 6700K that is
known as the lithium dip (Boesgaard & Tripicco 1986; Balachandran 1991).

Helioseismology The large number of oscillation modes observed on the solar
surface allows us to reconstruct the Sun’s internal structure with unprecedented
accuracy. There is a highly significant difference between the sound-speed pro-
file derived by the helioseismic inversion techniques and the prediction of the
standard solar model (SSM), which reaches a maximum just below the convec-
tion zone. This may have to do with the absence of any overshooting physics
in the SSM. Another piece of evidence is encoded in the oscillatory signal in the
mode frequencies that arises due to the rapid change in the stratification at the
bottom of the convection zone. The observed signal is weaker than what the
SSM predicts (Christensen-Dalsgaard et al. 2011), hence there must be a process
that smooths the transition at the convection zone’s bottom. This constraint also
rules out simple models of overshooting, which have an abrupt transition to the
radiative stratification at the bottom of the overshoot layer.

Asteroseismology The number of oscillation modes observed in massive stars
is much smaller than that in the Sun, but it has recently become possible to meas-
ure the size of their convective cores in some cases. Aerts (2013) analysed a
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1.3 PHYSICS OF OVERSHOOTING

sample of 68 OB pulsators. She derived the value of the overshooting parameter
αov in six cases and placed an upper limit on αov in further five cases. The typ-
ical values are 0.1 ! αov ! 0.25 with individual uncertainties of 0.05, but there is
one case with αov = 0.44 ± 0.07. The data does not indicate any dependence on
the stellar mass, rotation period, or core hydrogen mass fraction, but the sample
is small. Montalbán et al. (2013) recently proposed a method to constrain the ex-
tent of the convective core in the H- and He-burning phases in intermediate-mass
stars using period spacing of the solar-like oscillations observed in red giants.

1.3 Physics of overshooting

Ballistic overshooting A convective element approaching the boundary of a
convection zone carries a certain amount of momentum. Its inertia allows it to
enter the stable stratification and to travel some distance in it before it is stopped
by the buoyancy force. Convective flows in the stellar interior typically occur
at low Mach numbers (≈ 10−4), hence this kind of overshooting can influence at
most the first few per cent of the pressure scale heigh beyond the boundary of
the convection zone. This estimate, first made by Roxburgh (1965) and Saslaw &
Schwarzschild (1965), may be somewhat optimistic since it ignores the decelera-
tion of the convective element by the adverse pressure gradient inside the convec-
tion zone. It is this very gradient that causes the large-scale convective flows to
turn over at the boundary and sink back to the convection zone. Moreover, there
is often a jump in the mean molecular weight that makes the boundary extremely
“stiff” and the overshooting distance becomes even shorter.

Shear instabilities The large-scale convective eddies’ turning around at the
boundary of the convection zone produces shear that may be prone to shear in-
stabilities. Meakin & Arnett (2007) used numerical simulations to show that the
mixing at the convective boundary is indeed dominated by shear instabilities and
“wave breaking” phenomena. The thickness of the mixing layer decreases as the
“stiffness” of the boundary increases. Nevertheless, the material from the out-
side of the convection zone can be entrained into it even if the boundary is so stiff
that it is stable against the shear as shown by Woodward et al. (2015). Their sim-
ulations reveal that the entrainment occurs in a thin boundary-separation layer
just inside the formal convection zone. This layer abounds in Kelvin-Helmhotz
instabilities, which slowly “peel off” material from the outside of the convection
zone. It is quite possible that this process is responsible for a slow entrainment of
fuel-rich material into a convective core or shell, in which this fuel is burnt.
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1 INTRODUCTION

Convective penetration It was realised early on (Shaviv & Salpeter 1973; van
Ballegooijen 1982; Zahn 1991) that the vigorous mixing in a thin layer beyond a
convection zone’s boundary may decrease the stability of the thermal stratifica-
tion in that layer and it may allow the layer to grow on a longer time scale. This
is most easily seen in the entropy representation, in which the convection zone
is characterised by a single value of entropy and the adjacent stable stratification
by an entropy gradient. Heat diffusion is inefficient for large-enough convective
eddies, so they will overshoot adiabatically, mixing their entropy value into the
entropy gradient outside the convection zone. This process flattens the gradient
in the overshoot layer and makes further penetration easier. The growth of the
layer is ultimately stopped by thermal diffusion. Simplified models (van Balleg-
ooijen 1982; Schmitt et al. 1984; Rempel 2004) mostly predict the whole penetra-
tion layer to be a few tenths of the pressure scale height thick. It is terminated
by a very thin thermal-adjustment layer, in which the temperature gradient de-
creases to the radiative value (van Ballegooijen 1982; Schmitt et al. 1984, but see
Rempel 2004 for the opposite conclusion).

Internal gravity waves The perpetual rippling of the convective/stable inter-
face radiates internal gravity waves into the stable medium. The rippling, how-
ever, predominantly occurs on the dynamical time scale of convection, which is
typically much longer than the buoyancy time scale deep in the stable stratifica-
tion. By the physics of internal waves (Lighthill 1978), their surfaces of constant
phase as well as the direction of their propagation become almost horizontal. As
soon as this happens, radiative diffusion becomes efficient at damping their amp-
litude. Damped waves, unlike the non-damped ones, can produce a mean flow
(Lighthill 1978). A superposition of many damped waves with random amp-
litudes and phases will redistribute a passive scalar in a diffusive way (Schatzman
1996; Montalbán 1994). In addition to that, internal waves of finite amplitude pro-
duce shear flows that may lead to shear instabilities and boost the diffusion rate
(Press 1981; Garcia Lopez & Spruit 1991). The exact structure and spectrum of the
fluctuations that generate the waves is not well constrained and constitutes the
main source of uncertainty in both kinds of mixing models.

Convective settling The envelope convection zone of a low-mass star is ex-
posed to vacuum at the top. The rapid radiative cooling in the photosphere cre-
ates downflows of very low entropy, which rapidly sink back to the convection
zone. On their way down, they merge, entrain mass and get heated by radiat-
ive diffusion on small scales. Both numerical simulations (Kerr 1996; Viallet et
al. 2013; Woodward et al. 2015) and laboratory experiments (Heslot et al. 1987;
Libchaber et al. 1990; Zocchi et al. 1990) show that such downflows can span the
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1.4 MAIN RESULTS OF THE THESIS

whole convection zone even at extreme values of the Rayleigh number. If some of
them retain a substantial fraction of their initial entropy contrast until they reach
the convection zone’s bottom, their negative buoyancy will make them sink fur-
ther down irrespectively of their velocity. Each downflow will ultimately settle
at the point where the entropy the surrounding stratification equals that of the
downflow, i.e. at the point of neutral buoyancy. An upflow due to mass conser-
vation will act as a “conveyor belt” bringing the mass of the settling layer back to
the convection zone. The entropy the downflows start with in the photosphere is
low enough for them to reach the Li-burning layer, hence convective settling has
a potential to explain the Li depletion observed in low-mass stars. This idea was
first suggested by Spruit (1997) and later elaborated by Andrássy & Spruit (2013)
and Andrássy & Spruit (2015b), see Chaps. 2 and 3.

Differential heating Flows in the convection zone create large-scale, time-de-
pendent temperature fluctuations at the convection zone’s boundary. Thermal
diffusion transports these fluctuations into the neighbouring stably-stratified me-
dium, where they perturb the hydrostatic equilibrium and set off a flow. The ran-
dom changes in the heating pattern due to convection will turn this flow into a
diffusion process, which may provide mixing at some distance from the bound-
ary. This idea was first proposed and elaborated by Andrássy & Spruit (2015a),
see Chap. 4.

1.4 Main results of the thesis

• The process of “convective settling,” so far neglected in stellar-evolution
calculations, may contribute significantly to the mixing below the convect-
ive envelopes of low-mass stars.

• Convective settling cannot smooth the sound-speed profile at the bottom of
the solar convection zone, at least not in the parametrisation employed in
this work. Inclusion of He sedimentation in the model might change this
result, though.

• A simple model of convective settling developed in this work can well ap-
proximate the trends in the depletion of both Li and Be that are observed in
low-mass, main sequence stars.

• The process of “differential heating” is identified as an additional, potential
contributor to the mixing close to the boundary of a stellar convection zone.
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1 INTRODUCTION

• A simplified differential-heating problem is formulated as a fundamental,
non-linear flow problem of low-Péclet-number hydrodynamics.

• An analytical model of the stationary, high-Reynolds-number, differential-
heating flow is derived. The model shows that the decrease in the flow
amplitude with increasing distance from the differentially-heated boundary
is faster than exponential. The flow essentially vanishes at a finite distance.

• The mixing layer due to the differential-heating flow is estimated to extend
about 4% of the pressure scale height above the core of a 10M⊙ zero-age
main sequence star.
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2 Overshooting by convective settling

R. Andrássy, H. C. Spruit

A&A 559, A122 (2013)

Abstract: We study a process of slow mixing in stars with convective envel-
opes, which is driven by the settling of cool downward plumes below the base
of the convection zone. If a small fraction (of order 10−7) of the material cooled
at the surface retains a significant entropy deficit while descending in plumes,
it can reach the depth where lithium burning takes place. The model calculates
the thermal response and mixing below the convection zone due to the settling
process, assuming that the plumes arrive at the base of the convection zone with
a broad range of entropy contrasts. We obtain a good fit to the observed lith-
ium depletion in the Sun by assuming that the settling mass flux is distributed
with respect to the entropy contrast as a power law with a slope around -2. We
find convective settling to have a negligible influence on the stratification below
the convection zone, although mixing induced by it could modify the gradient of
helium concentration.

2.1 Introduction

In stellar evolution, the term ‘overshooting’ is used to denote any process that
can extend the mixing effect of a convective flow beyond the region of linear
instability of the stratification. A number of conceptually different processes have
been considered, operating on a range of length scales and time scales.

The first overshooting mechanism one can think of is the extension of the con-
vection zone as caused by the inertia and entropy contrast of the convective flows,
which they developed before leaving the convection zone proper. Roxburgh
(1965) and Saslaw & Schwarzschild (1965) both estimated the expected extent
of overshooting due to this process using characteristic values of the speed and
entropy contrast predicted by the mixing-length theory (MLT). They obtained a
negligible penetration distance as a consequence of the steep entropy gradient
in the radiative zone and low convective velocities connected to the efficiency of
deep convection in stars.

9



2 OVERSHOOTING BY CONVECTIVE SETTLING

This process can be called ‘overshooting’ in the literal (ballistic) sense, operat-
ing on a short time scale and over a negligible distance. It was recognised early
on (e.g. Shaviv & Salpeter 1973) that the convective cells at the boundary with a
stable zone could also have a slower but systematic effect that extends the region
of convectively overturning motion. Such effects would be much more relevant
on the longer time scales of stellar evolution. To distinguish it from the ballistic
process, this kind of process can be called ‘convective penetration’ (Zahn 1991).
Models have been developed by several authors. Van Ballegooijen (1982) stud-
ied the long-term response of the sub-adiabatic interior to a stationary convect-
ive flow at the base of the convection zone. The model predicted a mildly sub-
adiabatic overshoot region terminated by a thin boundary layer. Related ideas
were developed by Schmitt et al. (1984) and Rempel (2004) using models for the
interaction of downward plumes with their environment.

For the discussion of overshooting/penetration it is useful to make a distinc-
tion between the case of a convective envelope like the Sun and Sun-like stars and
the conditions in internal convective zones in stars. Owing to the very low gas
density at the stellar surface, where the flows are driven, the flows in a convective
envelope are far more ‘plume-like’ than in a convective core, where the density
stratification is much less extreme. This has major consequences for the over-
shooting problem. Whereas in core convection the order of magnitude of velocit-
ies and temperature fluctuations can be plausibly estimated from a mixing-length
formula, the downward plumes in a convective envelope have much stronger
entropy contrasts than mixing-length estimates based on some average of the
stratification. To the (as yet poorly known) extent to which these plumes sur-
vive mixing, entrainment and merging (see e.g. Viallet 2012), they will arrive at
the base of the convection zone with a broad range of entropy contrasts. This
mixture will settle in the stable layers below at a range of depths, which are de-
termined by the distribution of entropy contrasts (see Nordlund & Stein 1995 for
an example of a simulation showing the effect qualitatively). We call this form of
gentle overshooting ‘convective settling’ (shortened to ‘settling’ hereinafter). The
explicit inclusion of the cold plumes makes it a rather different contribution to
overshooting compared with the processes mentioned above. On the long time
scales relevant to stellar evolution, it has the potential of producing a weak mix-
ing extending to deeper layers.

Numerical simulations are naturally restricted to limited time scales that cover
the ballistic process much better than the slower processes of penetration and
convective settling. Extrapolations have to be made to translate simulation results
from a numerically accessible regime to astrophysically relevant conditions. Since
different contributing processes act on different time scales and depths, such ex-
trapolation would require disentangling them from a numerical simulation. This
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2.1 INTRODUCTION

is not a straightforward task. Early two-dimensional computations by Hurlburt
et al. (1986) showed strong downward-directed plumes penetrating deep into the
stable stratification and generating gravity waves there. Later studies (e.g. Hurl-
burt et al. 1994; Singh et al. 1995; Brummell et al. 2002; Rogers & Glatzmaier 2005)
focussed on the dependence of penetration depth on the stiffness of the interface
separating the stable and the unstable stratification. With 3D simulations of a
convective envelope model, Nordlund & Stein (1995) showed qualitatively how
the transition from convection to the stable interior is softened by the spread in
entropy of the downward plumes, i.e. the ‘settling’ process above. Realistic sim-
ulations of a convective envelope are still quite outside the accessible domain.
This is due to the daunting range of length and time scales needed to cover the
driving at the stellar surface, the mixing and entrainment in the plumes, and their
compression over the enormous density range between the surface and the base
(cf. Rogers & Glatzmaier 2005; Rogers et al. 2006).

A further phenomenon that could lead to mixing at the bottom of such a con-
vection zone is a meridional circulation in the radiative zone, driven by the lat-
itudinal differential rotation of the convective envelope. This was studied by
Spiegel & Zahn (1992), among others, who calculated how viscous stress causes
the pattern of differential rotation to penetrate the stable stratification on a long
time scale.

McIntyre (2007) points out that the problem is identical to the so-called ‘gyro-
scopic pumping’ process (Haynes et al. 1991), in which thermal diffusion plays a
dominant role. Garaud & Acevedo Arreguin (2009) show how this process is cap-
able of producing meridional flows penetrating deep into the radiative interior,
provided that there is a source of stress in it.

Stochastic convective motions generate a whole spectrum of internal gravity
waves propagating into the stable stratification. These can in principle also pro-
duce a modest amount of mixing at some distance away from a convection zone,
see e.g. Press (1981); Garcia Lopez & Spruit (1991); Schatzman (1996).

An important clue about the deeper, slow mixing processes is the long-term
lithium depletion observed in low-mass main-sequence stars (Herbig 1965; Boes-
gaard 1976; Pinsonneault 1994, and references therein). From the complex over-
shooting physics described above, we decided to isolate the settling process since
it could be the most relevant for lithium depletion as suggested before in Spruit
(1997). We present the physics of settling and a simplified model of it in Sec. 2.2.1,
then we formulate the model mathematically in Sec. 2.2.2 and describe our ap-
proach to estimating the extent of lithium depletion in Sec. 2.2.3. We focus on the
solar case, because we can also apply helioseismic constraints there (Christensen-
Dalsgaard et al. 1996; Bahcall et al. 1998; Schlattl & Weiss 1999). Results of our
study are summarised in Sec. 2.3 and discussed in Sec. 2.4.
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2 OVERSHOOTING BY CONVECTIVE SETTLING

2.2 Model

As discussed above, several processes are present at the same time at the bound-
ary of a stellar convection zone and act on a range of depths and time scales.
We focus on lithium depletion here, so we need to consider mixing processes
working deep in the stable stratification (T " 2.5 MK) on nuclear-burning time
scales. We envisage a mechanism based on the idea that, apart from the MLT-like
flows, there might be a tiny fraction of substantially colder material at the lower
boundary of an envelope convection zone. It would be a (partially mixed) rem-
nant of the photospheric downflows. Its low entropy would make it sink until it
has reached neutral buoyancy. Because of the large entropy deficit, with which
the plumes start, this can in principle happen rather deep in the stable stratifica-
tion. One would expect, however, that the larger the entropy deficit, the smaller
the fraction of the downflowing material involved. We expect the settling rate at
lithium-burning depths to be so low that settling negligibly affects the stratific-
ation there, but still high enough to ensure significant mass exchange with the
convection zone on very long time scales. On the other hand, the settling rate
in the vicinity of the convection zone could be much greater, possibly leaving a
footprint on the sound-speed profile.

Settling itself involves a vast range of time scales. The downflows sink to-
wards the settling point on their dynamical time scale. Since only a small fraction
of the plumes will survive with a significant entropy deficit, the filling factor of
this fraction is small. This implies that the upflow enforced by mass conserva-
tion is very slow. This circulation disturbs the radiative equilibrium, which in a
steady state is balanced by radiative diffusion. It is a certain time average of this
equilibration process that represents the influence of settling on the stratification
on the time scale of the star’s lifetime.

What fraction of the photospheric downflows should keep their low entropy?
To get an order-of-magnitude estimate from the observed value of the Sun’s lith-
ium depletion, assume that a fraction ϵ of the photospheric downward mass flux
Fph sinks deep enough to reach lithium-burning conditions, burning its lithium
content instantaneously there. To burn all the observable lithium, the whole mass
of the convection zone Mcz (per unit area) must be replaced by the flux ϵ Fph. If
this is to happen on the time scale τ, ϵ = Mcz/(Fphτ). This way we obtain ϵ ≈ 10−7
for solar values (Mcz ≈ 7 × 108 g cm−2, Fph ≈ 3 × 10−2 g cm−2 s−1 and τ ≈ 5 × 109 yr).
Such a minute amount would hardly be traceable by current ab initio simulations.

12



2.2 MODEL

2.2.1 Model physics and simplifications

We have constructed a simplified one-dimensional model of settling (Sec. 2.2.2)
based on the ideas described above. It includes three assumptions. First, we
ignore any exchange of heat or mass between the downflows and the upflow
within the region bounded by the Schwarzschild boundary at the top and the
point where the given downflow settles at the bottom (i.e. all downflows are
adiabatic in our model). Secondly, we do not consider the kinetic energy of the
downflows and its dissipation. Third, we regard the overshoot region as chem-
ically homogeneous (with the exception of lithium). The last assumption has a
significant influence on the sound-speed profile and is justified a posteriori in
Sec. 2.3.

Since we are only interested in very long time scales, the model is formulated
as stationary — we base it on the equality of a local cooling rate due to advection
(i.e. settling) and a local heating rate due to a negative radiative flux divergence.
The very nature of settling, in which cold material sinks downwards and pushes
hot material upwards, causes the convective flux to be positive, which is unusual
for overshooting models. Conservation of the total flux then makes the radiat-
ive flux decrease, which is achieved by a decrease in the temperature gradient ∇.
This immediately tells us that a model with settling will be warmer than the one
without it. The decrease in ∇ will also shift the formal boundary of convective
instability in the settling model higher up into the stratification and slightly re-
duce the depth of the convection zone. The settling process adds mass from the
convection zone to the stratification below, which responds by a slow upward
flow, eventually returning mass to the convection zone. The location where the
mass settles depends on its entropy since it is the depth at which it matches that
of the stratification. The model calculates how settling changes the steady state
stratification under the combined effects of thermal diffusion and the assumed
settling mass flux.

The model thus needs a description for the flux of settling mass as a function
of its entropy. Since current numerical simulations still cannot reach the para-
meter values needed to get this distribution from first principles, it needs to be
parametrised. We describe it with a power law. We define the mass flux (either
upflow or downflow) in terms of the quantity ηρv, where η is the filling factor
(the relative geometrical area covered by the flow, 0 ≤ η ≤ 1), ρ is the density,
and v the velocity. We avoid any explicit usage of the unknown values of v and
η this way. (The model only requires η ≪ 1 for the downflow, see above.) The
range of entropies in the mass flux distribution is bounded between the entropy
of a typical downflow in the photosphere and the MLT estimate of the entropy
contrast in the lower part of the convection zone.

13



2 OVERSHOOTING BY CONVECTIVE SETTLING

2.2.2 Mathematical formulation

To describe the settling process mathematically, we model the settling region as
a plane parallel layer (instead of a spherical shell) of ideal gas in a homogeneous
gravitational field. These assumptions are not essential but make the mathemat-
ics more transparent and are not likely to change the outcomes substantially.

We describe the thermodynamic state by dimensionless variables p̂, ρ̂, T̂ , and
ŝ, which stand for the pressure, density, temperature, and specific entropy, re-
spectively:

p̂ =
p
p0
, (2.1)

ρ̂ =
ρ

ρ0
, (2.2)

T̂ =
T
T0
, (2.3)

ŝ =
s − s0
R
, (2.4)

where p, ρ, T , and s are the physical state variables, the index zero corresponds
to a reference point, and R is the gas constant. We use R ≡ kB/(µmp), so that
it includes the mean molecular weight µ = const. (see Sec. 2.2.1). The reference
point, which must not be influenced by settling, can be put anywhere beneath the
settling layer. The thermodynamic state we refer to is a horizontal average set by
the upflow state, because the downflow filling factor is assumed to be small. We
describe the thermodynamics of settling in terms of this average state.

We introduce a dimensionless independent variable

ψ = − ln(p/p0), (2.5)

which can be related to the geometrical height z by using the condition of hydro-
static equilibrium,

dp = −ρ g dz, (2.6)

where g = const. is the gravitational acceleration, and we set z = 0 at the reference
point. If we differentiate Eq. 2.5, combine it with Eq. 2.6, and use the ideal gas
law p = ρRT , we obtain a recipe for converting derivatives to the dimensionless
form,

d
dψ
=
RT
g
d
dz
. (2.7)

The local pressure scale height isH = RT/g. Elementary thermodynamics provide
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2.2 MODEL

us with the following useful relations

ρ̂ = p̂1−∇ad exp (−∇ad ŝ), (2.8)

T̂ = p̂∇ad exp (∇ad ŝ), (2.9)
dŝ
dψ
= 1 −

∇
∇ad
, (2.10)

where ∇ad is the usual adiabatic temperature gradient.
Let dṁ(ŝ) be the differential settling mass flux per unit of entropy ŝ at the base

of the convection zone. Its functional form is assumed to be a power law,

dṁ = −Ṁ f (ŝ) dŝ, (2.11)

f (ŝ) = N
(
ŝsb − ŝ
(δŝ)min

)−β
, (2.12)

where Ṁ > 0 is the total settling mass flux, f (ŝ) is a distribution function, N
a normalisation factor, ŝsb the entropy of the stratification at the Schwarzschild
boundary (where ∇ = ∇ad and dŝ/dψ = 0, see Eq. 2.10), (δŝ)min > 0 is the lowest en-
tropy contrast of a downflow with respect to ŝsb, and β > 0 describes the steepness
of the distribution. We also define a maximum entropy contrast (δŝ)max, which is
determined by the entropy of the downflows at the surface (see Sec. 2.2.1), and
set f (ŝ) = 0 for ŝ < ŝsb − (δŝ)max and ŝ > ŝsb − (δŝ)min. We require that the area under
f (ŝ) be unity, so that (for β ! 1)

N =
β − 1
(δŝ)min

⎡
⎢⎢⎢⎢⎢⎣1 −

(
(δŝ)max
(δŝ)min

)−(β−1)⎤⎥⎥⎥⎥⎥⎦

−1

. (2.13)

We define a cumulative distribution function

F(ŝ) = 1 −
∞∫

ŝ

f (ŝ′) dŝ′, (2.14)

which describes the relative amount of downflows that settle below the level where
the entropy in the stratification equals ŝ. All downflows of entropy ŝ′ > ŝ have
already reached neutral buoyancy and settled higher up (dŝ/dz > 0 for ∇ < ∇ad,
see Eqs. 2.7 and 2.10). Therefore F(ŝ) = 0 for ŝ ≤ ŝsb − (δŝ)max, 0 < F(ŝ) < 1 for
ŝsb − (δŝ)max < ŝ < ŝsb − (δŝ)min, and F(ŝ) = 1 for ŝ ≥ ŝsb − (δŝ)min.

We write the energy equation in the upflow in terms of entropy, in the Lag-
rangian form

ρT
Ds
Dt
= −

dFrad
dz
, (2.15)
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2 OVERSHOOTING BY CONVECTIVE SETTLING

where t is the time, Frad the radiative flux, D/Dt = ∂/∂t + v d/dz is the Lagrangian
time derivative, and v the upflow velocity.

Global mass conservation requires the total amount of mass being transported
downward to be equal to the total amount of mass being transported upward
through any surface z = const. With our approximation that the filling factor of
the upflow is close to unity, the upward mass flux Ṁ F(ŝ) is given by the product
of the upflow density and velocity,

Ṁ F(ŝ) = ρ v. (2.16)

This allows us to formulate the model without the knowledge of filling factors or
using a momentum equation.

The stationary nature of our model eliminates the ∂/∂t term in Eq. 2.15, and
using Eq. 2.16, we can write the upflow energy balance in the form

Ṁ F(ŝ) T
ds
dz
= −

dFrad
dz
. (2.17)

One can obtain a dimensionless form of this equation by using Eqs. 2.3, 2.4, and
2.7 and introducing a dimensionless radiative flux F̂rad = Frad/Ftot, where Ftot
is the total flux (being equal to the radiative one at the reference point). The
state variables can be related to the entropy by Eqs. 2.8 and 2.9. The diffusive
approximation of the radiative flux is

Frad =
16
3
gσT 4

p κ
∇. (2.18)

With Eq. 2.10, Eq. 2.17 then yields

C T̂ (ψ, ŝ)
dŝ
dψ

F(ŝ) = −
dF̂rad(ψ, ŝ, dŝ/dψ)

dψ
, (2.19)

where

C =
Ṁ RT0
Ftot

(2.20)

is a ratio of a characteristic convective flux to the star’s net energy flux Ftot at the
base of the convection zone. It is a dimensionless measure of the settling mass
flux Ṁ. The explicit form of the derivative dF̂rad/dψ on the right-hand side of
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2.2 MODEL

Eq. 2.19 is

dF̂rad
dψ

=
∇ad
∇0

κ̂−1 exp
[
(1 − 4∇ad)ψ + 4∇ad ŝ

]
×

[
1 − 4∇ad −

∂ ln κ̂
∂ψ
+

(
8∇ad − 1 +

∂ ln κ̂
∂ψ
−
∂ ln κ̂
∂ŝ

)
dŝ
dψ
−

(
4∇ad −

∂ ln κ̂
∂ŝ

) (
dŝ
dψ

)2
−
d2 ŝ
dψ2

]
, (2.21)

where κ̂ = κ/κ0 is the dimensionless opacity function and κ0 the opacity value at
the reference point.

Equation 2.19 governs the whole settling process in our model. It is a non-
linear, second-order ordinary differential equation for the entropy profile ŝ(ψ).
The opacity function κ̂(ψ, ŝ) in Eq. 2.21 could by specified by standard opacity
tables, but that is not necessary in such a simplified model. In our sample calcu-
lations presented in Sec. 2.3, we used the opacity law

ln κ̂ = αψ, (2.22)

where the exponent α is a fitting parameter. In this simplification the opacity
depends only on the pressure (via ψ) and not on the full thermodynamic state.
This prescription is sufficient for our purposes if it reasonably fits the opacity
profile of the stratification without settling, and if the state change due to settling
is small.

Equation 2.19 implicitly contains an a priori unknown value of the entropy at
the Schwarzschild boundary, ŝsb, as an input parameter of the distribution func-
tion F(ŝ), see Eqs. 2.12 and 2.14. Therefore any solution procedure must involve
iterations. One could pick an initial guess ŝ 0sb and integrate Eq. 2.19 from the ref-
erence point (where ψ = 0, see Eq. 2.5) upwards. The initial conditions would be
ŝ = 0, dŝ/dψ = 1− ∇0/∇ad (see Eqs. 2.4 and 2.10), where ∇0 is the known temperat-
ure gradient at the reference point. The integration would then be stopped at the
point ψ 0sb, where the entropy reaches a maximum (i.e. the Schwarzschild bound-
ary). The solution value at this point, ŝ 0

(
ψ 0sb

)
! ŝ 0sb (in general), could be used as

a new estimate ŝ 1sb, and the whole process could be repeated until convergence.
In reality, the steep profile of F(ŝ) renders this method highly unstable.

Our sample calculations shown in Sec. 2.3 were computed by modifying this
method. We started the i-th iteration by integrating Eq. 2.19 from an estimated
position of the Schwarzschild boundary

(
ψ i
sb , s

i
sb

)
downwards to the reference

point. The initial conditions were ŝ = s isb, dŝ/dψ = 0 (see Eq. 2.10). We stopped
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2 OVERSHOOTING BY CONVECTIVE SETTLING

the integration at ψ i
0 such that ŝ i

(
ψ i
0

)
= 0. This, in general, leads to ψ i

0 ! 0 and
dŝ/dψ

∣∣∣
(
ψ = ψ i

0

)
! 1 − ∇0/∇ad; i.e., the solution curve misses the reference point.

Therefore we make a new estimate
(
ψ i+1
sb , s

i+1
sb

)
and repeat the procedure until the

solution passes close enough to the reference point, and the entropy gradient gets
close enough to 1 − ∇0/∇ad there. This method converges smoothly to the desired
solution.

2.2.3 Lithium burning

The extent of lithium depletion in the convection zone is given by two time scales,
which are both strong functions of depth. Taking a horizontal layer of thickness
dz, we introduce a ‘recycling’ time scale τr by defining the mass exchange rate (per
unit area) in this layer as ρ dz/τr. The height interval dz corresponds to an entropy
interval dŝ in the stratification, which implies that the mass exchange rate due to
settling is Ṁ f (ŝ)dŝ (see Eq. 2.11). Equating the last two expressions, we obtain

1/τr =
Ṁ
ρ
f (ŝ)

dŝ
dz
=
g
p
Ṁ f (ŝ)

dŝ
dψ
, (2.23)

where we have also used Eq. 2.7 and the equation of state.
The second time scale describes the speed of the burning itself. Lithium is

burned by the reaction 7Li(p, α)α, which causes a decrease in its abundance A ≡
NLi/NH on the time scale τb ≡ − (d ln A/dt)−1. With the reaction’s astrophysical S-
factor S b(0) = 55keV barns from Lattuada et al. (2001), the burning time scale is
(see e.g. Hansen & Kawaler 1994)

τb =
[
9.02 × 106 Xρ ξ2 exp(−ξ)

]−1
yr, (2.24)

where X is the hydrogen mass fraction, the density ρ is in g cm−3, and ξ = 84.5 T−1/36
with the temperature T6 in MK.

We discretise the settling layer into a grid of n sub-layers ordered by height.
The bottom of the i-th sub-layer is located at a height of zi, i = 1, 2, . . . , n. The
resolution of the grid is chosen by setting a maximum to the relative changes
in F[ŝ(z)], τr(z) and τb(z) between grid points. We put the first grid point to the
maximal depth settling can reach, i.e. z1 = max{z : F[ŝ(z)] = 0}. The topmost point
represents the convection zone itself including a well-mixed upper part of the
overshoot region, where the burning rate is negligible. Lithium is assumed to be
a trace element.

We model the burning process by the set of equations

dNi
dt
= Rb,i + Rs,i + Ra,i, (2.25)
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where Ni is the number density of lithium atoms per unit area in the i-th sub-layer,
t is the time, Rb,i a burning rate, Rs,i a settling rate of ‘fresh’ lithium atoms from
the convection zone, and Ra,i a rate of lithium transport by advection. Nuclear
burning is an exponential decay process, hence

Rb,i = −
Ni
τb,i
, (2.26)

where τb,i can be defined e.g. as τb,i = [τb(zi) + τb(zi+1)]/2 with a special case τb,n =
0 (see above). We introduce the mass settling rate ṁi in the i-th sub-layer (cf.
Eq. 2.14),

ṁi = Ṁ[F(zi+1) − F(zi)] (2.27)

and set ṁn = 0. We model settling as a process that extracts mass from the convec-
tion zone and deposits it over a range of depths without any mixing in between
(see Sec. 2.2.1). Therefore the whole lithium content of ṁi gets into the i-th sub-
layer, and the lithium settling rate there is

Rs,i = An
Xṁi

mp
, (2.28)

where the hydrogen mass fraction X and proton mass mp are used to obtain the
settling rate of hydrogen atoms, Xṁi/mp. The lithium abundance in the convec-
tion zone, An, then converts the hydrogen settling rate to the lithium settling rate.
The advection part of Eq. 2.25 refers to the transport of lithium by the upflow,
which causes a mass flux of σi = ṀF(zi) through the bottom of the i-th sub-layer.
This corresponds to a flux of lithium atoms of Ai−1Xσi/mp (coming from the (i−1)-
st sub-layer). The rate of advective transport Ra,i is then the difference between
the inflow into and the outflow from the i-th sub-layer,

Ra,i = Ai−1
Xσi
mp
− Ai

Xσi+1
mp
, (2.29)

which is negative.
Equation 2.25 can be expressed in terms of abundances in the following way.

First, insert Eqs. 2.26, 2.28 and 2.29 into Eq. 2.25 and divide each resulting equa-
tion by the corresponding hydrogen number density NH,i. Second, notice that
σi =

∑i−1
k=1 ṁk and define a discrete version of τr as τr,i = Mi/ṁi, where the mass

of the i-th sub-layer (per unit area) is Mi = NH,i mp/X. Third, rearrange terms to
obtain

d ln Ai
dt

= −
1
τb,i
+
An/Ai − 1

τr,i
−

(
1 −

Ai−1
Ai

) i−1∑

k=1

Mk

Mi

1
τr,k
. (2.30)
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Model id. F̂conv, sb β Ṁ [g cm−2 s−1] max
(
δc2s/c2s

)
log10 [Acz(t⊙)]

A1.5 10−2 1.5 4.5 × 10−3 8.7 × 10−3 < −10
A2.0 10−2 2.0 4.4 × 10−1 2.2 × 10−3 −4.8
A2.5 10−2 2.5 2.2 × 100 4.0 × 10−5 −0.091
B1.5 10−1 1.5 4.9 × 10−2 8.7 × 10−2 < −10
B2.0 10−1 2.0 4.5 × 100 2.2 × 10−2 < −10
B2.5 10−1 2.5 2.2 × 101 3.7 × 10−4 −0.72

Table 2.1: Properties of the six settling models.

The physical effect of each of the three terms on the right-hand side of Eq. 2.30 can
now be seen easily. The first one exponentially destroys lithium on the local burn-
ing time scale τb,i. The second term strives to equalise the local lithium abundance
Ai with that of the convection zone. This, as a direct effect of settling, happens on
the local recycling time scale τr,i. The last term describes how Ai tends to approach
Ai−1, i.e. the slow rising of the lithium stratification due to the upflow induced by
settling. Its strength depends on the total ‘speed’ (∼ 1/τr) of settling beneath the
i-th sub-layer.

2.3 Results

Numerical simulations of the solar photosphere show that the entropy contrast
between the upflow and a typical downflow is δs = 1.8×108 erg K−1 g−1 (see Fig. 29
in Stein & Nordlund 1998). We set the maximal entropy contrast in the mass flux
distribution to this value, which corresponds to (δŝ)max = 1.3 in our dimensionless
units. We use (δŝ)min = 1.0 × 10−6 for the minimal entropy contrast in the mass flux
distribution. We put the reference point to r = 0.50R⊙ in the standard solar model
(SSM), which is slightly deeper than the bottom of the settling layer for our choice
of (δŝ)max. The gravitational acceleration is set such that the mass of the region
with T > 2.5×106K in our model (with Ṁ = 0) is close to the corresponding value
from the SSM.1 We also adjust the opacity parameter α such that the entropy
difference between the Schwarzschild boundary and the reference point matches
the value from the SSM (again with Ṁ = 0).

We first show the typical behaviour of settling on a set of six models (see
Table 2.1), roughly sampling the corner of the parameter space that is likely to
be relevant. We use three different values of β and, instead of setting Ṁ to any
particular value, we adjust it iteratively in order to reach certain values of the

1This of some importance for the lithium-burning calculation. Equation 2.23 shows that τr ∝ 1/g.
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Figure 2.1: The cumulative mass flux distributions in the A-type settling models plotted as
functions of height. F [ŝ(z)] is the fraction of the mass flux Ṁ that settles below the height
level z. The height z is counted upwards from a point beneath the settling layer.

convective flux at the Schwarzschild boundary, F̂conv, sb ≡ 1 − F̂rad, sb (see Table 2.1).
This is motivated by the fact that our mass flux distributions (see Fig. 2.1) are to
represent a low-entropy tail appended to a distribution of MLT-like flows, which
do not appear in our model. Since the F(ŝ) distributions have a sharp peak close
to the entropy values predicted by the MLT, one can expect the convective flux
induced by such set of downflows to be a non-negligible (although not precisely
known) fraction of the total flux. Therefore we use F̂conv, sb = 0.01 and F̂conv, sb = 0.1
in A-type and B-type models, respectively (see Table 2.1). The cumulative mass
flux distributions (Fig. 2.1) show that in all cases only a tiny fraction of the input
mass flux reaches substantial depths. We do not show the distributions of the
B-type models, because their profiles are almost the same as the ones shown, but
shifted along the z axis.

We compare the properties of our settling models with a reference one hav-
ing Ṁ = 0 (i.e. without settling). The comparison is made at the same geo-
metrical height z, normalised to the pressure scale height at the reference point,
H0 = RT0/g. The convective part of the reference model extends a bit deeper than
in the settling models; i.e., the settling process reduces the depth of the convection
zone (cf. discussion in Sec. 2.4). We set ∇ = ∇ad = 0.4 in the convectively unstable
part of the reference model to make the comparison of thermodynamic quantities
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Figure 2.2: The temperature gradient in the model B1.5 (solid line) compared with the
reference model (dotted line). In the convectively unstable part of the reference model
∇ = ∇ad = 0.4 (see Sec. 2.3).

possible.
Figure 2.2 compares the temperature gradient in the model B1.5 (the strongest

settling) to the reference one. It clearly shows that the temperature gradient in
the settling models has to decrease in order to reduce the radiative flux, as expec-
ted in Sec. 2.2.1. We can see that models with settling indeed reach convective
instability higher up in the stratification. It is also evident from Fig. 2.2 that set-
tling preserves the discontinuity in the slope of ∇ (hence in the second derivative
of the sound speed) at the Schwarzschild boundary, which has consequences for
helioseismology.

Figure 2.3 shows the relative increase in the squared sound speed due to set-
tling,

δc2s
c2s
=
c2s − c2s, r
c2s, r

, (2.31)

where cs is the sound speed in the settling model and cs, r is the sound speed in
the reference one. The maximum values of δc2s/c2s reached by our models are also
listed in Table 2.1.

Plots of the recycling time scale in Fig. 2.4 shows that a considerable fraction
of the settling layer gets mixed with the convection zone on the time scale of the
Sun’s lifetime. Such mixing could alter the chemical gradients caused by slow
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Figure 2.3: The differences in the squared sound speed between the settling models and
the reference model. The right end of each curve marks the position of the Schwarzschild
boundary.
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Figure 2.4: The lithium-burning time scale τb and the recycling time scale τr in the settling
models. τb is only plotted for the models with β = 2.0, because it is very similar in the other
ones. The right end of each curve marks the position of the Schwarzschild boundary.
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element diffusion and change the sound speed profile with respect to the SSM.
The conditions for lithium burning can be qualitatively judged using Fig. 2.4,

which shows the recycling time scale τr (Eq. 2.23) and the lithium-burning time
scale τb (Eq. 2.24) as functions of height. Since they both change by many orders of
magnitude, we estimate the overall extent of lithium depletion in the convection
zone by integrating Eq. 2.30 with the initial condition Ai = 1, i = 1, 2, . . . , n, so that
our calculations show the relative change in the lithium abundance with respect
to the initial one. The integration is stopped at t = t⊙ = 4.5 × 109 yr. The strongly
varying extent of lithium depletion in the convection zone Acz ≡ An, listed in
Table 2.1, shows the extreme sensitivity of the lithium depletion rate to τr, τb and
thus to β. We only present models for one value of (δŝ)max, but the consequences
of changing this parameter can be judged using Fig. 2.4.

First, consider a model with τr ≫ t⊙ at the bottom of the settling layer. Under
this condition, the convection zone does not „feel” the bottom of the settling layer,
because the material exchange between them over the Sun’s lifetime is negligible.
The lithium depletion cannot depend much on (δŝ)max in this case. If, on the
other hand, we take a model with τr ≪ t⊙ at the bottom of the settling layer,
the exchange of mass with the convection zone is efficient. The rate of lithium
depletion in the convection zone is sensitive to the maximal depletion rate in the
settling layer, i.e. the value at its bottom. Such a model must therefore be sensitive
to (δŝ)max since this parameter determines the depth of the settling layer.

Observations tell us that the Sun has depleted 2.21± 0.11dex of its initial lith-
ium content (Asplund et al. 2009). We have calibrated a set of models (not shown
in Table 2.1) by adjusting Ṁ at any given value of β until they all predicted the ob-
served lithium depletion. These models use the same values of (δŝ)min and (δŝ)max
as the ones listed in Table 2.1. The derived values of Ṁ and F̂conv, sb are plotted
in Fig. 2.5 as functions of β. The recycling time scale at the bottom of the settling
layer in this set of models is ∼ 6.9× 109 yr with only 16% variation over the range
of β plotted in Fig. 2.5. This is more than the age of the Sun, so that the burning-
calibrated models are only mildly sensitive to the assumed value of (δŝ)max. The
peak values of δc2s/c2s in these models range from 6 × 10−4 at β = 1.5 to 2 × 10−3 at
β = 2.5.

2.4 Summary and discussion

We have shown that there are several processes contributing to overshooting un-
der a convective stellar envelope, which cover a wide range of depth and time
scales. The ‘ballistic’ form of overshooting acts on the dynamical time scale in
a shallow boundary layer. The process of convective penetration needs more
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Figure 2.5: The settling mass flux Ṁ and the convective flux at the Schwarzschild bound-
ary F̂conv, sb plotted as functions of β in a set of models calibrated to produce the observed
lithium depletion in the Sun.

time to spread but reaches deeper. Convective settling, potentially the deepest-
reaching overshooting process, only plays a role on the time scale of the star’s
lifetime. Finally, gyroscopic pumping and internal gravity waves may also con-
tribute to slow mixing.

We have isolated the process of convective settling, in which a small fraction
of the cold photospheric material is assumed to maintain some of its low entropy
until it has settled at its neutral-buoyancy level in the stable stratification beneath
the convection zone. The typical entropy contrast observed in photospheres of
solar-type stars is strong enough so that settling can in priniciple penetrate the
lithium-burning layers (Spruit 1997). However, an order-of-magnitude estimate
shows that the mass flux of this material required to explain the observed lithium
depletion in the Sun on the nuclear time scale is tiny (a fraction of order 10−7 of
the mass flux in the downflows at the surface). Effects as weak as this cannot be
measured from direct hydrodynamic simulations.

On its way down, the cold material mixes by entrainment with its surround-
ings, a process that cannot be captured realistically with existing means. The
likely outcome at the base of the convection zone is a distribution of entropy con-
trast in the downflows, with most of the mass flux near the value corresponding
to a mixing-length estimate, but with a tail of unknown shape extending to much
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lower entropy values. In the absence of further information, we have paramet-
rised this tail by a power law.

We use a one-dimensional model that treats the settling material as a depth-
dependent source of mass in the layers below the base of the convection zone.
The response of this region is a slow upward flow. Accompanying it, there is a
thermal adjustment by radiative diffusion. The result is a slow, depth-dependent
circulation of material. The free parameters of the entropy distribution model are
adjusted such that lithium depletion takes place on the observed time scale.

The results show that the radiative flux and temperature gradient decrease to
compensate for a positive (upward) convective flux caused by settling. This de-
crease in ∇ leads to a slight reduction of the convection zone’s depth. The settling
process is calculated only as a perturbation of a precalculated solar model, how-
ever; i.e., we do not model the evolution of the Sun with settling included. In a
self-consistent and properly calibrated stellar-evolution model the change in the
depth of the convection zone might actually have the opposite sign.

The resulting change in the sound speed profile due to settling is rather small
and is concentrated in a thin layer below the Schwarzschild boundary. The cal-
culation, however, only includes the direct effect of the settling process. It does
not include the changes in the Sun’s structure during its evolution on the main
sequence. It is possible that this will redistribute the structural changes due to
settling over a larger portion of its radius.

Another factor not included in our calculations is the stratification of helium
concentration below the convection zone. It is caused by gravitational settling
(also called ‘diffusion’) and known to significantly influence the solar sound-
speed profile (see Christensen-Dalsgaard & Di Mauro 2007, and references there-
in). This helium-concentration gradient could be modified by the mixing induced
by convective settling.

As Fig. 2.2 shows, settling preserves the discontinuity in the second derivative
of the sound speed. That the helioseismic observations favour smoother sound-
speed profiles (Christensen-Dalsgaard et al. 2011) is evidence for the existence of
an additional overshooting mechanism acting closer to the boundary of convect-
ive instability than the settling process studied here.

The predicted lithium depletion changes by many orders of magnitude, as
a function of the two model parameters (see Table 2.1). This is a natural con-
sequence of the high temperature sensitivity of the burning reaction, combined
with rapid changes of the mass flux in the lithium-burning layers as we change
the slope β of the mass flux distribution. Therefore we use the observed lithium
depletion in the Sun to constrain our model. This constraint yields a dependence
of the total input mass flux Ṁ on slope β, reducing the number of free parameters
to one (see Fig. 2.5). The linearity of log10 Ṁ(β) comes as no surprise if we inspect

27



2 OVERSHOOTING BY CONVECTIVE SETTLING

Fig. 2.1 in detail. We see that the F [ŝ(z)] distributions at significant depths are
self-similar and they apparently shift in proportion to β (in the logarithmic space
of Fig. 2.1); i.e., a change in β can be directly translated to an equivalent change in
Ṁ if the overall extent of lithium depletion is fixed. Figure 2.5 also shows that the
most relevant values of β lie somewhere in the interval (1.5, 2.5) or even (2.0, 2.5).
At higher values we could not meet the lithium depletion constraint because such
models would require negative radiative flux at the top of the settling layer. At
the low end, the convective flux becomes a negligible fraction of the total flux,
and it gets difficult to interpret our power law as a tail of some more general
mass flux distribution.

One might ask how our strongly simplified model compares to other models
of overshooting. The most striking difference is that usually some form of the
MLT is used to provide estimates of the velocities and entropy fluctuations at the
boundary of the convection zone (e.g. Roxburgh 1965; Saslaw & Schwarzschild
1965; Shaviv & Salpeter 1973; van Ballegooijen 1982; Pidatella & Stix 1986; Zahn
1991), whereas we explicitly add the hypothesised low-entropy flows from the
photosphere. Perhaps the closest to our ideas are the works of Rempel (2004) and
Schmitt et al. (1984), who model the non-local convection by plumes.

The approach of modelling higher-order correlations in a turbulent field (e.g.
Kuhfuss 1986; Xiong & Deng 2001; Marik & Petrovay 2002; Deng & Xiong 2008)
tends to produce much deeper overshooting zones than the models above (de-
pending on the value of the free parameters of the models). This can be traced to
the fact that these models lack an essential aspect of the transition between con-
vection and the stable interior. While velocity amplitudes vary rather smoothly
across the boundary, their mixing effect varies strongly. In the convective region,
the flows are of the efficiently mixing, overturning kind. In the stable part, how-
ever, the flows take the form of internal waves, which have a very weak mixing
effect. These models also cannot capture the process of convective settling since
the rare low-entropy downflows are not present in this picture.

In summary, we have shown that the convective settling process studied here
can in principle explain long-term lithium depletion in the Sun and solar-type
stars. This can be tested further by applying the model, calibrated to the lithium
depletion observed in the Sun, to stars of different masses and ages.
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3 Convective settling in main sequence
stars: Li and Be depletion

R. Andrássy, H. C. Spruit

to be submitted to A&A

Abstract: The process of convective settling is based on the assumption that a
small fraction of the low-entropy downflows sink from the photosphere down to
the bottom of the star’s envelope convection zone retaining a substantial entropy
contrast. We have previously shown that this process could explain the slow Li
depletion observed in the Sun. We construct a parametric model of convective
settling to investigate the dependence of Li and Be depletion on stellar mass and
age. Our model is generally in good agreement with the Li abundances measured
in open clusters and solar twins, although it seems to underestimate the Li deple-
tion in the first ∼ 1Gyr. The model is also compatible with the Be abundances
measured in a sample of field stars.

3.1 Introduction

Low-mass, main sequence stars, with their deep convective envelopes, are astro-
physical laboratories that allow us to investigate weak mixing processes under
stellar conditions. The small distance between the convection zone proper and
the Li-burning layer in these stars makes the surface abundance of Li a sensitive
indicator of any mixing process that may be at work just below the convection
zone. The surface abundance of Be, which is burnt at a somewhat higher temper-
ature, provides an additional constraint on the extent of this mixing.

The standard solar model predicts essentially zero Li depletion on the main
sequence (see e.g. Schlattl & Weiss 1999). Measurements of the Li abundances in
solar analogues and twins, however, show indisputable evidence for Li depletion
(Baumann et al. 2010; Meléndez et al. 2010; Monroe et al. 2013; Meléndez et al.
2014). The abundances of Be in the Sun, solar twins 16 Cyg A, B (6.6 Gyr), and
solar analogues α Cen A, B (5–6 Gyr) show little depletion, if any (Asplund et
al. 2009; Deliyannis et al. 2000; King et al. 1997). On the other hand, cool (Teff !

29



3 CONVECTIVE SETTLING IN MAIN SEQUENCE STARS

5500K), main-sequence field stars show significant Be depletion (Delgado Mena
et al. 2012, and references therein). All these observations imply that there is
a mixing process operating below the convective envelopes of low-mass, main
sequence stars, which works on a time scale of ∼ 1Gyr at Li-burning depths, but
it is much less effective in the deeper layers where Be is burnt.

Several mechanisms have been proposed that could provide mixing beyond
the formal boundary of a convection zone. Among the most well-know are „bal-
listic” overshooting (Roxburgh 1965; Saslaw & Schwarzschild 1965), convective
penetration (Shaviv & Salpeter 1973; van Ballegooijen 1982; Zahn 1991), internal
waves (Press 1981; Garcia Lopez & Spruit 1991; Montalbán 1994; Schatzman 1996),
or shear-induced instabilities (Meakin & Arnett 2007). In this paper, we focus on
the process of “convective settling”, which was first proposed by Spruit (1997)
and later elaborated in Andrássy & Spruit (2013, Paper I hereinafter).

Envelope convection zones are dominated by large-scale downflows span-
ning the whole convection zone (cf. Nordlund & Stein 1997; Trampedach et al.
2014). They are generated by the strong radiative cooling in the photosphere,
which makes their initial entropy much lower than that of the nearly isentropic
upflow. As they sink, they merge, entrain mass from the hot upflow and are
heated by radiative diffusion on small scales. If a small fraction (≈ 10−7, see Pa-
per I) of the photospheric downflows retains a substantial entropy deficit until
they have arrived at the base of the convection zone, they will continue sinking
until each of them has settled on its level of neutral buoyancy, hence the name
“convective settling.” The entropy the downflows start with is low enough for
them to reach the Li-burning layer. In general, there will be a broad distribution
of entropy contrasts at the base of the convection zone, spanning from the low
values predicted by the mixing-length theory (MLT) up to the highest values the
downflows start with in the photosphere. They will settle at a range of depths,
and mass conservation will enforce an upflow carrying the Li- and Be-depleted
material back to the convection zone, reducing the surface abundances.

The envelope convection problem is too difficult even for the state-of-the-art
numerical simulations. Hence, the distribution mentioned above can only be
parametrised. In Paper I, we show that a power-law parametrisation leads to
a model that can explain the slow, main-sequence Li depletion in the Sun without
changing the thermal stratification so much as to come into conflict with the res-
ults of helioseismology. The simplified model presented in Paper I, however, is
based on an approximate, non-evolving model of the Sun and it does not utilise
the Be constraint. In this paper, we construct a model of the convective settling
process that takes stellar evolution into account and applies both the Li and Be
constraints. We also extend the computation to a range of stellar masses (from
0.8M⊙ to 1.2M⊙) in order to compare predictions of the model with abundance
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measurements in open clusters, solar twins, and field stars.

3.2 Model

3.2.1 Overview

We construct a two-component, kinematic model of the convective settling pro-
cess. The first component is an ensemble of downflows leaving the convection
zone and sinking towards the deeper layers. They have been created by the
rapid cooling in the photosphere and the entrainment and heating processes have
changed their distribution on their way through the convection zone. We do not
model these processes. Instead, we parametrise their output by a distribution of
a mass flow rate1 in the downflows with respect to their entropy contrast and
model how they settle below the convection zone. Each downflow settles at the
point where its entropy equals that of its surroundings, i.e. when it becomes neut-
rally buoyant. The other component of the model is an upflow due to mass con-
servation, the strength of which at any given depth depends on the total settling
rate below that depth. The upflow advects the Li- and Be-depleted gas back to
the convection zone.

The distribution of the mass flow rate is a central element in our model. The
downflows at the base of an envelope convection zone are characterised by a
wide range of entropy contrasts δs with respect to the isentropic upflow. This
range can be split into two parts. One part represents the well-mixed material
and the fluctuations created locally by turbulent convection. Their typical amp-
litude (δs)typ is very small due to the high efficiency of convection deep in the stel-
lar interior. Therefore, they settle in a very thin layer below the convection zone.
Downflows with an entropy contrast significantly greater than (δs)typ correspond
to the incompletely-mixed remnants of the photospheric downflows. They span
several orders of magnitude in δs, up to (δs)max, which is the maximum entropy
contrast reached by the downflows just below the photosphere. The coolest of
them settle deep below the convection zone. We ignore the well-mixed compon-
ent in our model and parametrise the distribution of the mass flow rate carried
by the incompletely-mixed downflows. We do not model the entrainment and
heating processes explicitly; the mass flow rate as a function of the contrast value
as parametrised in the model refers to the point where the downflow ultimately
settles. We call this distribution the settling rate distribution.

1We use the term mass flux (measured in g cm−2 s−1 in cgs units) in Paper I. In this paper, we
work in spherical geometry and the mass flow rate (measured in g s−1 in cgs units) becomes a more
convenient quantity.
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We assume that the settling rate distribution is a power law defined over the
range of downflow entropy contrasts (δs)min ≤ δs ≤ (δs)max. The minimal entropy
contrast considered, (δs)min, corresponds to the transition point to the range of
the well-mixed downflows, thus we set (δs)min = (δs)typ. We estimate (δs)typ using
the MLT and extract (δs)max from radiation-hydrodynamic simulations of stellar
photospheres, which are readily available today (see Sect. 3.2.3).

In the settling paradigm, the slope β of the settling rate distribution should be
a characteristic value resulting from the physics of the entrainment and heating
processes in the convection zone and in the settling region. Therefore, we keep
this value, albeit unknown, constant for all stars and all evolutionary stages of
theirs and investigate what influence β has on the results.

The total mass flow rate Ṁ of the distribution is given by the mass flow rate
that is leaving the photosphere, but it is considerably modified by the entrain-
ment and heating processes in the convection zone and in the settling region. One
could argue that the “destruction rate” of the cold downflows should somehow
depend on the „strength” of the radiation effects on the downflows’ way from the
photosphere to their settling point, because it is radiative diffusion that provides
heat exchange between the core of the downflow and the entrained material on
small scales. The relative importance of radiation in the convection zone is para-
metrised through the value of (δs)typ. The more important the radiation, the less
efficient the convection and the higher the value of (δs)typ. On the other hand, the
more important the radiation, the smaller the fraction of the cold downflows that
reach the settling region. To take this into account we scale Ṁ both in propor-
tion to the mass downflow rate in the photosphere and in inverse proportion to
(δs)typ. We use this scaling such as to include the qualitative effect of the heating
process, although we realise that more parameters are likely to play a role and the
dependence is much more complicated in reality. The constant of proportionality
in the scaling is adjusted until the model reproduces the observed Li depletion in
the Sun for a given value of β.

The convective settling process, depending on its strength, can change the
thermal stratification below the convection zone. In Paper I, we have quantified
this effect and shown it to be negligible in a solar model calibrated to reproduce
the Li depletion observed in the solar photosphere if the input settling rate dis-
tribution is not too steep (β ! 2.5). In this work, we neglect the influence of
convective settling on the thermal stratification and compute Li and Be depletion
using a few pre-computed stellar-evolution models.
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3.2.2 Stellar models

We consider the main-sequence evolution of five solar-composition stars with
masses of 0.8M⊙, 0.9M⊙, 1.0M⊙, 1.1M⊙, and 1.2M⊙. The models have been com-
puted with the stellar-evolution code GARSTEC (Weiss & Schlattl 2008), neg-
lecting the processes of convective overshooting and gravitational settling (also
called sedimentation or diffusion). Since the code does not output the stratific-
ation of the specific entropy s in the star, we compute and approximation to it
from the stratification of the temperature T and pressure p using the ideal-gas
expression

s = R ln
(
T 5/2

p

)
, (3.1)

where R = kB/(µmu) is the gas constant including the mean molecular weight
µ, kB the Boltzmann constant, and mu the atomic mass unit. The mean molecu-
lar weight is constant in the region we are interested in. Equation 3.1 assumes
constant level of ionisation, which is a good assumption at the temperatures and
densities prevailing below the convection zones of the stars considered.

3.2.3 Mathematical formulation

Parametric model

The settling rate ṁ in the downflows is distributed as

dṁ = Ṁ f (δs) dδs (3.2)

where Ṁ ≥ 0 is the total settling rate, δs = s0 − sd the entropy contrast with s0
the entropy of the stratification at the bottom of the convection zone and sd the
entropy of the downflow. As discussed in Sect. 3.2.1, the distribution function
f (δs) is assumed to be a power-law,

f (δs) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N
(

δs
(δs)min

)−β
for (δs)min ≤ δs ≤ (δs)max,

0 otherwise,
(3.3)

where N is a normalisation factor, (δs)min > 0 and (δs)max > 0 are the bounds, and
β > 0 is the slope of the distribution. We require

∫ ∞
−∞ f (δs) dδs = 1 , so that

N =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β−1
(δs)min

[
1 −

( (δs)max
(δs)min

)−(β−1)]−1
for β ! 1,

[
(δs)min ln

( (δs)max
(δs)min

)]−1
for β = 1.

(3.4)
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A downflow of entropy sd = s0−δs reaches neutral buoyancy and settles down
at the point where the entropy of the surrounding stratification s equals sd. Mass
conservation requires the upward mass flow rate at this point to be ṀF(s), where
F(s) is the fraction of downflows that settle below2 this point and is given by the
cumulative distribution function

F(s) =
s∫

−∞

f (s0 − s′) ds′. (3.5)

Parameter scaling

As described above, there are four parameters to be specified: (δs)min, (δs)max,
Ṁ, and β. In Paper I, we use fixed values because we only model one star, the
evolution of which is also neglected. Now, we intend to model a range of different
stars and follow their evolution, hence we have to adapt the parameter values to
the changing physical conditions in the convection zone. The only exception is β,
which is held constant (see Sect. 3.2.1).

The entropy contrast of the coldest downflow in the ensemble, (δs)max, is given
by the maximum entropy contrast that the cooling process in the photosphere can
create. This value reaches a well-defined maximum (in a time-averaged sense)
just below the photosphere and can be extracted from radiation-hydrodynamic
simulations of stellar photospheres. We use the grid of models computed by
Magic et al. (2013) and approximate the dependence of (δs)max on the effective
temperature Teff of the star and on its surface gravity log g by the fitting function

log (δs)max = a0 + a1x + a2y, (3.6)

where x = (Teff−5777)/1000, y = log g−4.44, a0 = 8.164, a1 = 0.491, and a2 = −0.461
with cgs units assumed throughout.

We set the lowest entropy contrast considered, (δs)min, equal to a typical en-
tropy contrast (δs)typ predicted by the MLT (see Sect. 3.2.1). We use the MLT for-
mulation of Kippenhahn et al. (2012) with αMLT = 1.65 to estimate the super-
adiabatic temperature gradient ∆∇ = ∇ − ∇ad at the point where the pressure
p = p0 e−1/2, where p0 is the pressure at the bottom of the convection zone. We
then estimate the entropy contrast an adiabatic convective element would reach
after having overcome approximately one pressure scale height in such environ-
ment,

(δs)min ≡ (δs)typ =
R

∇ad
∆∇. (3.7)

2Since specific entropy decreases with increasing pressure in a stable thermal stratification.
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The total mass settling rate Ṁ is scaled as (see Sect. 3.2.1)

Ṁ = Ṁ0
Ṁphot

2.04 × 1021 g s−1

( (δs)typ
7.96 × 101 erg g−1 K−1

)−1
, (3.8)

where Ṁphot is the mass downflow rate at the point (close to the photosphere)
where the downflows reach the maximum entropy contrast (δs)max, and the con-
stant Ṁ0 is adjusted until the solar model reproduces the observed Li abundance
in the Sun. The numbers in the denominators in Eq. 3.8 correspond to the current
solar values. The downflow mass flux in the photosphere, Fphot, is computed in
the same way as (δs)max (Eq. 3.6),

log Fphot = b0 + b1x + b2y, (3.9)

where b0 = −1.475, b1 = −0.239, and b2 = 0.511 in cgs units. No extrapolation
is needed when using Eqs. 3.6 or 3.9 with the stellar models considered in this
work. The mass downflow rate Ṁphot is then

Ṁphot = 4πR2∗ Fphot, (3.10)

where R∗ is the radius of the star.

Computational approach

We neglect the thermodynamic response of the star to the convective settling pro-
cess. We do, however, estimate the convective flux that would be caused by this
process to further constrain our model and check the plausibility of our assump-
tions (Sect. 3.3.4). All downflows considered pass through the bottom of the con-
vection zone (as defined by the Schwarzschild criterion) and their entropy con-
trast with respect to their surroundings is the highest at that point, hence the
convective flux reaches a maximum there. Its value relative to the total flux of
energy is estimated to be

F̂conv =
cpT ∆TT Ṁ

L
, (3.11)

where cp is the heat capacity at constant pressure, ∆T/T the mean temperature
contrast in the distribution (weighted by the mass flow rate), and L the luminos-
ity of the star, all evaluated at the bottom of the convection zone. As explained in
Sect. 3.2.1, the mass flow rate for every downflow in our distribution corresponds
to the point where the downflow settles, because we do not model mass entrain-
ment explicitly. Most of the convective flux, however, is carried by the downflows
that settle very close to the convection zone’s bottom, i.e. to the place where we
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compute F̂conv. Hence, we regard Eq. 3.11 as a reasonable order-of-magnitude
estimate.

To compute the Li and Be burning, we map the GARSTEC models (Sect. 3.2.2)
on a grid equidistant in the mass fraction q.3 We only include the outermost 10 –
15% of the stellar mass, which are relevant for the convective settling process.
Interpolation of the models in time is done via the nearest-neighbour algorithm.
We model the burning and transport of Li and Be using the set of equations

dAi
dt
= Rb,i + Rm,i + Rs,i + Ra,i, (3.12)

where Ai = Ni/NH is the abundance of Li/Be in the i-the grid cell, Ni the number
of Li/Be nuclei in the i-th grid cell, NH the number of hydrogen nuclei per grid
cell,4 i increases with radius, t is the time, Rb,i the burning rate, Rm,i a mixing rate,
Rs,i the settling rate, and Ra,i the advection rate due to the upflow. The burning
rate

Rb,i = −
Ai
τb,i

(3.13)

is related to the nuclear-burning time scale τb,i, which we compute using the
standard expressions for low-energy nuclear reaction rates in an ideal gas that
can be found e.g. in Hansen & Kawaler (1994). We consider the burning of 7Li
by the reaction 7Li(p, α)α and the burning of 9Be by the reactions 9Be(p, α)6Li and
9Be(p, d)8Be.5 The products of the latter two reactions are quickly transformed
to 3He and 4He nuclei, respectively, and are of no interest for this work. The low-
energy astrophysical S -factors of the three reactions are taken from the NACRE-II
database (Xu et al. 2013). Electron screening is neglected. The burning time scale
below the settling layer is set equal to that at the bottom of the layer for numerical
reasons. The rate at which the downflows settle in the i-th grid cell is

ṁi = Ṁ
[
F(si+1/2) − F(si−1/2)

]
, (3.14)

where the cumulative distribution function F(s) is given by Eq. 3.5, s is the local
entropy of the stratification, the index i+ 1/2 refers to the top and the index i− 1/2 to
the bottom of the i-th grid cell. Every single cell of our equidistant grid contains
a mass of ∆m, so we can define a “recycling” time scale,

τr,i =
∆m
ṁi
, (3.15)

3Mass loss is negligibly small for the stars considered.
4There is no gradient in the hydrogen mass fraction, because we neglect the gravitational settling

of He (see Sect. 3.2.2) and because convective settling does not reach the core of the star.
5We omit the atomic mass numbers in the rest of the text.
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which is the time it takes the convective settling process to completely replace
the content of the i-th grid cell by “fresh” material from the convection zone.
Most of the downflows settle just below the convection zone and τr,i can become
very short there. To avoid severe time-step restrictions, we define a “well-mixed
zone,” which is composed of the convection zone and the region in that τr < 105 yr
and τb > 108 yr. The fast recycling together with the slow burning prevent the
formation of any significant gradients in the abundances of Li and Be in the well-
mixed zone. We homogenise this zone using the artificial mixing term

Rm,i =
Awmz − Ai
∆t

, (3.16)

where Awmz is the average abundance of Li/Be in the well-mixed zone and ∆t
is the length of the current time step. We set Rm,i = 0 outside the well-mixed
zone. The downflows in our model bring the Li- and Be-rich material from the
convection zone and deposit it in the settling layer. The settling rate of Li/Be
nuclei is

Ṅs,i = Acz
Xṁi

mp
, (3.17)

where Acz is the abundance of Li/Be in the convection zone, X the hydrogen mass
fraction and mp the proton mass. The rate of change of the abundance due to
settling is then

Ṙs,i =
Ṅs,i
NH
= Acz

ṁi

∆m
=
Acz
τr,i
, (3.18)

Finally, there is an upflow due to mass conservation, which we model by the
advection rate of Li/Be nuclei,

Ṅa,i = Ai−1
Xσi−1/2
mp

− Ai
Xσi+1/2
mp

, (3.19)

where σi−1/2 =
∑i−1
k=0 ṁk is the mass inflow rate to the i-th grid cell at its bottom

boundary and σi+1/2 =
∑i
k=0 ṁk is the mass outflow rate from the i-th grid cell at its

top boundary. The rate of change of the abundance due to advection is then

Ra,i = Ai−1
i−1∑

k=0

1
τr,i
− Ai

i∑

k=0

1
τr,i
. (3.20)

Equation 3.12 is independent of the absolute abundance scale (see also Eqs. 3.13,
3.16, 3.18, and 3.20). Therefore, we start all our calculations with Ai = 1 and
integrate Eq. 3.12 using the standard, 4th-order Runge-Kutta method. The initial
condition that we want to impose (see Sect. 3.3.1) is then taken care of simply by
rescaling the results accordingly. We use the usual astrophysical notation log ϵ =
12 + log(Acz) in the rest of the text.
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Figure 3.1: Lithium distribution in the Pleiades (Sestito & Randich 2005). The mean trend
is approximated by a smooth function, which provides an initial condition for our model.

3.3 Results

3.3.1 Preliminaries

Cool stars deplete significant amounts of their Li during their pre-main-sequence
(PMS) evolution. Changes in the structure of a PMS star, however, are rather dra-
matic and show very large scatter even in a single cluster (Baraffe et al. 2009).
Applying our simple scaling relations to such a wide range of conditions would
be questionable. Instead, we start all our computations at the age of the Pleiades,
for which we adopt a value of 100 Myr. We approximate the observed Li distri-
bution in this cluster by a smooth function (see Fig. 3.1) and use it as an initial
condition for the Li abundance. The depletion of Be is much lower and difficult
to measure at low Teff, so we use the meteoritic value log ϵBe = 1.30 (Asplund et
al. 2009) as an initial condition for the Be abundance. We assume that both Li
and Be are homogeneously distributed in the interior of the star at the start of the
computation.

The dependences of (δs)max, (δs)min, and Ṁ on stellar mass and age, as defined
by Eqs. 3.6, 3.7, and 3.8, are shown in Figs. 3.2, 3.3, and 3.4. The values of Ṁphot in
Eq. 3.8 turn out to lie within ∼ 30% of one another for all of the stars considered,
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Figure 3.2: Age dependence of (δs)max in the stellar models used in this work. The discon-
tinuities are caused by the nearest-neighbour interpolation that we use.

although the spread in the values of Fphot in Eq. 3.10 is an order of magnitude
larger. The scaling of Ṁ in Eq. 3.8 is thus dominated by the (δs)typ factor.

3.3.2 Li and Be depletion in the Sun

The influence of stellar evolution on the Li depletion in the Sun is illustrated in
Fig. 3.5. The depletion rate becomes quasi-stationary after ∼ 200Myr and slowly
decreases as the Sun ages. The depletion rate is hardly influenced by the as-
sumed value of β. The observational data over-plotted in Fig. 3.5 suggest a some-
what more pronounced slowdown in the depletion rate, although the error bars
are quite large. We also show a non-evolving model, in which the stratification
is given by the solar-structure model at an age of 4.6 Gyr and is not allowed to
evolve during the computation. In this case, the depletion rate becomes constant
after the initial transition, as could be expected.

The abundance of Be predicted by the evolving, 1.0M⊙ model at an age of
4.6 Gyr ranges from 1.15 at β = 1.5 to 1.17 at β = 2.5, which deviates from the ob-
served value of 1.38±0.09 (Asplund et al. 2009) by −2.5σ. Note that the meteoritic
value is only 1.30 ± 0.03 (Asplund et al. 2009).
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Figure 3.3: As Fig. 3.2, but (δs)min is plotted.
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Figure 3.4: As Fig. 3.3, but Ṁ is plotted. This figure assumes β = 2.0. The curves would be
shifted downwards by 2.8dex at β = 1.5 and upwards by 2.9dex at β = 2.5.
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Figure 3.5: Age dependence of the Li depletion in the Sun as predicted by the convective
settling model compared with the Li abundances in solar twins and in solar-type stars of a
few open clusters. The thermal stratification in the model plotted by the dotted line is not
allowed to evolve in time. The abundances in the open clusters are from Sestito & Randich
(2005) and correspond to the solar effective temperature at the age of the cluster; the error
bars show the typical scatter in the data. The measurements in 18 Sco and HIP 102152 are
from Monroe et al. (2013), HIP 56948 and HIP 114328 from Meléndez et al. (2012, 2014),
respectively, and 16 Cyg B from Ramírez et al. (2011); the age of 16 Cyg B is from Tucci
Maia et al. (2014).
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Figure 3.6: Dependence on the effective temperature of the Li depletion predicted by the
convective settling model compared with the Li abundances in three 600-Myr-old open
clusters as determined by Sestito & Randich (2005). Almost no dependence on β can be
seen at this age.

3.3.3 Mass dependence of Li and Be depletion

Figures 3.6 and 3.7 show the dependence of the Li depletion on the effective tem-
perature of the star (hence on its mass) at a fixed age as compared with Li abund-
ances observed in open clusters. The metallicity of the stars may influence the
extent of Li depletion, because the higher the metallicity, the higher the opacity
and the deeper the convection zone. The metallicities of the clusters used in this
work are summarised in Table 3.1. Our model underestimates the Li depletion at
an age of 600 Myr (Fig. 3.6) independently of the value of β. This may stem from
our assumption of a homogeneous Li distribution in the stellar interior at the start
of the computation. The fit to the Hyades data (see Figs. 3.5 and 3.6) would also
improve if the age of this cluster was not 600 Myr as we assume, but 950 Myr as
Brandt & Huang (2015) recently suggested. The data are scarce at an age of 2 Gyr
(Fig. 3.7), but the overall trend fits better. A weak dependence on β can be seen at
high effective temperatures.

The depletion of Be is much smaller and much more difficult to measure
than the depletion of Li. Therefore, we resort to a comparison with field stars
in Fig. 3.8. We only show models with β = 2.0, because their dependence on β is
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Figure 3.7: As Fig. 3.6, but the comparison is made with two 2-Gyr-old open clusters;
the measurements are from Sestito & Randich (2005). A slight dependence on β becomes
visible at this age.

Cluster Age [Gyr] [Fe/H]

Pleiades 0.1 −0.03
Coma Ber 0.6 −0.05
Hyades 0.6 +0.13

NGC 6633 0.6 −0.10
IC 4651 2 +0.10

NGC 752 2 +0.01

Table 3.1: Ages and metallicities of the open clusters used in this work. Adapted from
Sestito & Randich (2005); the age of the Pleiades rounded to 0.1 Gyr.

43



3 CONVECTIVE SETTLING IN MAIN SEQUENCE STARS

-0.5

0.0

0.5

1.0

1.5

 5000 6000

lo
g 
ε B

e

Teff [K]

field stars
initial condition

2.0 Gyr
5.0 Gyr
7.5 Gyr

Figure 3.8: Dependence on the effective temperature of the Be depletion predicted by the
convective settling model in a range of ages compared with the Be abundances measured
in a sample of field stars from Santos et al. (2004). The fastest-evolving, 1.2M⊙ star is
computed up to 5 Gyr only.

rather weak. The trend in the Be depletion is well reproduced assuming that the
stars with Teff ! 5500K are older than ∼ 5Gyr, which is a reasonable assumption
for cool field stars.

3.3.4 Heat flux due to convective settling

The convective flux at the bottom of the convection zone, F̂conv (Eq. 3.11), un-
like the depletion of Li and Be, is very sensitive to the assumed value of β, see
Fig. 3.9. This comes about because the settling rate distribution spans several or-
ders of magnitude in the downflow entropy contrast δs and the slope β of the
distribution is constant over the whole range (see Sect. 3.2.1). The calibration of
the 1M⊙ model to the observed solar Li depletion sets the total amount of ma-
terial that has to settle in the Li-burning layer. Thus, the calibration fixes the tail
of the distribution where the entropy contrast is high, of the order of (δs)max. If
we increase the value of β and recalibrate the model, the settling rate integrated
over the Li-burning layer will not change much, but that just below the convec-
tion zone, where δs ≈ (δs)min ≪ (δs)max, will increase considerably. The main
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Figure 3.9: Dependence on the stellar mass of the convective flux due to the convect-
ive settling process at the bottom of the convection zone. Three sets of models with
β ∈ {1.5, 2.0, 2.5} are show at ages of 1 Gyr (thin lines) and 5 Gyr (thick lines).

cause of the mass dependence of F̂conv seen in Fig. 3.9 is the variation of (δs)min

between different stars. This parameter changes F̂conv both directly, by changing
the normalisation factor N of the settling rate distribution (Eq. 3.4), and indirectly,
via the scaling relation for Ṁ, see Eq. 3.8 and the related discussion in Sect. 3.2.3.
Since the values of (δs)max span a much narrower range than those of (δs)min, the
influence of this parameter on F̂conv is correspondingly weaker. The differences
in the thermal stratification between the stars considered are significantly larger
than those due to their main-sequence evolution. The dependence of F̂conv on
the age of the star is therefore much weaker than on its mass (see Fig. 3.9). The
models with F̂conv approaching or even exceeding unity are in conflict with our
assumption of no thermal feedback of convective settling on the star (see the last
paragraph of Sect. 3.2.1), so their predictions should be taken with a grain of salt.
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3.4 Summary and discussion

The process of convective settling is based on the idea that the envelope convec-
tion zones of low-mass, main sequence stars are dominated by large-scale down-
flows spanning the whole convection zone. If a tiny fraction of the low-entropy,
photospheric downflows crosses the whole convection zone without having ex-
perienced much heating, their strongly negative buoyancy will make them sink
and settle as deep as in the Li- and Be-burning layers. Mass conservation implies
an upflow of the Li- and Be-depleted material back into the convection zone, re-
ducing the photospheric abundances.

Building on the results of Paper I, we have explored the dependence of the Li
and Be depletion on stellar mass in the range from 0.8M⊙ to 1.2M⊙. We assume
that the mass settling rate is distributed with respect to the entropy contrast of
the downflow as a power law. It spans a wide range of entropy contrasts from
(δs)min, given by the MLT at the bottom of the convection zone, to (δs)max, given
by the maximum entropy contrast the downflows reach just below the photo-
sphere. The slope β of the distribution, assumed to be a constant, parametrises
the physics of entrainment and heating processes on the downflows’ way to their
settling points. In the absence of information on the dependence of the total mass
settling rate Ṁ on the structure of the star, we scale this parameter in propor-
tion to the mass downflow rate in the photosphere and in inverse proportion to
(δs)min, so that we qualitatively capture the effect of radiative diffusion on the
heating of downflows. The mass downflow rate in the photosphere turns out to
be essentially constant for the stars considered. We calibrate the scaling of Ṁ such
as to reproduce the solar Li depletion. We allow for stellar evolution, but neglect
the thermal feedback of convective settling on the star because we have shown
in Paper I that the feedback is negligible provided that β ≤ 2.5. The computation
is started at 100 Myr, using the observed Li distribution in the Pleiades and the
meteoritic Be abundance as initial conditions for Li and Be burning, respectively.

Changes in the solar structure cause a slowdown in the Li-depletion rate as
the Sun ages. This slowdown seems to be somewhat milder in the model com-
pared to the observed Li evolution in open clusters and solar twins. The main
discrepancy occurs in the first ∼ 1Gyr when real stars deplete Li faster than those
in our model. This may be a consequence of our assumption that both Li and Be
are homogeneously distributed in the star when the computation is started. Des-
pite this issue, it is encouraging that the model can well reproduce the observed
dependence of the Be depletion on the effective temperature in a sample of field
stars. The current abundance of Be in the Sun predicted by the model is also com-
patible with the observed value. These conclusions are essentially independent
of the assumed value of β, which is likely caused by the similarity of the internal
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structures of the stars considered.
We show that the convective flux at the bottom of the convection zone is very

sensitive to β. Our model includes the low-entropy tail of the mass-flow-rate dis-
tribution only. We imagine it as an extension of the mass-flow-rate distribution
in the “MLT-like” downflows, which carry a significant portion of the total flux
even close to the bottom of the convection zone. Thus, one would expect the con-
vective flux in our model to fall roughly into the interval 10−2 ! F̂conv ! 100 to be
compatible with our conceptual picture of convective settling. This corresponds
to 2.0 ! β ! 2.5 in the solar model, in agreement with the conclusions of Paper I.

The main caveat of our present analysis is the qualitative nature of the scaling
of the total mass settling rate with the properties of the star. It determines the
sensitivity of the predicted Li- and Be-depletion rates and of the convective flux
on the stellar mass and age. We would need to model the details of the down-
flows’ mass entrainment and heating to shed light on this issue as well as on the
question whether the mass-settling-rate distribution is a power law in the first
place.
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Abstract: On the long nuclear time scale of stellar main-sequence evolution, even
weak mixing processes can become relevant for redistributing chemical species
in a star. We investigate a process of “differential heating,” which occurs when
a temperature fluctuation propagates by radiative diffusion from the boundary
of a convection zone into the adjacent radiative zone. The resulting perturbation
of the hydrostatic equilibrium causes a flow that extends some distance from the
convection zone. We study a simplified differential-heating problem with a static
temperature fluctuation imposed on a solid boundary. The astrophysically rel-
evant limit of a high Reynolds number and a low Péclet number (high thermal
diffusivity) turns out to be interestingly non-intuitive. We derive a set of scaling
relations for the stationary differential heating flow. A numerical method adap-
ted to a high dynamic range in flow amplitude needed to detect weak flows is
presented. Our two-dimensional simulations show that the flow reaches a sta-
tionary state and confirm the analytic scaling relations. These imply that the flow
speed drops abruptly to a negligible value at a finite height above the source of
heating. We approximate the mixing rate due to the differential heating flow in
a star by a height-dependent diffusion coefficient and show that this mixing ex-
tends about 4% of the pressure scale height above the convective core of a 10M⊙
zero-age main sequence star.

4.1 Introduction

Our lack of understanding of (magneto)hydrodynamic transport processes in
stars has hampered progress in developing the stellar evolution theory since its
earliest beginnings. One particular aspect of the problem is the mixing in the
boundary layers between convection and radiative zones in stellar interiors, which
is also known as the problem of convective overshooting. Despite the indisput-
able advance in numerical simulations, the problem remains extremely challen-
ging owing to the extreme range of the length and time scales involved in it.
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The set of physical mechanisms that provide mixing at a convective/stable
interface very likely depends on the type of convection zone involved. Because it
is exposed to outer space at the top, a convective envelope is driven by the cold
plumes originating in the photosphere. It is quite possible that the plumes span
the whole convection zone and even provide mixing at its bottom boundary (cf.
Andrássy & Spruit 2013, and references therein). A convective core or shell is, on
the other hand, fully embedded in the star, its stratification is much weaker, and
the temperature fluctuations within it are much smaller. Consequently, a different
set of physical mechanisms may dominate mixing at its boundary.

It has long been known that the kinetic energy of the low-Mach-number flow
in a convective core (or shell) is so low that the convective motions are stopped
within about one per cent of the pressure scale height once they enter the steep
entropy gradient of the radiative zone (Roxburgh 1965; Saslaw & Schwarzschild
1965). The motions can reach much farther, though, if they are vigorous enough
to flatten the radiative entropy gradient above the convective core. In this case,
known as the process convective penetration, the motions gradually “erode” the
radiative stratification on the thermal time scale until radiative diffusion stops
any further advance of the erosion front (Shaviv & Salpeter 1973; van Ballegooijen
1982; Zahn 1991). Finally, the fluid parcels hitting the stable stratification always
generates a spectrum of internal gravity waves, which may also provide a certain
amount of mixing (Press 1981; Garcia Lopez & Spruit 1991; Schatzman 1996).

Several of the processes mentioned may operate at the boundary of a convec-
tion zone at the same time. Their effects on long time scales and at long distances
from the boundary are very different. In full numerical hydrodynamic simula-
tions, the restrictions on time scales that can be covered makes it difficult to dis-
entangle these effects. Physical insight developed by different means is needed
to extrapolate them to longer time scales and distances.

We take a closer look at one specific process operating at a convective/stable
interface in the interior of a star. Thermal diffusion causes temperature fluctu-
ations from the convection zone’s boundary to spread into the stable stratifica-
tion. Temperature differences on surfaces of constant pressure set up a flow even
in the absence of momentum transport by hydrodynamic stress. We call this pro-
cess “differential heating”, explore the physics of it in an idealised set-up, and
estimate what amount of mixing it could cause in the stellar interior.
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4.2 The differential heating problem

4.2.1 Problem formulation and simplification

Consider a horizontal, solid surface with a stably-stratified fluid overlying it.1
A temperature fluctuation imposed at the surface propagates into the fluid by a
diffusive process and upsets the hydrostatic equilibrium. We investigate what
the properties of the resulting flow are.

By replacing the convective/stable interface by a solid wall, we eliminate all
the phenomena related to the inertia of the convective flows and the shear in-
duced by them. This allows us to study the physics of differential heating in isol-
ation. The upper boundary is taken far enough not to influence the flow. Next
we introduce further assumptions to facilitate the mathematical description and
the subsequent analysis of the problem:

(1) The flow is confined to a layer that is significantly thinner than the pressure
scale height.

(2) The fluid is a chemically homogeneous, ideal gas.

(3) The Brunt-Väisälä (buoyancy) frequency of the stratification is constant.

(4) Thermal diffusivity is constant.

(5) The gravitational field is homogeneous.

(6) The differentially heated surface is flat and horizontal.

(7) The flow is constrained to two spatial dimensions.

Assumption (1) allows us to use the Bussinesq approximation and turns out
to be justified. The chemical homogeneity that we assume in (2) is, at least for
the nuclear-burning layers in a star, only realistic at the onset of the burning. The
differential heating process above a convective core would weaken as the nuc-
lear burning progresses owing to the increase in the mean molecular weight in
the core. We focus on the chemically homogeneous case to keep the number of
parameters tractable. We introduce (3) and (4) for the same reason. The Brunt-
Väisälä frequency depends on the distance from the convective/stable interface
in a real star. The constant frequency in our analysis can be thought of as a typ-
ical value for the layer influenced by differential heating. Finally, we add the last

1Equivalently, the stably stratified fluid could be placed under the differentially heated surface.
The role of hot and cold spots on the surface would be reversed in this case. We discuss only one case
for the sake of concreteness.

51



4 OVERSHOOTING BY DIFFERENTIAL HEATING

three assumptions to make our analysis more transparent and to reduce the com-
putational costs of the numerical solutions. We have to keep in mind, however,
that the constraint (7) might influence the stability properties of the flow, and thus
some of our conclusions may not apply to the three-dimensional case.

The Bussinesq equations are (Spiegel & Veronis 1960)

∇ · u = 0, (4.1)
Du
Dt
= −

1
ρm
∇p′ +

T ′

Tm
gk + ν∇2u, (4.2)

DT ′

Dt
= −

TmN2

g
w + κ∇2T ′, (4.3)

where u is the fluid velocity, D/Dt = ∂/∂t+u ·∇ the Lagrangian time derivative, ρm
and Tm are the mean density and temperature, respectively, p′ and T ′ the pressure
and temperature perturbations, respectively, g is the gravitational acceleration, k
a unit vector pointed in the vertical direction, ν the kinematic viscosity, N the
Brunt-Väisälä frequency, w the vertical velocity component, and κ the thermal
diffusivity.

Equations 4.1, 4.2, and 4.3 still contain several dimensional parameters. It is
crucial to realise that there is a natural system of units for the differential heating
problem that makes the equations dimensionless. The flow in this problem is set
off by thermal diffusion in a stably stratified medium, therefore the inverse of the
Brunt-Väisälä frequency, 1/N (or a multiple of it), is a natural unit of time. Having
made this choice, we can define a natural unit of distance as

√
κ/N, which is a

typical thermal-diffusion length scale on the time scale 1/N. The dimensionless
Bussinesq equations are then

∇ · u = 0, (4.4)
Du
Dt
= −∇p + ϑk + Pr ∇2u, (4.5)

Dϑ
Dt
= −w + ∇2ϑ, (4.6)

where we omit any symbol to indicate the new units. We have also introduced a
new pressure-like variable p = p′/ρm and the buoyancy acceleration ϑ = gT ′/Tm,
which we continue to call the “temperature fluctuation” in the rest of the paper,
because that is the central concept in the differential heating process. The Prandtl
number Pr = ν/κ now becomes a measure of kinematic viscosity, because the new
unit of diffusivity is κ. Equations 4.4, 4.5, and 4.6 are particularly well suited to
theoretical studies since their solution is fully determined by the Prandtl number,
the initial, and the boundary conditions.
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The distance unit
√
κ/N is rather short in stellar interiors, and it only weakly

depends on the stratification. To see this, we express the Brunt-Väisälä frequency
in terms of the more common stellar-structure parameters,

N2 =
g
Hp
(∇ad − ∇), (4.7)

where Hp is the pressure scale height, ∇ad the adiabatic temperature gradient, and
∇ the actual temperature gradient. Close to a convection zone’s boundary, we can
write

∇ad − ∇ = α
z
Hp
, (4.8)

where α ≈ 10−1 is a coefficient of proportionality and z the distance from the
boundary (z > 0 in the stable stratification). When using Eqs. 4.7 and 4.8, the unit
of distance can be expressed as

√
κ

N
= κ

1/2
(
α
g
Hp

z
Hp

)−1/4
, (4.9)

which is about 107 cm for values typical of a point close to the convective/stable
interface (z ≈ 10−2Hp) in the core of a massive (10M⊙), main-sequence star (κ ≈
1010 cm2 s−1, α ≈ 10−1, g ≈ 105 cm s−2, Hp ≈ 1010 cm).

Two distinct regimes of differential heating can be expected, depending on
the amplitude and the spatial scale of the temperature fluctuation imposed on the
differentially heated surface. If the heating is strong enough, the heat transport
is advection-dominated (i.e. the flow’s Péclet number is high), and the flow is
generally unsteady. A similar phenomenon takes place right at the point where
the convective flow leaves the unstable stratification, still retaining some positive
temperature fluctuation. It quickly cools down as it rises in the stable medium,
its temperature fluctuation turns negative, and the flow is brought to a halt. This
is the place where we can impose a lower boundary condition for a much weaker
kind of differential-heating-induced flow, in which diffusive heat transport plays
a major role (i.e. the flow’s Péclet number is low). The latter case is the main
focus of this paper. We show in Sect. 4.3 that such a flow is generally smooth and
reaches a stationary state (to be specified in Sect. 4.3.1) even at rather high values
of the Reynolds number, up to Re = 4 × 103. This allows us to gain some insight
into the problem by exploring the scaling properties of the stationary differential-
heating equations, which we do in the next section.
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4 OVERSHOOTING BY DIFFERENTIAL HEATING

4.2.2 Analytical considerations

The stationary differential-heating problem is described in two dimensions by the
set of equations (cf. Eqs. 4.4, 4.5, 4.6)

∂u
∂x
+
∂w
∂z
= 0, (4.10)

∂(uu)
∂x
+
∂(uw)
∂z

= −
∂p
∂x
+ Pr

(
∂2u
∂x2
+
∂2u
∂z2

)
, (4.11)

∂(uw)
∂x

+
∂(ww)
∂z

= −
∂p
∂z
+ ϑ + Pr

(
∂2w
∂x2
+
∂2w
∂z2

)
, (4.12)

∂(uϑ)
∂x
+
∂(wϑ)
∂z

= −w +
∂2ϑ

∂x2
+
∂2ϑ

∂z2
, (4.13)

where x and z are the horizontal and vertical coordinates, respectively, with the
z axis pointed against the gravitational acceleration vector, u is the horizontal
velocity component, and w the vertical one. In what follows, we show how the
characteristic properties of the stationary flow depend on the typical amplitude
Θ and the typical horizontal length scale L of the heating applied.

Assume that there is a well-defined vertical length scale H in the differential
heating flow pattern. Let us denote the typical horizontal and vertical velocities
by U and W, respectively, and the typical pressure fluctuation by P. We then
introduce a new set of variables x̂, ẑ, û, ŵ, p̂, and ϑ̂, which all reach values of the
order of unity close to the differentially heated surface, and

x = Lx̂, (4.14)
z = Hẑ, (4.15)
u = Uû, (4.16)
w = Wŵ, (4.17)
p = Pp̂, (4.18)

ϑ = Θϑ̂. (4.19)

Upon making these substitutions in Eq. 4.10, we obtain

U
L
∂û
∂x̂
+
W
H
∂ŵ
∂ẑ
= 0, (4.20)

which implies the approximate relation

U
L
≈
W
H
. (4.21)
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4.2 THE DIFFERENTIAL HEATING PROBLEM

The horizontal momentum equation (Eq. 4.11) attains the form

∂(ûû)
∂x̂
+
∂(ûŵ)
∂ẑ

≈ −
P
U2

∂ p̂
∂x̂
+
Pr
UL

∂2û
∂x̂2
+
Pr
WH

∂2û
∂ẑ2
, (4.22)

where Eq. 4.21 has been used, so the equality is only approximate. Nonethe-
less, we can see that the viscous terms are of the order of 1/Rex ≡ Pr/(UL) and
1/Rez ≡ Pr/(WH), where Rex and Rez are Reynolds-like numbers associated with
horizontal and vertical motions, respectively. We introduce this unusual nota-
tion to characterise the relative contributions of the two viscous terms in the case
of L ≫ H. We focus on this limit because it turns out to be the relevant one in
stellar interiors (see Sect. 4.5). From now on, we assume Rex ≫ 1 and Rez ≫ 1.
Equation 4.22 shows that pressure fluctuations are of the order of U2 in this high-
Reynolds-number limit, so that we can estimate

P ≈ U2. (4.23)

The vertical momentum equation (Eq. 4.12), with the substitutions defined above
and Eqs. 4.21 and 4.23, becomes

∂(ûŵ)
∂x̂

+
∂(ŵŵ)
∂ẑ

≈
L
H

(
−
∂ p̂
∂ẑ
+
HΘ
U2 ϑ̂

)
+

1
Rex

∂2ŵ
∂x̂2
+

1
Rez

∂2ŵ
∂ẑ2

(4.24)

and implies a close balance between the vertical component of the pressure gradi-
ent and the buoyancy-acceleration term provided that L ≫ H in addition to
Rex ≫ 1 and Rez ≫ 1. This allows us to estimate

U2 ≈ HΘ, (4.25)

which is a plain, order-of-magnitude equality of the characteristic kinetic and
potential energies. Finally, the energy equation (Eq. 4.13) becomes

∂(ûϑ̂)
∂x̂
+
∂(ŵϑ̂)
∂ẑ

≈ −
H
Θ
ŵ +

1
UL

∂2ϑ̂

∂x̂2
+

1
WH

∂2ϑ̂

∂ẑ2
. (4.26)

The diffusion terms in Eq. 4.26 are of the order of 1/Pex ≡ 1/(UL) and 1/Pez ≡
1/(WH), where Pex and Pez are Péclet-like numbers associated with horizontal
and vertical motions, respectively. We introduce them for the very same reason
as we did in the case of Rex and Rez. Making use of Eqs. 4.21 and 4.25, we can put
Eq. 4.26 into the form

∂(ûϑ̂)
∂x̂
+
∂(ŵϑ̂)
∂ẑ

≈
1
Pex

∂2ϑ̂

∂x̂2
+
1
Pez

(
−
H7/2

LΘ1/2
ŵ +

∂2ϑ̂

∂ẑ2

)
, (4.27)
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which can be greatly simplified in the double limit of Pex ≫ Pez and Pez ≪ 1. In
that case, the two terms in the parentheses on the right-hand side have to closely
balance one another, so that we can estimate

H ≈ Θ1/7L2/7, (4.28)

and Eq. 4.27 becomes linear,
∂2ϑ̂

∂ẑ2
= ŵ. (4.29)

Equation 4.29 is a special case of the energy equation in the low-Péclet-number
approximation of Lignières (1999).

Using Eq. 4.28, we eliminate H from Eq. 4.25 to get an estimate of U(Θ, L) and,
with Eq. 4.21, also an estimate of W(Θ, L). The resulting relations also enable us
to express Rex, Rez, Pex, and Pez as functions of Θ, L, and Pr. This way we obtain

U ≈ Θ4/7L1/7, (4.30)

W ≈ Θ5/7L−4/7, (4.31)

Rex ≈ Θ4/7L8/7Pr−1, (4.32)

Rez ≈ Θ6/7L−2/7Pr−1, (4.33)

Pex ≈ Θ4/7L8/7, (4.34)

Pez ≈ Θ6/7L−2/7. (4.35)

One might be tempted to estimate the time scale τ of flow acceleration to-
wards the stationary state directly from the buoyancy acceleration Θ provided
by the temperature fluctuation imposed on the bottom boundary. It is crucial to
realise that, as Eq. 4.24 shows, the buoyancy acceleration is almost completely
compensated for by the vertical component of the pressure gradient in the case
L ≫ H. It is only their difference that contributes to the vertical acceleration.
We can, however, consider the horizontal acceleration provided by the horizontal
component of the pressure gradient and write U/τ ≈ P/L ≈ U2/L (see Eq. 4.23).
Using Eq. 4.30 we obtain

τ ≈ Θ−4/7L6/7. (4.36)

Finally, we would like to point out that the characteristic thermal-diffusion length
scale corresponding to the time scale τ is τ1/2 ≈ Θ−2/7L3/7, which scales with Θ and
L in quite a different way than H does (see Eq. 4.28). This comes about because
our estimates take the back reaction of the flow on the temperature distribution
into account.
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4.2 THE DIFFERENTIAL HEATING PROBLEM

4.2.3 Numerical solutions

The order-of-magnitude estimates derived in the preceding section assume that
the flow is stationary and that there is a well-defined vertical length scale in the
flow pattern. We performed a series of time-dependent, numerical simulations of
the differential heating problem to confirm these assumptions and to determine
how the solutions depend on the Reynolds number and how they decrease with
height.

We have developed a specialised code dedicated to the study of the differ-
ential-heating problem, because the problem places rather high demands on the
numerical scheme. For instance, it has to tackle the highly diffusive nature of
the flow and its high aspect ratio and resolve a wide dynamic range within a
single simulation box. The code is of the finite-difference type, and it solves the
differential-heating equations on a collocated grid using a variant of the Mac-
Cormack integration scheme. The Poisson equation for pressure, which can be
derived from Eqs. 4.4 and 4.5 (or 4.37, see below), is solved by a spectral method.
Heat-diffusion terms are treated implicitly, again by a spectral method. In what
follows, we discuss a few selected issues related to the numerical solution of the
differential-heating equations that need to be borne in mind when interpreting
our results. The reader interested in the details of the numerical scheme is re-
ferred to App. A.

We use periodic boundaries in the horizontal direction and force the shear
stress and the vertical velocity component to vanish at the lower and upper bound-
aries of the computational domain. One could also use non-slip boundaries, but
these are hardly more akin to the physical reality that motivated this study in the
first place, so we omit this case. We impose a temperature fluctuation in the form
ϑ(x, 0) = Θ sin(πx/L) at the bottom boundary and force the temperature fluctu-
ation to vanish at the upper boundary. The parameters Θ and L can be identified
with the same symbols as introduced in Sect. 4.2.2.

The high thermal diffusivity in the differential-heating problem forces us to
use long implicit time steps for the heat-diffusion terms, which might have an
adverse effect on the accuracy of the results. To show that this is not the case, we
re-computed the simulations sr03, sr30, and Re1024 (see Tables 4.1 and 4.2 and
Sect. 4.3), decreasing the time step by a factor of ten. This brings about a change
in the velocity field, which is of the order of 0.1% in the cases sr03 and sr30 and
of the order of 1% in the case of Re1024 (measured well away from the field’s
zeroes). The reason for this insensitivity to the time step is the low Péclet number
of the flow. Lignières (1999) shows that in the low-Pe regime, the energy equation
can be approximated by a Poisson equation for the temperature fluctuation with
w as a source term (see also our Eq. 4.29). We do not use this approximation to
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4 OVERSHOOTING BY DIFFERENTIAL HEATING

Id. Θ L Pex Pez
sr00 100 101 8.5×100 2.5×100
sr01 100 102 1.4×102 1.3×100
sr02 100 103 2.0×103 5.5×10−1
sr03 100 104 2.9×104 2.7×10−1
sr10 10−1 101 2.5×100 3.1×10−1
sr11 10−1 102 4.0×101 1.4×10−1
sr12 10−1 103 5.5×102 6.8×10−2
sr13 10−1 104 7.7×103 3.5×10−2
sr20 10−2 101 7.2×10−1 4.1×10−2
sr21 10−2 102 1.1×101 1.8×10−2
sr22 10−2 103 1.5×102 9.3×10−3
sr23 10−2 104 2.1×103 4.8×10−3
sr30 10−3 101 2.0×10−1 5.4×10−3
sr31 10−3 102 2.9×100 2.5×10−3
sr32 10−3 103 4.0×101 1.3×10−3
sr33 10−3 104 5.5×102 6.7×10−4

Table 4.1: Parameters of the series of simulations sampling a patch of the parameter space
{Θ, L} at the constant value of Re = 2.6 × 102.

make our code more versatile; instead, we naturally obtain a close equilibrium
between the terms ∇2ϑ and w in Eq. 4.6 when the Péclet number is low. This
equilibrium is reached so quickly that details of the evolution of ϑ towards the
equilibrium become irrelevant.

It is a well-known fact that any numerical advection scheme either requires
adding a so-called artificial-viscosity term to guarantee stability or it involves
some viscous behaviour implicitly. In either case, the effective Reynolds number
does not even come close to the astrophysical regime with current computing fa-
cilities. The artificial viscosity (be it explicit or implicit) thus exceeds the physical
one by a wide margin, so it demands special attention.

Suppose we include an explicit viscous term as in Eq. 4.5 to model the artifi-
cial viscosity. Equations 4.32 and 4.33 show that for L ≈ 103 (equivalent to ∼ Hp
in the astrophysical case mentioned in Sect. 4.2.1) we have Rez ≈ 10−4 Rex as a
consequence of H ≪ L. Using equidistant grids with up to 103 grid points in
each direction, we can achieve Rex ≈ 103. It follows that Rez ! 10−1 and the ver-
tical momentum transport is dominated by the artificial-viscosity term. A value
Rez ≫ 1 is, however, expected in stellar interiors. We use a simple workaround,
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4.2 THE DIFFERENTIAL HEATING PROBLEM

Id. Resolution Re
Re32 32×32 3.2×101
Re64 64×64 6.4×101
Re128 128×128 1.3×102
Re256 256×256 2.6×102
Re512 512×512 5.1×102
Re1024 1024×1024 1.0×103
Re2048 2048×2048 2.0×103
Re4096 4096×4096 4.1×103

Table 4.2: Parameters of the series of simulations with Re increasing at the fixed values of
Θ = 10−3 and L = 100.

replacing the viscous term Pr∇2u by the anisotropic form Prx ∂2u/∂x2+Prz ∂2u/∂z2.
The coefficients Prx and Prz are re-computed at each time step from the relations
Prx = hxmax |u|Re−1grid and Prz = hzmax |w|Re−1grid, where hx and hz are the horizontal
and vertical grid spacings, respectively, and Regrid is the Reynolds number on the
grid scale. We performed a few numerical tests of the code on a convection prob-
lem to determine that the value Regrid = 4 is a conservative trade-off between the
amount of viscous dissipation and the code’s stability, so we use this value in all
the simulations presented here.

The anisotropic form of artificial viscosity enables us to reach Rex ≫ 1 and
Rez ≫ 1 at the same time on a grid of reasonable size. We show in Sect. 4.3 that the
solutions with constant values of Prx and Prz decay exponentially with height. The
effective, local Reynolds number decreases in proportion to the flow speed, and
the solutions quickly become dominated by the artificial viscosity. This would
also happen in an (otherwise idealised) stellar interior at some point but that
point would be much farther from the convection zone’s boundary. Therefore,
we generalise the artificial-viscosity terms, and the momentum equation (Eq. 4.5)
in 2D becomes

Du
Dt
= −∇p + ϑk +

∂

∂x

[
Prx(z)

∂u

∂x

]
+
∂

∂z

[
Prz(z)

∂u

∂z

]
, (4.37)

where are Prx(z) and Prz(z) are proportional to e−ηz with η being an adjustable para-
meter. We set η = 0when we are not interested in the precise vertical profiles and
use η > 0 to suppress the viscous terms when examining how the solutions de-
crease with height. The latter case, η > 0, is a rather touchy problem because
one has to increase η in a few steps, always using the (almost) stationary flow
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4 OVERSHOOTING BY DIFFERENTIAL HEATING

from a previous run as an initial condition for the next run. Overestimating the
value of η can lead to a lack of viscous dissipation in some parts of the computa-
tional domain and a numerical instability ensues. Finally, the very goal that we
want to achieve by this treatment, i.e. the flow dynamics’ being dominated by
inertial terms at great heights, becomes an issue since such a flow evolves on the
extremely long time scale corresponding to its low speed.

4.3 Results

4.3.1 The stationarity and structure of the flow

Our numerical investigation of the diffusion-dominated differential heating prob-
lem reveals that the flow reaches a stationary state at all values of the Reynolds
number that we have been able to achieve (up to Re = 4 × 103). We use the rate
of change of the quantity umax = max |u| (taken over the whole simulation box)
as a convergence monitor and a basis of our criterion for deciding the flow’s sta-
tionarity. We show in Sect. 4.2.2 that the relevant dynamical time scale near the
differentially heated boundary should be close to τ given by Eq. 4.36 (confirmed a
posteriori, see below). We pronounce the flow stationary and stop the simulation
once the condition ∣∣∣∣∣

1
umax

∂umax
∂t

τ

∣∣∣∣∣ < 10
−3 (4.38)

has been met at least for one time scale τ. A direct implementation of this con-
dition would involve extrapolation from the time scale of one time step, ∆t, to a
much longer time scale τ, which would amplify the round-off noise by a factor of
τ/∆t ≫ 1. Instead, we approximate Eq. 4.38 by

∣∣∣∣∣
1

umax
umax − umax

τ
τ

∣∣∣∣∣ < 10
−3, (4.39)

where umax is the Euler-time-stepped solution of the equation

∂umax
∂t
=
umax − umax

τ
. (4.40)

Thus, umax is a smoothed version of umax, lagging behind it approximately by τ in
time.

The flow in all of the simulations presented in this paper is composed of sev-
eral layers of overturning cells with flow speed rapidly decreasing from one layer
to the next (see Figs. 4.1 or 4.7). We characterise the flow properties close to the
differentially heated surface by a vertical length scale H, defined as the height
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above the hottest spot at which the flow first turns over (i.e. w(L/2,H) = 0),
and the typical horizontal and vertical velocity components U = 1

2 max(u) and
W = 1

2 max(w), respectively, where the maxima are taken over the whole simu-
lation box. The symbols H, U, and W can be identified with the same symbols
as used in Sect. 4.2.2. The flow always reaches its maximal horizontal speed at
the bottom boundary and the maximal vertical speed in the first overturning cell
above the hot spot. The flow pattern is asymmetric, with the maximum down-
ward flow speed (reached above the cold spot), max(−w), always lower than the
maximal upward flow speed, max(w). We define the characteristic numbers Rex,
Rez, Pex, and Pez in an analogous way to what is used in Sect. 4.2.2 with the dif-
ference that now we have two Prandtl-like numbers Prx and Prz instead of one
Prandtl number Pr.

4.3.2 Scaling relations

We computed a grid of 16 simulations to verify the analytical relations derived
in Sect. 4.2.2. All of these simulations, summarised in Table 4.1, have a resol-
ution of 256 × 512, and the vertical grid spacing was adjusted so as to obtain
Rex = Rez ≡ Re = 2.6 × 102. The decision to fix the value of Re is motivated by
the fact that the flow pattern turns out to be scalable over a large part of the
parameter space provided that Re = const.. In other words, while changing the
heating parametersΘ and L at Re = const. does change the amplitude and the ver-
tical scale of the flow, the structure of the flow, as seen in a system of normalised
coordinates x/L and z/H, remains unchanged (see Fig. 4.1). We show in Figs. 4.2
and 4.3 our numerical results as compared with the scaling relations fitted to all
but the four data points at L = 101. The excluded data points do not comply well
with the premise L ≫ H and are thus expected not to follow the scaling relations.
Allowing only the constants of proportionality to change in the fitting process,
we obtain

H = 1.3Θ1/7L2/7, (4.41)

U = 0.77Θ4/7L1/7, (4.42)

W = 2.7Θ5/7L−4/7, (4.43)

τ = 0.76Θ−4/7L6/7. (4.44)

The unexpectedly good fit is a result of the flow’s scalability.
The constants of proportionality in Eqs. 4.41 – 4.44, as well as the structure

of the flow, depend on Re. We illustrate this dependence by computing a series
of simulations with resolution ranging from 322 to 40962. This way, we cover
about two orders of magnitude in the Reynolds number from 3 × 101 to 4 × 103
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Figure 4.1: Comparison of the flow structure in two simulations with very disparate heat-
ing parameters. The left panel shows simulation sr30 (Θ = 10−3, L = 101). The right panel
shows simulation sr03 (Θ = 100, L = 104). In both cases, the vertical velocity component
w, normalised to its maximal absolute value, is plotted on a split logarithmic colour scale.
The length of the velocity vectors (arrows) is scaled in a non-linear way to aid visualisa-
tion. The spatial coordinates are normalised by the characteristic length scales defined in
Sects. 4.2.3 and 4.3.

(again with Rex = Rez ≡ Re). We perform this experiment at L = const. and
Θ = const., so any change in Re reflects a change in Prx and Prz. Nevertheless,
we present the dependence on Re, because the scalability of the flow shows that
the absolute values of Prx and Prz do not matter. Ideally, we should choose the
heating parameters so as to have Θ ≪ 1 and L ≫ 1 as the scaling relations hold
true in this limit (see Sect. 4.2.2).

Equation 4.44 shows, however, that the flow’s dynamical time scale becomes
extremely long in the same limit, thus making any high-resolution computation
unfeasible. Therefore we use Θ = 10−3 and L = 100, which still keeps the en-
ergy equation approximately linear (since Pex ≈ Pex ≈ 10−2), but we forgo having
L ≫ H. Nevertheless, we expect the changes in the flow with increasing Re in this
case to be similar to those that would be seen in a simulation with L≫ H because
of the energy equation’s being linear in both cases. All of this series of simula-
tions, summarised in Table 4.2, reach the stationary state as defined by Eq. 4.39.
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Figure 4.4: Dependence of the maximal horizontal velocity on the Reynolds number. Sim-
ulation data (circles) are connected by the solid line to guide the eye. The scaling law
umax ∝ Re0.054 is shown by the dashed line for comparison.
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Figure 4.5: Dependence on the Reynold number of the flow’s asymmetry, characterised by
the ratio of the maximum upward and downward flow speeds.
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4 OVERSHOOTING BY DIFFERENTIAL HEATING

Figure 4.4 shows that the maximum horizontal velocity in the computational do-
main slowly increases in proportion to Re0.054 in the high-Re regime. The flow
also becomes increasingly asymmetric, as shown by the ratio of the maximum
upward and downward flow speeds plotted as a function of Re in Fig. 4.5. The
seemingly asymptotic trend changes at the highest Reynolds number considered,
but we do not know the reason for this change.

4.3.3 Flow at great heights

The flow speed in all our simulations quickly decreases with height. Figure 4.6
compares the vertical profiles of the root-mean-square (rms; computed in the x
direction) vertical velocity component, wrms(z), in four simulations with widely
disparate heating parameters (sr00, sr03, sr30, and sr33). We find that wrms de-
creases approximately as e−βwz/H in a global sense with βw " 1.5 almost independ-
ently of Θ and L. We use the values H(Θ, L) given by Eq. 4.41 instead of those
measured in the simulations to normalise the z coordinate, because this brings the
slopes much closer to one another. We have to keep in mind, though, that these
flows are reasonably close to a stationary state only up to z/H " 2.5, because our
convergence criterion (Eq. 4.39) is ignorant of the weak flow in the upper part of
the simulation box, and consequently, that part of the flow is still slowly evolving
when the computation is stopped.

The simulations discussed so far use constant artificial-viscosity parameters
Prx and Prz, which leads to a rapid decrease in the local Reynolds number with
height (in proportion to the decreasing flow speed). We computed another two
simulations, this time with Θ = 10−4 and L = 101. In the first one, we set
Prx = const. and Prz = const. (the constant-Pr case hereinafter), just as we have
done so far. In the other one, we set Prx ∝ e−ηz and Prz ∝ e−ηz as described in
Sect. 4.2.3 to keep a local version of the Reynolds number approximately constant
(the constant-Re case hereinafter). We increased the slope η from 0 in a few steps
in order to make the ratio of the rms advection terms to the rms viscous terms,
i.e. the local Reynolds number, as independent of height as possible; η = 2 turns
out to be a good compromise in this case. There is a large-scale, residual vari-
ation by about a factor of four in the local Reynolds number, because the simple
exponential profile of the artificial viscosity is not flexible enough to compensate
for it. Using Fig. 4.4 we estimate that this variation can change the velocities by
∼ 0.1dex at most. Since our usual stopping condition, Eq. 4.39, cannot “sense”
the weak flow at great heights, we judge the stationarity of the flow by comparing
the rms values of the ∂/∂t terms to the rms values of all other terms that appear
in Eq. 4.37 and require the former to be significantly smaller than the latter. This
way, we obtain the results summarised in Figs. 4.7, 4.8, and 4.9. The constant-
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Figure 4.6: Decline with height of the relative rms vertical velocity in four simulations with
very different heating parameters. The flows are reasonably close to a stationary state only
up to z/H " 2.5.

Pr flow can be considered stationary over the whole range shown, whereas the
constant-Re flow is only stationary for z/H ! 3.8, because the topmost part of that
flow evolves so slowly that a global oscillation develops before it has reached
equilibrium (see Sect. 4.3.4 for details).

Figure 4.8 illustrates that the flow is somewhat faster at z/H > 1 in the constant-
Re case, as could be expected from the massive increase in the local Reynolds
number by as much as two orders of magnitude at z " 3. Much more interesting
is, however, that the overturning cells in the constant-Re case become apparently
thinner with increasing height, hence with decreasing local temperature fluctu-
ation. This observation suggests that the scaling relations derived in Sect. 4.2.2
could be used locally (see the dependence of H on Θ in Eq. 4.28). Another piece
of evidence for this hypothesis is shown in Fig. 4.9, in which we compare the re-
lative rates of decrease in ϑrms(z), urms(z), and wrms(z). The envelope of ϑrms(z) can
be approximated well by the function ϑe(z) ∝ e−βϑz/H with βϑ = 1.7 for z/H ! 3. We
then regard ϑe(z) as an estimate of the local temperature fluctuation and rewrite
the scaling relations for the velocity components, Eqs. 4.30 and 4.31, to obtain
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Figure 4.7: Effect of two different artificial-viscosity prescriptions on the flow structure.
The constant-Pr flow (Prx, Prz = const.; left panel) is compared with the constant-Re flow
(Prx, Prz ∝ e−2z; right panel). The vertical velocity component w is in both cases plotted on
a split-logarithmic colour scale. The length of the velocity vectors (arrows) is scaled in a
non-linear way to aid visualisation.

their local versions,

ue(z) ≈ ϑe(z)4/7L1/7, (4.45)

we(z) ≈ ϑe(z)5/7L−4/7, (4.46)

where ue(z) and we(z) are expected to be good envelope models of urms(z) and
wrms(z). In other words, we expect ue(z) ∝ e−βuz/H and we(z) ∝ e−βwz/H with βu =

4
7βϑ

and βw =
5
7βϑ. Indeed, these scalings turn out to be correct, as shown in Fig. 4.9.

Similarly, we can produce a local version of Eq. 4.28,

h(z) ≈ ϑe(z)1/7L2/7, (4.47)

where h(z) is a local, height-dependent estimate of a vertical length scale analog-
ous to H. As a result, we expect h(z) ∝ e−βhz/H with βh =

1
7βϑ, i.e. a slow thinning

of the overturning cells with increasing height, similar to what we observe in
Figs. 4.7, 4.8, and 4.9. This seemingly innocuous phenomenon has very grave
consequences for the flow at great heights. Instead of fading out exponentially, it
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Figure 4.8: Effect of two different artificial-viscosity prescriptions on the rms vertical ve-
locities. Note that the constant-Pr flow can be considered stationary over the whole range
shown whereas the constant-Re flow is stationary only up to z/H " 3.8.

decreases even faster (see Fig. 4.9). We expand on this in Sect. 4.4.1 and derive a
better model for the flow’s decline with height to show that the flow speed drops
dramatically above a certain point.

4.3.4 Late-time evolution of the flow

Having continued some of our simulations for as much as 104τ, we discover an
intriguing phenomenon. At first, a horizontal mean shear flow develops on top
of the differential-heating flow. Its amplitude grows, and the shear flow begins
to oscillate at some point. Finally, the oscillation saturates at an amplitude ran-
ging from ∼ 10−3 to ∼ 100 of the differential heating flow’s amplitude, depending
on the parameters of the simulation. The oscillation’s period and development
time strongly decrease with increasing Reynolds number. They do not seem to
have an upper limit but approach 10τ at Re ≈ 103. This phenomenon most likely
has a physical origin because decreasing the time step by a factor of ten does
not affect the shear flow or its behaviour significantly. Any detailed study of
this phenomenon is certainly beyond the scope of this paper, but our prelimin-
ary research suggests that it is unlikely to be a cumulative effect induced by in-
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Figure 4.9: Comparison of the rms velocities and temperature fluctuations in the constant-
Re case with two models approximating their global behaviour. Solid lines show urms (top),
wrms (middle), and ϑrms (bottom). Dashed lines show the model, in which ue(z) ∝ e−βuz/H ,
we(z) ∝ e−βwz/H , and ϑe(z) ∝ e−βϑz/H with βu =

4
7βϑ, βw = 5

7βϑ, and βϑ = 1.7. Dotted lines
show the improved model given by Eqs. 4.53, 4.54, and 4.55 with γ = 1.3. The coefficients
of proportionality have been adjusted for each variable independently.

ternal gravity waves since it (1) also occurs in very small computational boxes, in
which all internal-wave modes are over-damped by radiative diffusion, and (2)
the temporal spectra of the average horizontal velocity are featureless at periods
significantly shorter than that of the shear flow oscillation.

4.4 Interpretation of the results

4.4.1 Improving the model at great heights

After picking up the threads of Sect. 4.3.3, we presently find that the diffusion-
dominated, high-Re differential-heating flow actually decreases faster than expo-
nentially with height. To see this, we make use of two results from Sect. 4.3.3.
First, that the scaling relations derived in Sect. 4.2.2 have their local analogues,
which hold within the flow (compare Eqs. 4.28, 4.30, and 4.31 with Eqs. 4.47, 4.45,
and 4.46, respectively). Second, that the envelope of ϑrms(z) can be approximated
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4.4 INTERPRETATION OF THE RESULTS

well by the function ϑe(z) ∝ e−βϑz/H at low heights, where βϑ is independent of Θ
and L. This allows us to write

d lnϑe
dz

= −
βϑ

H
. (4.48)

The characteristic vertical scale H is linked to the heating amplitude Θ by Eq. 4.28
and is thus relevant close to the differentially heated surface, where the typical
temperature fluctuations are of the order of Θ. A straightforward generalisation
of Eq. 4.48 is obtained by replacing H by the local, height-dependent estimate h(z)
given by Eq. 4.47. Upon doing so, we have

d lnϑ′e
dz′

= −
βϑ

h′(z′)
, (4.49)

where we have introduced the new variables ϑ′e(z) = ϑe(z)/Θ, z′ = z/H, and h′(z) =
h(z)/H. By Eqs. 4.28 and 4.47 we have

h′(z′) ≈ ϑ′e(z′)1/7, (4.50)

and Eq. 4.49 becomes
d lnϑ′e
dz′

= −βϑ′ −1/7e , (4.51)

where βmay differ slightly from βϑ, because we have used an order-of-magnitude
relation in the last step. Equation 4.51 shows that lnϑ′e(z) decreases with a fairly
constant slope over a few orders of magnitude, but the slope starts to change as
soon as a wider dynamic range is considered. Since the slope is proportional to
ϑ′ −1/7e , Eq. 4.51 describes a runaway process. Indeed, the solution is

ϑ′e(z′) =
[
ϑ′e(0)1/7 −

β

7
z′
]7

(4.52)

and vanishes at a finite height of z′0 = 7/β. The constant ϑ′e(0)1/7 must be very close
to unity as ϑ′e(0) = ϑe(0)/Θ ≈ 1, and we can simplify Eq. 4.52 to obtain

ϑe(z) ∝
(
1 −

γ

7
z
H

)7
, (4.53)

where we have returned to the non-primed variables and introduced a new con-
stant γ = βϑ′e(0)−1/7, which is a parameter to be adjusted to fit the numerical data.
Using the local scaling relations, Eqs. 4.45, 4.46, and 4.47, we derive the functional
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dependencies

ue(z) ∝
(
1 −

γ

7
z
H

)4
, (4.54)

we(z) ∝
(
1 −

γ

7
z
H

)5
, (4.55)

h(z) ∝ 1 −
γ

7
z
H
. (4.56)

The functions ϑe(z), ue(z), and we(z) are shown in Fig. 4.9. The constants of pro-
portionality in Eqs. 4.53, 4.54, and 4.55 have been adjusted independently, but all
three functions share the value γ = 1.3. The good fit indicates that our line of
reasoning is probably correct.

Can we conclude that the flow stops at the finite height we have just derived?
No, since the scaling relations only work in the high-Re regime. Provided that Re
is high close to z = 0, the flow speed quickly decreases according to Eqs. 4.54 and
4.55 until Re ≈ 1 is achieved at some height z1 < 7H/γ. The weak flow above this
point is supported by viscosity and gradually vanishes as z→ ∞.

4.4.2 Allowing for a buoyancy-frequency gradient

So far, we have assumed that the flow occurs in a particularly simple type of
thermal stratification — one characterised by a typical buoyancy frequency Ntyp =
const. Nevertheless, we aim to apply our results to the immediate vicinity of a
convection zone, i.e. to a medium, in that the buoyancy frequency rises continu-
ously from zero to a finite value. In this section, we first show how to estimate
the value of Ntyp in such a setting and then reapply the techniques developed in
Sect. 4.4.1 to demonstrate how the varying buoyancy frequency affects the global
flow field.

To do this, we have to recover the dependence of all the relevant flow proper-
ties on Ntyp by returning to a system of physical units. We recall that we use 1/Ntyp
as a unit of time and (κ/Ntyp)1/2 as a unit of distance, which implies that the unit
of velocity is (κNtyp)1/2 and the unit of acceleration (hence of ϑ) is (κN3typ)1/2. We
use these conversion factors throughout this section without mentioning them
further. The height of the bottommost overturning cell is by Eq. 4.41

Hph = 1.3
⎛
⎜⎜⎜⎜⎜⎝
κ

N2typ

⎞
⎟⎟⎟⎟⎟⎠

2/7

Θ
1/7
ph L

2/7
ph , (4.57)

where we have introduced the index „ph” to indicate the use of physical units
for quantities that are dimensionless in the rest of our analysis. The buoyancy
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frequency N is now an increasing function of zph and can be approximated by
Eqs. 4.7 and 4.8,

N(zph) =
⎛
⎜⎜⎜⎜⎝
αg
H2p

⎞
⎟⎟⎟⎟⎠
1/2

z1/2ph . (4.58)

The overall scale of the flow pattern is given by the bottommost overturning cell,
which is thus the most important. Therefore we estimate Ntyp = N(Hph/2), i.e.

Ntyp =
⎛
⎜⎜⎜⎜⎝
αg
H2p

⎞
⎟⎟⎟⎟⎠
1/2 (Hph

2

)1/2
, (4.59)

and combine Eqs. 4.57 and 4.59 to obtain

Hph " 1.4
⎛
⎜⎜⎜⎜⎜⎝
κ2H6p
α2g

⎞
⎟⎟⎟⎟⎟⎠

1/9 (
∆T
Tm

)1/9 (Lph
Hp

)2/9
, (4.60)

where we have also expanded Θph = g∆T/Tm to emphasise the dependence on
the imposed temperature fluctuation ∆T/Tm. We use the sign " in Eq. 4.60 and
also in Eqs. 4.61, 4.62, and 4.63 below to indicate that we do not expect these es-
timates to be off by more than a few tens of percent. The dependence of Hph on
the heating amplitude and length scale is somewhat weaker in Eq. 4.60 compared
with Eq. 4.57, because Eq. 4.60 takes into account that any gain in the flow’s ver-
tical extent brings about an increase in the typical buoyancy frequency, which in
turn makes further penetration harder. This effect can also be seen when we ex-
press the characteristic velocity components and the flow’s dynamical time scale
in physical units,

Uph " 0.8
⎛
⎜⎜⎜⎜⎜⎝
κg4H3p
α

⎞
⎟⎟⎟⎟⎟⎠

1/9 (
∆T
Tm

)5/9 (Lph
Hp

)1/9
, (4.61)

Wph " 3
(
κg
α

)1/3 (∆T
Tm

)2/3 (Lph
Hp

)−2/3
, (4.62)

τph " 0.7
⎛
⎜⎜⎜⎜⎜⎝
αH6p
κg4

⎞
⎟⎟⎟⎟⎟⎠

1/9 (
∆T
Tm

)−5/9 (Lph
Hp

)8/9
, (4.63)

where the exponents have slightly changed compared with Eqs. 4.42, 4.43, and
4.44.

The spatial variation of N brings on a first-order effect, too; that is, the strat-
ification offers less resistance to overturning in the bottom part of the flow field
compared with the rest of it. We mimic this effect by using the flow’s excellent
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4 OVERSHOOTING BY DIFFERENTIAL HEATING

scaling properties under the assumption that the flow behaves locally as if N was
constant. Our goal is to improve upon the envelope models of ϑrms(z), urms(z),
and wrms(z) derived in Sect. 4.4.1 by taking the dependence of N on height into
account.

Our starting point is Eq. 4.49 with the difference that now we define ϑ′e =
ϑe,ph/Θph, z′ = zph/Hph and h′ = hph/Hph. We caution the reader that ϑe,ph refers to a
model with N = N(z) and not to a direct translation of ϑe that appears in Eq. 4.49
to physical units. The local vertical length scale of the flow, h(z) given by Eq. 4.47,
can be translated to physical units directly,

hph ≈ κ2/7N−4/7ϑ1/7e,phL
2/7
ph . (4.64)

This equation, together with Eq. 4.57, implies

h′ ≈ N′−4/7ϑ′1/7e , (4.65)

where N′ = N/Ntyp = (2z′)1/2 (see Eqs. 4.58 and 4.59). It is evident that h′ diverges
for N′ → 0+, i.e. z′ → 0+. This effect is purely artificial because the divergence
occurs within the bottommost overturning cell of the flow, and the large-scale
model we are developing here cannot capture such local phenomena. We ignore
the divergence for now because only h′−1 appears in Eq. 4.49 and use the same
procedure as in Sect. 4.4.1 to derive a generalised version of Eq. 4.51,

d lnϑ′e
dz′

= −βz′2/7ϑ′ −1/7e , (4.66)

where the parameter β has absorbed all coefficients of the order of unity. Its value
should still be of the order of unity, but it may be different in this model compared
with the model developed in Sect. 4.4.1. By analogy to the derivation in Sect. 4.4.1,
we can write the solution to Eq. 4.66 in the form

ϑe,ph(zph) ∝
⎡
⎢⎢⎢⎢⎢⎣1 −

γ

9

( zph
Hph

)9/7⎤⎥⎥⎥⎥⎥⎦

7

, (4.67)

where we have also returned to the non-primed quantities, and γ = βϑ′e(0)−1/7 is a
parameter of the order of unity. The typical velocity components and the typical
vertical vertical length scale can be estimated using the local scaling relations,
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Eqs. 4.45, 4.46, 4.47, and 4.67. We obtain

ue,ph(zph) ∝
[N(zph)
Ntyp

]−2/7 ⎡⎢⎢⎢⎢⎢⎣1 −
γ

9

( zph
Hph

)9/7⎤⎥⎥⎥⎥⎥⎦

4

, (4.68)

we,ph(zph) ∝
[
N(zph)
Ntyp

]−6/7 ⎡⎢⎢⎢⎢⎢⎣1 −
γ

9

(
zph
Hph

)9/7⎤⎥⎥⎥⎥⎥⎦

5

, (4.69)

hph(zph) ∝
[
N(zph)
Ntyp

]−4/7 ⎡⎢⎢⎢⎢⎢⎣1 −
γ

9

(
zph
Hph

)9/7⎤⎥⎥⎥⎥⎥⎦ , (4.70)

where an explicit dependence on N appears after the transition to physical units.
These expressions diverge for z → 0+ where N → 0+ (see Eq. 4.58), which is just
another illustration of the envelope models’ inability to capture local phenomena
(see also the discussion above). The bottommost part of the flow should in reality
behave approximately as if it was in a medium with N = Ntyp = const., so we can
cut off the problematic part of the N(z) profile and use, for example, the function

Ñ(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ntyp for 0 ≤ zph ≤ 1
2Hph

Ntyp
(
2zph
Hph

)1/2
for zph > 1

2Hph
(4.71)

instead of N(z) in practical calculations. Doing so makes the right-hand sides of
Eqs. 4.68, 4.69, and 4.70 converge to unity as zph → 0+.

Just as the results of Sect. 4.4.1 do not mean that the flow vanishes at a finite
height, neither the results of this section mean that. Again, the sudden drop in
the typical velocities predicted by Eqs. 4.68 and 4.69 only signifies that the flow
undergoes a transition to the low-Re regime at a relatively low height. Eqs. 4.68
and 4.69 cease to be usable from that point on and the weak flow supported by
viscosity gradually vanishes as zph → ∞.

4.5 Application to stellar conditions

The flow in a layer of thickness hph(zph) and vertical velocity we,ph(zph) at dis-
tance zph from the boundary overturns a passive tracer in it on a time scale τm =
hph/we,ph. This suggests an effective diffusion coefficient Deff ≈ hphwe,ph. For the
first layer above the boundary, this is

Deff(0) = WphHph. (4.72)
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4 OVERSHOOTING BY DIFFERENTIAL HEATING

At distance zph, Eqs. 4.69 and 4.70 give

Deff(zph) = Deff(0)
⎡
⎢⎢⎢⎢⎢⎣
Ñ(zph)
Ntyp

⎤
⎥⎥⎥⎥⎥⎦

−10/7 ⎡⎢⎢⎢⎢⎢⎣1 −
γ

9

( zph
Hph

)9/7⎤⎥⎥⎥⎥⎥⎦

6

, (4.73)

where Ntyp is given by Eq. 4.59 and we have replaced N(zph) in Eqs. 4.69 and 4.70
by Ñ(zph) given by Eq. 4.71 as discussed in Sect. 4.4.2. The constant γ is of the order
of unity but cannot be constrained further by our present analysis. It determines
the maximum height zmax,ph that the mixing process can reach, zmax,ph = (9/γ)7/9Hph.

For a specific example, consider the boundary of the core convection zone
in a 10M⊙ zero age main sequence star. This environment is characterised by a
thermal diffusivity κ = 5.9 × 1010 cm2 s−1, α = d(∇ad − ∇)/d(zph/Hp) = 0.14, a grav-
itational acceleration g = 1.1 × 105 cm s−2 and a pressure scale height Hp = 2.9 ×
1010 cm. A mixing-length estimate for convection in the core produces temperat-
ure fluctuations ∆T/Tm ≈ 10−6 on a horizontal length scale Lph ≈ Hp. Equation 4.60
then predicts that the typical vertical length scale is Hph ≈ 2 × 108 cm = 7 × 10−3Hp.
The typical vertical velocity (Eq. 4.62) isWph ≈ 5×101 cm s−1. These numbers imply
Pez = (WphHph)/κ ≈ 2; i.e., the bottom part of the flow is located right at the trans-
ition between the regions of advection-dominated and diffusion-dominated heat
transport. This is not a coincidence, because we are modelling the region where
heat leaks from the convective eddies, allowing them to turn over and sink back
to the convection zone. Such a flow has to have Pez ≈ 1. Therefore, the effective
diffusivity close to the convection zone, Deff(0) in Eq. 4.73, is of the same order
as the diffusivity of heat κ. Diffusivities that are several orders of magnitude
smaller than κ can be important on the long nuclear time scale. The maximum
height reached by the differential heating process on this time scale can thus be
approximated by zmax,ph. Assuming γ = 1 we obtain zmax,ph ≈ 4 × 10−2Hp.

Equation (4.73) is likely to be somewhat of an overestimate of the actual mix-
ing rate of the differential-heating process. The layers mix on the hydrodynamic
time scale in their interiors, but as long as they are stationary, transport of the
tracer between layers takes place by diffusion. As in the case of semiconvective
layering (cf. Spruit 2013), this reduces the effective mixing rate to the geomet-
ric mean of the microscopic diffusion coefficient κt of the tracer and the estimate
(4.73).

More significantly, the picture is complicated by the time dependence of the
convective heat source. For the 10M⊙ example, only the bottommost part of the
flow can approach the stationary flow speed before the heating pattern changes
because the dynamical time scale τph ≈ 5 × 106 s (Eq. 4.63 with the parameter
values stated above) is of the same order as the convective overturning time scale
in the core. This is likely to lead to some form of averaging, reducing the effective
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amplitude of the source. The level of this effect can probably be investigated with
a time-dependent simulation.

4.6 Summary

Various observations show that there is a need for some additional mixing at the
interfaces between the convective and radiative layers of stars. Even processes
that are too weak to be detectable in numerical hydrodynamic simulations need
to be considered as candidate sources of this mixing, because the nuclear time
scale on the main sequence is so much longer than the dynamical time scale of
convection, and cumulative effects are likely to play an important role.

In this work, we have investigated one such weak process, which we call “dif-
ferential heating”. The differential heating process occurs when radiative diffu-
sion transports a temperature fluctuation from the boundary of a convection zone
into the neighbouring stable stratification. The resulting perturbation of hydro-
static equilibrium triggers a weak flow, which may provide mixing up to some
distance from the convection zone. We investigated the flow that is driven by
a static temperature fluctuation varying sinusoidally along the solid horizontal
boundary of a stably stratified, thin layer of gas. This low-Péclet number prob-
lem (i.e. a slow flow dominated by thermal diffusion) turns out to be intrinsically
nonlinear, in the sense that the horizontal structure of the flow is asymmetric.
Even for symmetric boundary conditions, the upflow is narrower than the down-
flowing part for the flow, and the shape of the flow pattern is nearly independent
of the amplitude of the driving temperature perturbation.

A few additional assumptions (Sect. 4.2) allow us to describe the problem by
a set of dimensionless equations, the solution to which depends (apart from the
boundary and initial conditions) only on the Prandtl number. We analysed these
differential-heating equations for their scaling properties under the assumption
that the flow is stationary (Sect. 4.2.2). An astrophysically interesting corner of
the parameter space is characterised by Rex ≫ 1, Rez ≫ 1, Pex ≫ Pez, and Pez ≪ 1.
(The x and z directions have to be distinguished because such flow has a high
aspect ratio.) In this limit we derive a set of simple relations (Eqs. 4.28 and 4.30 –
4.36) to describe how the global flow properties depend on the heating amplitude
Θ and length scale L. We find, in particular, that the characteristic vertical length
scale H depends only weakly on the heating parameters (Eq. 4.28).

We developed a dedicated numerical code to solve the equations. The main
difficulties are related to the highly diffusive nature of the flow, its high aspect
ratio, and the need to resolve a wide dynamic range in the flow amplitude within
the computational box (as much as five orders of magnitude). The flow in our
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two-dimensional, time-dependent simulations reaches a stationary state at all
values of the Reynolds number that we have been able to achieve (up to Re ≡
Rex = Rez = 4 × 103). The flow is always composed of several layers of overturn-
ing cells, the shape of which depends only on the Reynolds number and not on
the heating length scale L and amplitude Θ. This property makes the flow scale-
able in the sense that the flow field corresponding to some heating parameters
L1, Θ1 can be stretched in space and scaled in amplitude to get a good approxim-
ation of the flow field corresponding to a different set of heating parameters L2,
Θ2 provided that Re is in both cases the same. This is also the reason the scaling
relations derived in Eq. 4.2.2 fit the simulation data remarkably well at Re = const.
(see Figs. 4.2 and 4.3). Increasing the Reynolds number has little influence on the
flow speed, but it makes the flow pattern increasingly asymmetric.

We decrease the artificial-viscosity coefficients in the code with height in order
to keep the Reynolds number approximately the same in every layer of flow cells.
The numerical data show that the global scaling relations derived in Sect. 4.2.2
have their local analogues, which can be used within the flow. The flow speed’s
decrease with height, being locally exponential, steepens with the decreasing
flow amplitude according to the local scaling relations. Based on this we derive a
model of the flow’s dependence on height, which closely fits the numerical data
over the whole dynamic range that we have been able to cover (as much as five
orders of magnitude, see Fig. 4.9). The model shows that the flow speed drops
abruptly to a negligible value at a finite height. The local scaling relations also al-
low us to generalise our results to the more realistic case, in which the buoyancy
frequency N increases with height (see Sect. 4.4.1).

We illustrated the typical scales associated with the stellar differential-heating
process with the example of the convective core of a 10M⊙ zero-age main se-
quence star (see Sect. 4.5). We approximate the mixing due to the differential-
heating flow by an “effective” diffusion coefficient Deff , which is of the order of
the diffusivity of heat near the convection zone and decreases with height accord-
ing to Eq. 4.73. The mixing relevant for stellar evolution extends about 4% of the
pressure scale height above the convection zone.
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5.1 Kontext

Het proefschrift houdt zich bezig met konvektie in sterren, zowel konvektie in de
buitenlagen van sterren zoals de zon, als in konvektieve zones in het inwendige
van sterren. Doel hierbij niet zozeer theorien van konvektie ‘an sich’, als wel om
toepassingen in de sterevolutietheorie. De standaardbeschrijving in de leerboe-
ken zegt dat je alleen maar hoeft te weten waar de temperatuurgradient steiler is
dan ‘Schwarzschild’. Zo ja, dan zet je de temperatuurgradient gelijk aan de adi-
abatische gradient. Afgezien van konvektie dicht bij het steroppervlak verwacht
je dat dit een uitstekende benadering is. Stermodellen die op deze manier bere-
kend worden vertonen echter diskrepanties met de waarnemingen. Naarmate de
waarnemingen precieser worden, blijken de diskrepanties ook hardnekkiger. In
vrijwel alle gevallen lijkt het erop alsof konvektieve lagen uitgebreider zijn dan
ze volgens ‘Schwarzschild’ zouden moeten zijn (dunnere konvektieve lagen dan
verwacht schijnen niet voor te komen1).

Alvorens in te gaan op voorgestelde oorzaken en mogelijke technische ‘fixes’:
het beeld is niet erg eenduidig. Om de berekende ontwikkelingsweg in het HRD
in overeenstemming met waarnemingen te brengen is het gebruikelijk een ‘over-
shoot’ parameter te implementeren die de konvektielaag een fraktie van een druk-
schaalhoogte uitbreidt. Populair in sterevolutie berekeningen is het gebruik van
een ‘turbulente diffusiecoefficient’, die kunstmatig de samenstelling van de ster
mengt. De waarde ervan wordt aangepast tot optimale overeenstemming, en het
resultaat heet evolutie met overshooting. De aldus bepaalde overshoot parameter
blijkt minder stabiel dan meestal aangenomen: afhankelijk niet alleen van het ge-
bruikte evolutieprogramma, maar ook van de waarnemingen waaraan aangepast
wordt (zie de voorbeelden in hoofdstuk 1).

Het is nuttig een onderscheid te maken tussen verschillende soorten diskre-
panties. Fouten in een evolutiespoor duiden op een duidelijk verschil in de struk-
tuur van de ster. Daar zijn niet-triviale aanpassingen van de diepte van een kon-

1Daarbij even aangenomen dat dit niet een eenvoudig ‘file drawer effect’ is: het effekt dat niet
passende resultaten als onfysisch in de onderste lade van het bureau verdwijnen.
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vektieve laag voor nodig (aangenomen dat daar dus de oorzaak in ligt). Veel
minder dramatisch zijn anomalien in aan het oppervlak gemeten abondanties
van de ‘metalen’. In de eerste plaats gaat het daarbij om waarnemingen van de
relatieve abondanties van de CNO elementen, zowel in rode als asymptotische
reuzensterren. Deze tonen aan dat in sommige evolutiefasen materiaal met ele-
mentverhoudingen van de CNO-cyclus vanuit het energie-producerende inwen-
dige naar het oppervlak getransporteerd wordt (tijdens zgn. ‘dredgup’ fasen).
Het transport moet door gebieden plaatsgegrepen hebben die volgens standaard
evolutieberekeningen stabiel gelaagd zijn. Het is niet duidelijk hoe dit gebeurt2,
maar het kan in princiep een zwak proces zijn dat maar een enkele keer mengt en
daar een paar millioen jaar de tijd voor heeft. Dit in tegenstelling tot processen
die de thermische struktuur veranderen: om die tegen de thermische relaxatie in
in stand te houden is een kontinue bron van energie nodig.

Overwegingen als deze doen vermoeden dat een enkele turbulente diffusie
parameter misschien een aantal verschillende fysische processen op een hoop
gooit. Voor een betere behandeling van het thema ‘overshooting’ in de ster-
evolutie is een wat nauwkeuriger onderzoek van mogelijkerwijs relevante fysi-
sche processen noodzakelijk. Daar zijn er een aantal van. Afgezien van direkte
manifestaties van de konvektieve stroming zelf (meer daarover in het vervolg)
kun je aan afschuifinstabiliteiten tengevolge van differentiele rotatie denken. Ver-
ders interne zwaartekrachtsgolven (die grote afstanden kunnen overbruggen), en
aan het oppervlak van hete sterren kunnen gravitationele bezinking en differen-
tiele opwaartse krachten in het stralingsveld de abondanties lokaal sterk veran-
deren (‘die französische Diffusion’3).

De term ‘overshooting’ suggereert een dynamisch process: zoiets als konvek-
tieve cellen die met hun kinetische energie in stabiele lagen onder of boven de
konvektieve laag dringen. Dit is in de praktijk een verwaarloosbaar effekt. Voor
de omstandigheden aan de bodem van de konvektielaag van de Zon bijvoor-
beeld levert dit energieargument een overshoot-diepte in de orde van 100 km,
verwaarloosbaar in vergelijking met de drukschaalhoogte van 50 000 km. Dit ligt
aan de enorme stabiliteit van het stratifikatie van het stralingsinwendige: reeds
bij een fraktie van een drukschaalhoogte onder de bodem is de Brunt-Väisälä fre-
kwentie van de orde van 10−4 s−1; een faktor 300 sneller dan de tijdschaal van
konvektieve bewegingen aan de bodem van de konvektielaag (≈ 3 106 s volgens
het menglengte formalisme). De energie per massa-eenheid die nodig is om een
vloeistofelement in radiele richting over een signifikante fraktie van een schaal-
hoogte in de stabiele laag te verplaatsen gaat met het kwadraat van dit getal,
dwz. is 105 maal hoger dan de energiedichtheid van vloeistofbeweginging in de

2Een aardige term hiervoor is ‘dark mixing’ (naar het voorbeeld van de kosmologie).
3R. Kippenhahn, 1981.
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konvektiezone.
Dit heeft dramatische konsekwenties voor modellen die overshooting beschrij-

ven als een verlenging van dezelfde turbulente diffusie die deze modellen ook
voor de konvektiezone zelf gebruiken. Zulke modellen, ook beschreven met ter-
men als ‘nonlocal convection’ of ‘Reynolds averages’ zijn gebaseerd op een frap-
pant misverstand. Het is weliswaar juist dat de konvektieve storingen aan de
bodem van een konvektieve laag vloeistofbewegingen eronder induceren, en de
amplituden daarvan zijn ook vergelijkbaar met die van de konvektie erboven.
Maar de aard van deze bewegingen is essentieel anders: het zijn golven, oscil-
laties die het medium niet mengen maar vloeistofelementen op de zelfde plaats
terugbrengen waar ze vandaan komen. Het mengeffekt van deze zwaartekrachts-
golven is subtieler en in de praktijk verwaarloosbaar, in overeenstemming met
het energie-argument hierboven.

Er is dus reden het begrip overshooting vanuit een wat fundamentelere hoek
te benaderen. Dit inzicht begint geleidelijk sociaal acceptabel te worden, hoe-
wel vaak nog geformuleerd met de weinig zinvolle beschrijving ‘3-dimensionale
sterevolutie’. Door schaarste aan relevant theoretisch werk over de afgelopen
tientallen jaren biedt dit tevens een ideale gelegenheid: met relatief bescheiden
middelen zijn heel nieuwe, relevante bijdragen tot de theorie van sterevolutie
mogelijk. Dit is de motivatie voor het werk in het proefschrift, dat twee verschil-
lende processen onder de loep neemt. Beide passen onder het algemene hoofdje
‘konvektieve overshooting’ maar behandelen zeer verschillende fysika. Ze heb-
ben ook gemeen dat het om zwakke, langzame processen gaat, bedoeld als mo-
gelijke verklaringen voor Lithium depletie in hoofdreekssterren en bijvoorbeeld
de afwijkende C-isotoopverhoudingen in reuzen.

5.2 Konvektieve buitenlagen

Een konvektielaag in het inwendige van een ster heeft een diepte van de orde van
een drukschaalhoogte; de omstandigheden aan boven- en onderkant ervan zijn
dan hydrodynamisch enigzins vergelijkbaar. In de buitenlagen van sterren is de
situatie dramatisch anders. In het geval van de Zon bijvoorbeeld is de dichtheid
van het gas aan het oppervlak een miljoen maal lager dan aan de bodem van
de konvektiezone. De temperatuurfluktuatie geassocieerd met de konvektieve
energieflux is aan de bodem van de konvektiezone van de Zon een paar Kelvin,
aan het oppervlak duizend keer zo hoog. De konvektieve stroming in dit geval
is extreem asymmetrisch: opstijgende stroming heeft een temperatuurkontrast
van de orde 10−6, de dalende intergranulatiestroming een kontrast van 30%. De
bijbehorende kontrasten in gasdichtheid zijn ongeveer hetzelfde. Sinds de nume-
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rieke simulaties van Nordlund omstreeks 1980 is duidelijk dat konvektie in dit
geval niet zinvol met het traditionele menglengte beeld beschreven wordt. Veel
relevanter is een twee-komponentenbeeld: de dalende stroming vindt plaats in
de vorm van ‘pluimen’ die met zo’n sterk dichtheidsdeficiet beginnen dat ze ook
nog na menging (‘entrainment’) met 100 - 1000 maal meer omgevingsmateriaal
nog zo zwaar zijn dat ze omlaag blijven zinken, tot aan de bodem van de konvek-
tiezone4. Alleen opstijgend gas dat nooit met een pluim in aanraking gekomen is
heeft een kans het zonsoppervlak te bereiken, en heeft daar dan nog steeds zijn
adiabatische temperatuurkontrast van 10−6.

Het werk in hoofdstuk 2 beschrijft een model gebaseerd op dit 2-komponen-
tenbeeld. De konsekwentie van het pluimbeeld is dat dalend gas aan de bodem
van de konvektielaag aangekomen een inhomogeen mengsel is, met een verde-
ling van zeer verschillende temperatuurkontrasten, afhankelijk van individuele
verschillen in de entrainment-geschiedenis van de vloeistofelementen. Het is
zelfs denkbaar dat een (zeer) kleine fraktie (van de orde 10−7) per stochastisch toe-
val met niet meer dan een faktor 10 verdund wordt, en daardoor nog een dicht-
heidskontrast heeft waarmee het tot een fraktie van een drukschaalhoogte onder
de nominale bodem van de konvektiezone kan zinken. Voor een ster als de Zon
is het met de huidige numerieke middelen volstrekt onmogelijk deze verdeling te
voorspellen (extreme lengte- en tijdschaalproblemen). Bij gebrek aan een kwan-
titatief steekhoudend pluimmodel moet dus geparametriseerd worden. Daartoe
wordt in hoofdstuk 2 een gedetailleerd model ontwikkeld. Het laat zien dat de
Lithium-depletie van de Zon plausibel met het pluimplaatje te verklaren is. Toe-
gepast op andere hoofdreekssterren met konvektieve buitenlagen maakt het mo-
del voorspellingen voor de Li- en Be-depletie. Dit wordt beschreven in hoofdstuk
3. Hoewel natuurlijk afhankelijk van een astrofysische parametrisering, levert het
een overtuigende verklaring van het geleidelijk verloop van de Li-depletie met
spektraaltyp and leeftijd, en de veel zwakkere Be-depletie.

5.3 Differentiele verwarming

Op de grens tussen een konvektiezone en een stabiele laag treden drukfluktuaties
op benevens afschuifstromingen en temperatuurfluktuaties; alle oefenen op hun
eigen manier tot op een zekere afstand van de grens hun invloed uit. Ons interes-
seren vooral de zwakke effekten die op tijdschalen van miljoenen jaren werken.
Hydrodynamika direkt aan de grens, die op konvektieve tijdschalen van maan-
den werkt ligt tegenwoordig goed in het bereik van algemene numerieke hydro-

4Een meer symmetrisch maar afgezien daarvan identiek gedrag treedt op in laboratoriumkonvek-
tie en numerieke simulaties ervan.
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dynamische simulaties. Maar juist de langzame effekten die op grotere afstand
nuttig worden blijven daarmee volstrekt onbereikbaar. Daar zijn gespecialiseerde
methoden voor nodig, gebaseerd op diepergaand fysisch onderzoek5.

Afschuifinstabiliteiten en zwaartekrachtgolven blijken moeilijk. Er is echter
nog een op het eerste gezicht eenvoudig proces: de stroming die in een stabiele
laag geinduceerd wordt door een konvektieve temperatuurvariatie aan de grens
eronder. Hoofdstuk 4 beschrijft dit proces, zowel met analytisch werk als een
speciaal voor dit doel ontwikkelde numerieke methode. Het geidealiseerde mo-
del neemt een stationaire tempertuurvariatie aan de onderrand van een stabiele
laag aan, in de vorm van een sinusvormige afhankelijkheid van de horizontale
koordinaten. De intuitieve verwachting is dat dit voor voldoende zwakke am-
plitude een lineaire respons levert, o.a. dus met dezelfde horizontale afhanke-
lijkheid en iets als een exponentieel afvallen met de hoogte. Het probleem blijkt
echter matematisch interessanter. Het is intrinsiek nietlinear, en een mooi voor-
beeld van stromingen bij laag ‘Péclet-getal’ (dwz. gedomineerd door thermische
diffusie). In Boussinesque benadering heeft het slechts twee onafhankelijke para-
meters en het gedrag ervan kan daardoor omvattend ontleed worden. De geindu-
ceerde stroming heeft de vorm van een stapel platte cellen. De amplitude ervan
neemt met de hoogte af, maar het stromingspatroon blijft hetzelfde. In plaats van
exponentieel af te vallen bereikt de stapel een eindige hoogte. Vertaald van de di-
mensieloze matematische parameterruimte naar astrofysische omgeving is deze
hoogte maximaal in de orde van een paar procent van een drukschaalhoogte, met
slechts een zwakke afhankelijkheid van de preciese stellaire omgeving. Hoewel
het model dus niet onmiddelijk een overtuigende verklaring voor ‘dark mixing’
levert is het een fraai stuk matematische fysika gebleken.

5Om Martin Schwarzschild te citeren (QJRAS, 1970): ‘You may counter me with the question: What
can be the problem; since clearly the numerical techniques are in hand? [..., ...] No, I feel we are once
again forced to think’.
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Appendix A

Numerical methods

A.1 Integration scheme

We have adapted the standard MacCormack method to suit the differential-heat-
ing problem (Chap. 4). In the simplest case of a one-dimensional vector q of
conserved quantities being advected on and equidistant grid with a spacing of
∆x, MacCormack’s method can be written as

q(1)k = qnk − ∆t
f

(
qnk+1

)
− f

(
qnk

)

∆x
, (A.1)

q(2)k = q(1)k − ∆t
f

(
q(1)k

)
− f

(
q(1)k−1

)

∆x
, (A.2)

qn+1k =
qnk + q

(2)
k

2
, (A.3)

where qnk is the value of q at the k-th grid point and the n-th time step, ∆t the time
step, f (q) the flux function, and we use the convention that any parenthesised
upper index refers to a sub-step of the method instead of a time-step index. The
method is linearly stable provided that the CFL condition ∆t ≤ ∆x/ρ(A) is met,
where A is the Jacobian matrix of the flux vector and ρ(A) is the largest character-
istic value of A. Nonlinear stability typically requires the addition of some form of
artificial viscosity. MacCormack’s method is second-order accurate both in space
and time.

We discretise Eqs. 4.4, 4.6, and 4.37 on a collocated, two-dimensional grid of
M × N cells with constant cell spacing (∆x, ∆z). The two spatial dimensions and
the presence of source terms in the equations forces us to significantly extend
the basic MacCormack scheme. We begin by advecting the vector of variables
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q = (u, w, ϑ) in both spatial directions using Strang splitting,

q(1a)k,l = qnk,l −
∆t
2
unk+1,l q

n
k+1,l − u

n
k,l q

n
k,l

∆x
, (A.4)

q(1b)k,l = q(1a)k,l − ∆t
w(1a)k,l+1 q

(1a)
k,l+1 − w

(1a)
k,l q(1a)k,l

∆z
, (A.5)

q(1c)k,l = q(1b)k,l −
∆t
2
u(1b)k+1,l q

(1b)
k+1,l − u

(1b)
k,l q(1b)k,l

∆x
, (A.6)

where we have written out the explicit form of the flux terms. The indices k and
l refer to the position along the x and z axes, respectively. We proceed by adding
the source terms to the momentum equations,

u(1d)k,l = u
(1c)
k,l + ∆t

⎡
⎢⎢⎢⎢⎢⎢⎣−
pnk+1,l − p

n
k−1,l

2∆x
+ νl

u(1c)k−1,l − 2u
(1c)
k,l + u

(1c)
k+1,l

(∆x)2
+

µl+1/2
(
u(1c)k,l+1 − u

(1c)
k,l

)
− µl−1/2

(
u(1c)k,l − u

(1c)
k,l−1

)

(∆z)2

⎤
⎥⎥⎥⎥⎥⎥⎦ , (A.7)

w(1d)k,l = w
(1c)
k,l + ∆t

⎡
⎢⎢⎢⎢⎢⎢⎣−
pnk,l+1 − p

n
k,l−1

2∆z
+ ϑ

(1c)
k,l + νl

w(1c)k−1,l − 2w
(1c)
k,l + w

(1c)
k+1,l

(∆x)2
+

µl+1/2
(
w(1c)k,l+1 − w

(1c)
k,l

)
− µl−1/2

(
w(1c)k,l − w

(1c)
k,l−1

)

(∆z)2

⎤
⎥⎥⎥⎥⎥⎥⎦ , (A.8)

where we use second-order-accurate central differences to keep up with the or-
der of accuracy of the advection scheme, νl = Prx(zl) and µl = Prz(zl) are the
coefficients of our anisotropic artificial-viscosity prescription (see Sect. 4.2.3), and
µl+1/2 = (µl + µl+1)/2. The new velocity field u(1d) =

(
u(1d), w(1d)

)
is, in general,

slightly divergent. We correct for this divergence by subtracting the gradient of a
pressure-correction field, u(1) = u(1d) − ∆t∇(∆p)(1). The condition ∇ · u(1) = 0 leads
to a Poisson equation for the pressure correction,

∇2(∆p)(1) =
∇ · u(1d)

∆t
. (A.9)

Since we use central differences to compute partial derivatives, the discrete form
of the Laplace operator in Eq. A.9 should be derived by applying the central dif-
ferences twice. That would, however, lead to a sparse operator and cause odd-
even-decoupling problems on our collocated grid. Therefore we use the standard
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compact Laplacian and solve the approximate pressure-correction equation

(∆p)(1)k−1,l − 2(∆p)
(1)
k,l + (∆p)

(1)
k+1,l

(∆x)2
+

(∆p)(1)k,l−1 − 2(∆p)
(1)
k,l + (∆p)

(1)
k,l+1

(∆z)2
=
1
∆t

⎡
⎢⎢⎢⎢⎢⎢⎣
u(1d)k+1,l − u

(1d)
k−1,l

2∆x
+
w(1d)k,l+1 − w

(1d)
k,l−1

2∆z

⎤
⎥⎥⎥⎥⎥⎥⎦ . (A.10)

Equation A.10 is solved by a spectral solver, see Sect. A.3. Having computed the
pressure correction, we apply it to the velocity field,

u(1)k,l = u
(1d)
k,l − ∆t

(∆p)(1)k+1,l − (∆p)
(1)
k−1,l

2∆x
, (A.11)

w(1)k,l = w
(1d)
k,l − ∆t

(∆p)(1)k,l+1 − (∆p)
(1)
k,l−1

2∆z
. (A.12)

The approximate nature of the pressure-correction equation (Eq. A.10) causes ∇ ·
u(1) to be small, but non-zero. Practical experience has shown that the residual
divergence is negligibly small in the flows analysed in this paper provided that
the boundary conditions are treated properly, see Sect. A.2. We should also write
p(1)k,l = pnk,l + (∆p)

(1)
k,l at this point, but our numerical tests have shown that the

residual divergence in the velocity field becomes much smaller if we set p(1)k,l = p
n
k,l,

so we use the latter form. The next step is to integrate the remaining two terms
in the energy equation. We begin by adding the −w term,

ϑ(1d)k,l = ϑ
(1c)
k,l − ∆t w

(1)
k,l , (A.13)

where its latest available value, −w(1), has been used. The diffusion sub-step is
given by the implicit equation

ϑ
(1)
k,l = ϑ

(1d)
k,l + ∆t

⎡
⎢⎢⎢⎢⎢⎢⎣
ϑ(1)k−1,l − 2ϑ

(1)
k,l + ϑ

(1)
k+1,l

(∆x)2
+
ϑ(1)k,l−1 − 2ϑ

(1)
k,l + ϑ

(1)
k,l+1

(∆z)2

⎤
⎥⎥⎥⎥⎥⎥⎦ , (A.14)

which is also solved by a spectral solver, see Sect. A.3. We have thus completed
the first step of the MacCormack scheme, analogous to Eq. A.1, and obtained the
new variables u(1), w(1), p(1), and ϑ(1). The second step, which we do not do not
go into detail on, differs from the first one at two points. First, advection is done
using backward-space flux differencing, as in Eq. A.2 (compare with Eq. A.1).
Second, the pressure field is updated in this step, i.e. p(2)k,l = p

(1)
k,l + (∆p)

(2)
k,l . The final

step of the MacCormack’s scheme, Eq. A.3, is used in the same form, with q =
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(u, w, ϑ). We also update the pressure field in the same way, p(n+1)k,l =
1
2

(
pnk,l + p

(2)
k,l

)
,

so that we obtain an estimate of the pressure field for the next time step.
Finally, there is a simple way of increasing the accuracy of the scheme at a

given grid resolution, which we use. The MacCormack method contains a built-
in asymmetry: Eqs. A.1 and A.2 show that it always starts with forward-space
flux differencing and continues with backward-space flux differencing. The two
flux-differencing methods can be reversed, obtaining a “reverse” MacCormack
method, without decreasing the order of accuracy of the overall scheme. We com-
pute every time step using both the “direct” and the “reverse” methods and use
the arithmetic average of the estimates given by the two methods.

A.2 Boundary conditions

The treatment of boundaries is restricted by our decision to use spectral solvers,
which do not allow changing the differentiation operators anywhere in the com-
putation domain. We use the ghost-cell technique for this reason. The bound-
ary conditions we impose on the differential-heating flow are summarised in
Sect. 4.2.3. The periodic boundaries in the horizontal direction are trivial to imple-
ment. The solid boundaries on the top and bottom of the computational domain,
however, require much more care. We implement them using reflective boundary
conditions for the velocity vector,

uk,−1 = uk,0, (A.15)
uk,N = uk,N−1, (A.16)
wk,−1 = −wk,0, (A.17)
wk,N = −wk,N−1, (A.18)

so that the imaginary walls are located at l = −1/2 and at l = N − 1/2. The
conditions imposed on u also eliminate any shear on the boundary. The pressure
field is required to be symmetric with respect to the solid boundaries,

pk,−1 = pk,0, (A.19)
pk,N = pk,N−1. (A.20)

The conditions imposed by Eqs. A.15–A.20 can easily be shown to be consist-
ent with the pressure-correction equation (Eq. A.10; sum both sides over k =
0, 1, . . . , M and l = 0, 1, . . . , N). They typically do, however, bring about a cusp
in the pressure field along the normal to the walls. The resulting discontinuity in
the vertical pressure gradient then propagates to the rest of the domain and can
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be seen as a low-amplitude oscillatory field superimposed on the true pressure
field (see the left panel of Fig. A.1). We tried to cure this problem by changing the
discretisation of the vertical-gradient operator at the walls, so that the ghost cells
would not be used when computing the pressure gradient. This solution has met
with very little success, most likely because the abrupt change in the operator
brings about an abrupt change in the discretisation error so the problem remains.
Quite surprisingly, preceding the pressure-gradient computation by high-order
pressure extrapolation to the ghost cells has turned out to be an effective solu-
tion, able to eliminate nearly all of the spurious oscillations (see the middle and
right panels of Fig. A.1). We therefore use sixth-order extrapolation in the sim-
ulations with constant artificial viscosity and increase the extrapolation order to
ten when we let the artificial viscosity decrease with height. This technique can-
not be viewed, however, as an all-purpose solution, because it is likely to be too
unstable to be useful when computing highly turbulent flows.

We require the temperature fluctuation ϑ to have a fixed sinusoidal profile at
the bottom boundary and to vanish at the upper boundary, which translates into

ϑk,−1 = −ϑk,0 + 2Θ sin
(
πxk
L

)
, (A.21)

ϑk,N = −ϑk,N−1. (A.22)

A.3 Spectral solvers

We use spectral methods to solve the two equations involving the Laplace op-
erator, the Poisson equation for the pressure-correction equation (Eq. A.10) and
the implicit heat-diffusion equation (Eq. A.14). We express both the knowns and
unknowns as linear combinations of the Laplacian’s eigenfunctions that comply
with the desired boundary conditions. The solution procedure is then much sim-
plified and effective, provided that the transform to the eigenfunction basis can
be computed efficiently.

In case of the pressure-correction equation (Eq. A.10), we use the linear trans-
form

f̂m,n =
1

2MN

M−1∑

k=0

⎡
⎢⎢⎢⎢⎢⎢⎣2

N−1∑

l=0
fk,l cos

⎛
⎜⎜⎜⎜⎜⎜⎝
π n

(
l + 1

2

)

N

⎞
⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎦ exp

(
−
2πimk
M

)
(A.23)

and its inverse

fk,l =
M−1∑

m=0

⎡
⎢⎢⎢⎢⎢⎢⎣ f̂m,0 + 2

N−1∑

n=1
f̂m,n cos

⎛
⎜⎜⎜⎜⎜⎜⎝
π n

(
l + 1

2

)

N

⎞
⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎦ exp

(
2πimk
M

)
(A.24)
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Figure A.1: Effect of three different methods of treating the pressure at the solid top and
bottom boundaries. In all three panels, the vertical velocity component, w, is plotted on
a split logarithmic colour scale. We use Θ = 10−3, L = 101, constant kinematic viscosity
and set the resolution to only 16 × 64 to make the spurious oscillations visible. We ob-
tain the result plotted in the left panel using the simple symmetry conditions for pressure
(Eqs. A.19 and A.20). Preceding the pressure-gradient computation by third-order pres-
sure extrapolation to the ghost cells reduces the oscillations’ amplitude by a factor of ∼ 100
(middle panel). Increasing the extrapolation order to six brings about another decrease by
a factor of ∼ 30 in the oscillations’ amplitude (right panel). The pressure gradient is in all
three cases computed by the second-order central differences in the whole computational
domain.

to transform any field fk,l to an array of complex amplitudes f̂m,n and back. We can
see that the basis functions in Eq. A.24 are periodic in k and even around l = −1/2
and l = N − 1/2; i.e., they comply with our boundary conditions on the pressure
field (see Sect. A.2). Upon using the spectral decomposition defined by Eq. A.24
on both sides of the pressure-correction equation (Eq. A.10), we readily obtain its
solution in the wavenumber space,

(∆p̂)m,n =
Ŝ m,n
λm,n
, (A.25)

where we have omitted the upper indices because the expression applies to
both steps of the MacCormack scheme, Ŝ k,l is the transformed right-hand side
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of Eq. A.10. The eigenvalues λm,n of the Laplacian are

λm,n = −
2 − 2 cos

(
2πm
M

)

(∆x)2
−
2 − 2 cos

(
π n
N

)

(∆z)2
(A.26)

and can be pre-computed. We set λ0,0 to a large number to prevent division by
zero and make the undetermined component (∆p̂)0,0 vanish.

In case of the heat-diffusion equation (Eq. A.14), we use the linear transform

ĝm,n =
1

2MN

M−1∑

k=0

⎡
⎢⎢⎢⎢⎢⎢⎣2

N−1∑

l=0
gk,l sin

⎛
⎜⎜⎜⎜⎜⎜⎝
π (n + 1)

(
l + 1

2

)

N

⎞
⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎦ exp

(
−
2πimk
M

)
(A.27)

and its inverse

gk,l =
M−1∑

m=0

⎡
⎢⎢⎢⎢⎢⎢⎣(−1)

l ĝm,N−1 + 2
N−2∑

n=0
ĝm,n sin

⎛
⎜⎜⎜⎜⎜⎜⎝
π (n + 1)

(
l + 1

2

)

N

⎞
⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎦ exp

(
2πimk
M

)
(A.28)

to transform any field gk,l to an array of complex amplitudes ĝm,n and back. We
can see that the basis functions in Eq. A.28 are periodic in k and odd around
l = −1/2 and l = N − 1/2; i.e., they comply with our boundary conditions on
the temperature field in case of a vanishing heating amplitude (see Sect. A.2). To
allow for an arbitrary heating profile at the bottom boundary, we take out the
known boundary term from the Laplacian on the right-hand side of Eq. A.14 and
treat it as a source term. One can show that it is the same as replacing the diffusion
equation ∂ϑ/∂t = ∇2ϑ by the equivalent equation ∂(ϑ − ζ)/∂t = ∇2(ϑ − ζ), where
ζ is the static solution to the diffusion equation ∂ζ/∂t = ∇2ζ with the desired
boundary conditions (ζ can be pre-computed for a fixed heating profile). The
boundary conditions on the difference ϑ − ζ are then identically zero, and the
spectral decomposition defined by Eq. A.28 can be used. This way we obtain an
explicit expression for the solution of the implicit Eq. A.14 in the wavenumber
space,

ϑ̂(1)m,n =
ϑ̂
(1d)
m,n − ζ̂m,n
1 − ∆tΛm,n

+ ζ̂m,n, (A.29)

where the eigenvalues Λm,n of the Laplacian are

Λm,n = −
2 − 2 cos

(
2πm
M

)

(∆x)2
−
2 − 2 cos

(
π (n+1)
N

)

(∆z)2
(A.30)

and can be pre-computed. An equation analogous to Eq. A.29 relates ϑ̂(2) to
ϑ̂(2d). The typical distribution of the temperature fluctuation ϑ(x, z) in a station-
ary differential-heating flow computed by this algorithm is shown in Fig. A.2.
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Figure A.2: Distribution of the temperature fluctuation ϑ in simulation Re4096 (Table 4.2).
The colour scale encodes values from ϑ = −10−3 (blue) through ϑ = 0 (green) to ϑ = +10−3
(red). The contours have a spacing of ∆ϑ = 8 × 10−5.

In the practical implementation, we use the FFTW library (Frigo & Johnson
2005) to compute the transforms in Eqs. A.23, A.24, A.27, and A.28. We com-
bine standard, one-dimensional transforms of different kinds to obtain the non-
standard, two-dimensional transforms that we need. Namely, Eq. A.23 is imple-
mented as a series of DCT-II transforms over the rows of the input array, after
which the columns of the resulting array are transformed by a series of DTF
transforms. The backward transform (Eq. A.24) is then computed by a series
of DFTs followed by a series of DCT-IIIs. The transforms for the diffusion equa-
tion (Eq. A.27 and A.28) are implemented in the same way, but simply replacing
the DCT-IIs by DST-IIs and DCT-IIIs by DST-IIIs. The transforms from the FFTW
library do not include the normalisation factor (2MN)−1.
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