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O dark dark dark. They all go into the dark,
The vacant interstellar spaces, the vacant into the vacant.

—T. S. Extor in East Coker, I11 (1540)

ABSTRACT

The present paper traces the physical properties of matter inside highly evolved stars, on the assump-
tion that the whole material of the star is non-degencrate and that the star is in quasi-hydrostatic
equilibrium. When these conditions are satisfied, the physical evolution of a particular element of
madtetial is insensitive to the stellar model but not to the total mass of the star. Our considerations refer
explicitly to stars of mass greater than ~10 M @ but less than ~10° 1/ o, at which point general relativistic
considerations become paramount,

In Parts I and II neutrino-loss processes and neutrino-loss rates are examined. We conclude that
€~ + e — v + b is the most important neutrino process in massive stars. In Part I1I a method is devel-
oped for caleulating the product p8 as a function of temperature when electron-positron pair formation
is taken into account. In this product s is the mean molecular weight and 8 the ratio of gas pressure to
gas plus radiation pressure. The results are used to derive relations of the form p & (M o/ M)NT/uB)? «
(Mo/M)12T? for massive stars. In Part TV we consider the internal energy of matter, again as a function
of temperature, and including the effects of pair formation. Parts V, VI, and VII are concerned with
nuclear reactions, in particular with oxyvgen burning, the a-process, and the z-process,

In the final Parts VIIT and TX we consider the onset of a supernova of Type IT in which the central
core implades while the mantle and envelope of the star explode. ‘These censideratlions are tentative be-
cause the discussion now involves the structure of the whole star, and hence of the stellar model. It is
emphasized that massive stars do not necessarily become Type 1T supernovae but can collapse to general
relativistic singularities.

In the case that some form of braking mechanism, such as rolation, internal turbulence, or an en-
trained magnetic field, leads to core implosion followed by mantle-envelope explosion, our two main con-
clusions are as follows:

1. Although neutrino losses greatly speed up evolution when the temperature exceeds 10° ° K, the
loss rate is not sufficient to produce a free-fall implosion. Free fall must await the phase change of iron
group nuclei first to helium and free neutrons and finally to free protons and neutrons. Up to that point
nuclear reactions which transform hydrogen into the most stable nuclei near iron are exoergic and supply
the energy lost through radiation and neutrino processes.

2. Burbidge, Burbidge, Fowler, and Hoyle (1957) showed that the obscrved rclative abundance of
the iron group nuclej could be understood in terms of an equilibrium process, provided two parameters
were appropriately chosen—the temperature and the ratio of the densities of free ncutrons and protons.
Other choices for these parameters did not lead to a satisfactory correspondence with the observed abun-
dances. In this early work, no explanation could be given of whyv the two pacameters should take the
values necessary to explain the observed abundances. In Part VII we arrive at an explanation in terms
of the evolution time scale set by neutrino losses due to pair annihilation, We conclude in part: The ler-
restrial iron-growp $solopic abundonce raltos sirongly indicale the operalion in massive siors of an eneryy-loss
mechanism having a loss rate of the same order of magnitude as thai celeuloted for ¥ + e~ — v + v on the
basis of the universal Fermi inleraction sirength.

Dectailed theorctical derivations and numerical results have been relcgated to three appendices. Ap-
pendix A treats beta-interaction rates under stellar conditions, Appendix B treats the effects of electron-
positron pair formation on stellar structure and evolution, while Appendix C presents a summary of
current estimates concerning nuclear-reaction rates.

¥ The substance of this paper was presented by W. A. F. as the 1963 Henry Norris Russell Lecture of
the American Astronomical Society at its 114th meeting at the University of Alaska, College, Alaska,
on July 23, 1963.
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I, INTRODUCTION TO NEUTRINO PROCESSES

Theoretical and experimental studies of the nature of the weak Fermi interactions,
such as beta~decay and muon-decay, indicate that neutrino processes may play an im-
portant role in the evolution of stars and the onset of supernova explosions. The con-
served-veclor-current theory of the weak decays, proposed by Feynman and Gell-Mann
(19582) and Gell-Mann (1938), has successfully predicted the results of experimental
tests made by Nordberg, Morinigo, and Barnes (1960, 1962), Bardin, Barnes, Fowler,
and Seeger (1960, 1962), Mayer-Kuckuk and Michel (1961, 1962), Freeman, Montague,
West, and White (1962), and Lee, Mo, aud Wu (1963). The present paper is primarily
concerned with massive stars which evolve to Type II supernovae and with the neutrino
processes predicted to occur in these stars by the theory. In the immediate pre-supernova
state of evolution of such stars, an important factor is the escapc of neutrinos and anti-
neutrinos produced in the annihilation of the electron-positron pairs formed at high
temperatures. This paper is to be regarded as a supplement to a previous discussion by
the authors (Hoyle and Fowler 1960), in which #uclear processes in supernovae were
treated.

Neutrino emission from stars has been previously treated by Bethe (1939), Gamow
and Schénberg (1941), Pontecorvo (1959), Gandel’man and Pinaev (1959), Levine
(1960, 1963), Chiu and Morrison (1960), Gell-Mann (1961), Chiu and Stabler (1961),
Chiu (1961a-¢, 1963), Ritus (1961), Matinyan and Tsilosani (1961), Stothers and Chiu
(1962), Sampson (1962), Stothers (1963), Adams, Ruderman, and Woo (1963), Roscn-
berg (1963), and Pinaev (1963). The processes suggested by these authors are listed and
briefly discussed in the numbered paragraphs below.

1. Neutrino (v) emission accompanies positron (e7) emission in hydrogen burning
either through the prolon-prolon chain or the CNO bi-cycle. Four prolons (p) are lrans-
formed into the heltum nucleus or alpha-particle (a) by the over-all reaction:

4p—a+ 2¢t+ 2.

2. Neutrinos and antineutrinos (v) ave emitled wilh positrons and electrons (e7), respec-
tively, by beta-unsiable nuclei produced during emergy generation and nucleosynikesis in
nuclear processes involving inlermediate and heary nuclei. The bela-decays are:

@) (Z+1, 4)—(Z, ) + et + v,
b (Z-1LA4)=(Z )+ + 7.

Electron capiure is an allernalive to 2(a):
e+ (Z+1,4H)->Z )+,

Nuclei are designated by their charge and mass numbers in parentheses. Antineutrino
plus negative electron emission following neutron capture in heavy element synthesis is
the most important of this class of processes. In the Fermi theory of beta-decay, 2(a)
takes place when a proton in the nucleus (Z + 1, A4) transforms into a neutron, the
resulting nucleus then being (Z, 4). Similarly, 2(b) takes place when a free neutron or
4 neutron in a nucleus transforms into a proton. The free neutron decays lo a profon be-
cause 1t has the greater rest mass. Thus

dnrn—pte+w.

3. Inthe Urca process of Gamow and Schinberg as exiended by Pinaev, under equilibrium
condifions al high temperature and densily in slays, electron caplure with neutrino emission
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by a nucleus is followed by electron emission or posityon capture which restores the original
nucleus. The over-all process can be wrillen as follows:

(@ e+ (Z, A= EZ—-1,4)+,
(Z—1,4A)—>Z A +e+ 7, or er+Z—-1,4A)>(Z, A+ v,
so that

e+ (Z, A (Z, A+ e +v+7, or etrt+e + (2, Ao Z, A)+v+5.

The corresponding Urca process for positrons in antistars, if such exist, can be writlen as
Jollows:
b) e+ (Z, A~ Z+1,4)+ 7,

Z4+1L,A->Z H+et+v, or e+ (Z+1,4)(Z, A)+ v,

so that
et +Z A Z, D+t tvty, or et (G, A, A)+v+ .

In these cxpressions Z is negative. Pinaev suggested the second zlternatives in the second
and third lines of () and (b).

4. Pontecorro has suggesied the process of neulrino bremssirahlung in which a newlrino
pair replaces the usual photon emilled in inelasiic eleciron scatiering, The process can be
wrillen for either positrons or electrons as follows:

e+ (Z, D)+ (Z, A+ v+v.

5. Rilus and olso Chiu and Siabler have suggested o pholoneulyino process in which a
neutring pair replaces the scattered pholon in pholon-electron interactions:

v+et—et+rv .

6. Chiu and Morrison and, independently, Levine have discussed a pair-annihilation
neulrino process in which a newlrino pair replaces the pholons usually emilled in eleclron-
posityon annihilation:

e

The electron-positron pairs ate produced at high temperature in stars by the electro-
magnetic radiation field. Note that pair annihilation effectively occurs through the
Pinaev alternative in (3).

7. Chiv and Morrison have also suggested neulrino-parr emission in pholon-pholon
inleraciions:

@ y+r—r+v,
) y+vy—ov+rv+or.

Gell-Mann has shown that 7(2) is forbidden for certain forms of the weak interaction.
8. Matinyan and Tsilosani and also Rosenberg have discussed newdrino-pair production
by photons in the Coulombd field of o nucleus:

7+(ZJ A)——)(Z! A)+1’+ v.
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9. Adams, Ruderman, and Woo have suggesied neutrino-pair emission in the decay of
plasmons ('ypl) we a siellar plasma:

'yp1—>v—|—5.

It will be noted in processes (4)—(9) that neutrino-pair emission replaces photon emis-
sion, singly or in pairs. The theoretical and experimental foundations of these processes
and of processes (1)-(3) merit attention at the onset of this discussion. Processes (1)—(3),
involving electron or positron cmission and electron capture by nuclei, have been known
for many years. Our undcrstanding of these processes and our knowledgc of their reac-
tion rates have been greatly enhanced by the overthrow of parity conservation and the
subsequent quantitative progress made possible by that event. For an excellent review
of this exciting chapter in the modern history of physics, the reader is referred to the
contribution by Wu (1961) to the Pauli Memorial Volume. Chapter xv of Physics of
the Nucleus by Preston (1962) gives the theory of weak interaction processes in some
detail. Even before the overthrow of parity, processes (1)-(3) were shown to involve
neutrinos or antineutrinos by the experiments of Cowan, Reines, and their collaborators
(see Reines [1960] for a review discussion). These investigators showed that the anti-
neutrinos produced in fission reactors by process (2b) are absorbed in hydrogen. We add
this process to those listed above.

10. Antineutrino absorption stimulaies proton decay with positron emission according
to the reaction:

Q)7 +p—on+t €.

Reaction (10a) results in two detectable effects, the radiative annihilation of the positron
and the radiative capture of the neutron by nuclei in the material of the experimental
apparatus. The detection of these radiations is taken as obscrvational proof that anti-
neutrinos are emitted in 2(b). For the other processes in (1)-(3) the emission of neutrinos
and antineutrinos remains to a certain extent a matter of inference. Thus neuirino ab-
Sorption by neulrons in nuclei (stimulaled neuiron decay) has not been observed because
high-inlensity neulrino sources { fission veactors arve anlineulrino sources!) are nol available
terrestrially. However, for compleleness we list this process as follows:

WY v+n—op+e.

The cross-sections and mean free paths for neutrino and antineutrino absorption will be
discussed at the beginning of Part IT of this paper.

It will be observed that process (2d) for the free neutron is the spontaneous process
corresponding to process (10b). In fact reaction (10b) is obtained from process (2d)
merely by transposing the antineutrino to the left-hand side of process (2d) and changing
it into its antiparticle, the neutrino. In general, when a particle from one side of a reac-
tion is transposed to the other, it will be replaced by its antiparticle. Thus the equations
for antinucleons corresponding to reactions (10a) and (10b) can be immediately written
out, if desired, by transposing the proton and changing it to the negative proton and by
transposing the neutron and changing it to the antineutron. Similar operations can be
performed on processes (2a) and (2b). We will not have occasion to deal with antinucleons
in this paper, but it will be realized that stars composed of antimatter, again if such exist,
will undergo the same processes as stars composed of matter, with antineutrinos replacmg
neutrinos and vice versa and, in fact, in all cases, anliparticles replacing the correspond-
ing particles and vice versa.

Before the Cowan-Reines experiments the existence of neutrinos and antincutrinos
had an implicit basis in the experimental confirmation that these particles were required
to conserve energy, angular momentum, linear momentum, and statistics in beta-decay
as first suggested by Pauli and so successfully exploited by Fermi (see Wu 1961), In
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this connection, it is perhaps not irrelevant to notc that neutrinos were also thought
necessary to “conserve parity’’ before it became apparent that parity was not conserved
in weak intcractions. Neutrinos have survived the non-conservation of parity even
though they were introduced in part in order to conserve parity.

The situation in regard to processes (4) (9) is quite different than for processes (1), (2),
(3), and (10). To obtain a clear appreciation of this situation, it is necessary to appraise
bneﬂy the current status of the theory of the weak interactions. On theoretical grounds,
Feynman and Gell-Mann (1958a), Sudarshan and Marshak (1938), and Sakurai (1958)
proposed that the Fermi interactions have a universal form and a universal strength.
The form is polar vector minus axial vector, customarily designated “V-A” since thc
phrase “polar-vector interaction” is usually shortened to “vector.” It will be recalled
that the electric field is a polar-vector field, while the magnetic ficld is an axial-vecior
field. The word “minus” in the description of the Fermi interactions appropriately de-
scribes the nature of the interference effects which frequently arise between the polar-
vector interaction and the axial-vector interaction. In addition, Feynman and Gell-
Mann (1958) and Gell-Mann (1938) proposed that the polar-vector part of the weak
interaction current is conserved, i.e., it is unchanged on renormalization in the case of
nucleons which have strong nucleonic interactions. This is accomplished by including
pion contributions as well as nucleon contributions in nuclear beta-decay. The same
remarks are also true for the electric field: that produced by the proton is the same as
that produced by the positron, i.e., these particles have the same electric charge. The
electric charge of the proton is independent of the proton’s strong nucleonic interaction.

On the basis of universality the polar-vector coupling strength in nuclear beta-decay
should equal the coupling in muon decay, which requires no renormalization since muons
do not enjoy the strong nucleonic interactions. This is not the case for the axial-vector
interaction which is expected to be changed upon renormalization in the case of nucleons,
although an unambiguous theoretical calculation cannot be made. Empirically the fact
that the axial-vector coupling strength is 20 per cent greater in amplitude than the polar-
vector coupling in nuclear beta-decay can be attributed to renormalization effects. Simi-
larly the proton and neutron do not have the Dirac values for their magnetic moments.
Renormalization does change the magnetic moments of the proton and neutron but not
their electric charges.

The V-A form of the Fermi interactions is in excellent agreement with experiments on
parity non-conservation and lepton conservation (see Konopinski [1959] for a review
discussion). The universality of the coupling strength has been demonstrated in that the
coupling constant (analogous to electric charge in electromagnetism) in muon decay has
indeed been found to be very nearly equal experimentally to the vector-coupling con-
stant in the decay of the radioactive nucleus, O™, This last decay has certain properties
which make it less dependent than in most cases on detailed knowledge of the internal
structure of O" and of the radioactive product, the excited state of N* which is the
isotopic spin counterpart of O'. The experimental discrepancy according to Bardin ef
al. (1960, 1962) in the equality of the muon and vector coupling is 2.0 3 0.2 per cent,
or ten times the probable error of measurement. In a number of similar decays the
discrepancy is 2.2 £ 0.2 per cent according to Freeman ef al. (1962, 1964). However, these
discrepancics are probably due to poor estimation of theoretical corrections to the decay
rates, to a weak charge-dependent nuclear force (Blin-Stoyle and Le Tourneux 1961),
to a finite mass for the vector boson which may serve as the exchanged “quantum” in
the weak interactions (Lee 1962), or to the fact that the muon coupling constant may
include a small strangeness-non-conserving term as well as the strangeness-conserving
vector coupling term (Feynman and Gell-Mann 19585, Cabibbo 1963).

The conserved-vector-coupling hypothesis has also been found to be in agreement
with observations on small theoretically predicted effects in the mirror decays Lif, B®
(Nordberg et al. 1960, 1962) and BY?, N'? (Mayer-Kuckuk and Michel 1961, 1962; Lee
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et al. 1963). In addition the theory predicts the right order of magnitude (~ 10~%) for
the ratio of pion beta-decays, 7+ — x° + ¢+ 4- v, to normal pion decays, 7+ — g= + »’
(Bacastow, Elioff, Larsen, Wiegand, and Ypsilantis 1962).

The situation, then, is that a fairly complete theory of the weak Fermi interactions has
been verified in many details. However, processes (4)-(9) have not been observed in the
laboratory because the very low cross-sections to be expected theoretically place them
below the limit of detectability at the present time. The essential point theoretically
comes down to the qucstion of the extent of the universality of the interaction, as will
become clear in the following paragraphs.

The weak Fermi interactions are “point” or, at most, very short-range (< 4 X 10~
cm) interactions between fermions in groups of four. This is apparent in the processes
previously listed except for processes (7a) and (7b), which are induced by a pair of
photons which are hosons and not fermions. Process (9) involves a single plasmon.
Howcver, processes (7a), (7b), and (9) occur through an intcrmediate pair of virtual
fermions, e.g., an electron and a positron, which are not indicaled in the symbolic reac-
tion. The four interacting fermions occur in pairs:

(1) antineulron-prolon (#p), (2) negelive proton—neutron (pn), _
(3) positive electron-neulrino (av), (4) enlinewtrino—negutize eleciron (ve),
(5) positive muon-neutrino (iv'), and  (6) antineulrino-negative muon (V).

Here we use e = e-, € = e, u = u~, and @ = p*, and the ncutrinos associated with
muons are distinguished by a prime superseript. The particle-antiparticle combinations
guarantee the conservation of nucleons and the conservation of leplons (electrons,
muons, neutrinos) in all the interactions. Thus, for example, the negative proton-neutron
combination can transform into the antineutrino-negative electron combination, and
when the negative proton is transferred to the final stage of the process becoming a pro-
ton, the final transformation describes ordinary neutron decay (2d). Transposing the
antineutrino (o the initial stage and changing it into a neutrino yields stimulated neutron
decay (10b), a process in which only particlcs and no antiparticles are involved. From
these considerations it will be clear that the antincutron-proton combination caly be
interpreted as the destruction of a neutron with the production of a positive proton. In
the mathematical formalism (2), (4), and (6) are represented by the Hermitean conju-
gates of (1), (3), and (3).

Recent cxperiments by Danby, Gaillard, Goulianos, Lederman, Mistry, Schwartz,
and Steinberger (1962) indicate that the neutrinos associated with muons arc not iden-
tical with those associated with electrons, but the present considerations are independent
of this point. It is known that pairs of the so-called strange particles, e.g., kaons, do not
share the full strength of the interaction between ordinary fermions, but again the pres-
ent considerations are unaffected one way or the other except in that the muon coupling
constant may be slightly greater than the vector coupling constant if it includes a
strangcuess-non-conserving term.

In calculating the transition probability or rate of any one of the Fermi interactions
using the Feynman—Gell-Mann theory, it 13 first nccessary to evaluate the transition
amplitude as the “square” of a Fermi interaction current. Formally, the interaction
current, J, with p = 1,2, 3, 4, or x, y, 3, /, must be multiplied by a propagator, D,,, and
then by its Hermitean conjugate, J,*. In the considerations which follow we can ignore
the propagator. Contributions to the current come from terms stipulating the appropri-
ate operations on the wave functions of each of the coupled pairs mentioned above.
Thus the interaction current is given by

Ju = (Ayuap) + (Bvuav) + (Eyuar’), )
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where v, is a Dirac operator, 2 = 3(1 + 4vs) with y5 = 1 2 ¥s ¥4, and the particle
symbols represent the appropriate wave functions. Similarly

Jit = (ﬁyLa}j“' +...=Pvian)+ ... )

with & = 4(1 — 1vy). The polar-vector coupling is represented by #¥,/2 and the axial
vector by —iy,vs/2.

On the principle of universality the terms are all weighted equally in the total sum
for the current. Additional pion terms must be added to the nucleonic terms to give
no change on renormalization for the polar-vector coupling. Physically these pion terms
correspond to the observed decay of charged pions. This decay can appropriately be
added to our list of processes.

11. Charged pions decay through o pair of virlual nucleons lo muons and neutrinos as
Jollows:

(@) 7= (p+ A =+ w+ + A or (p+ ut+ ¥+ D)o+
By r—=>GF+n) G+ +¥V+nor(p+u +V+pou+7.

Annihilation of nucleons and antinucleons occurs in the intermediate stage.

It will be clear that the “square” of the current contains cross terms as well as square
terms. For simplicity we ignore the operators, v,e, and then the cross term, (7p)(év)* =
(ap)(we), can be read as the destruction of a neutron and a neutrino with the creation of a
positive proton and a negative electron which is just process (10b), or after transposition
of the neutrino, just neutron decay (2d). The cross term (&v)(s1p)T = (év)(pn) represents
electron capture by protons or proton decay after transposition of the electron. In a sense
this term is redundant since it is just the reverse process to the first cross term discussed.

The two other cross terms, excluding redundancies, correspond to muon decay
(5v')(ve) and muon capture (g»")(pn). Although we will not discuss muon processes in
this paper, they may eventually prove of interest in stars if very high temperatures are
attained. Thus muon processes can be added to our list.

12. Muons decay to elecirons, neulrinos, and antincutrinos as follows:

(@ w—oe+vV+v,
) wroe -+ 7 4.

13. Muons are caplured by protons and neulrons as follows:

@) uww+p—ontv,
by ut+n—p+7.

The capturing proton and neutron can, of course, occur as nucleons in nuclei. Examples
of cross terms and square terms are presented briefly in Tables 1 and 2.

The present observational situation indicates that the transition amplitudes in proc-
esses (1)—(3) and (10)—(13), which involve representative nucleonic, pionic, electronic,
and muonic cross terms, do have a universal value. However, “square” terms and, in
particular, {(ev){év)™ = (&v)(ve), are involved in processes (4)—(9). Thus process (6) can
be described by first writing (&v)(ve) which describes neutrino scattering by electrons,
v+ ¢ — v+ ¢, and then transposing the electron on the right-hand side so that a
positive electron as well as a negative electron occurs in the initial stage and finally
transposing the neutrino on the left-hand side so that an antineutrino as well as a neutri-
no occurs in the final stage. The result is e* -+ 6~ — » -+ ». As another example, trans-
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pose both neutrinos to obtain antineutrino scattering by electrons, 7 4 e~ — v 4 ¢,
Because of experimental dificulties arising from the smallness of the cross-sections in-
volved relative to the corresponding cross-sections for photon emission, these processes
involving “square” terms have not been observed. The Feynman-Gell-Mann theory
states that the “square” terms appear in a straightforward way and that the interactions
they describe share the universal coupling. A contrary theory might well be formulated
in which, for example, an interaction current did not serve as the starting point. How-
ever, for the present, the simplest hypothesis is to begin with an interaction current
and to extend the universality observed for the cross terms to the “square” terms. Then
1(1n)zu?b)iguous and explicit calculations can be made on the reaction rates of processes
4)-(9).

Experimental proof of the “square” terms will be difficult. The “square” of the nu-
cleonic terms (fip)(7p)*™ = (fip)(Ppn) describes nuclear scatterings and reactions in-
duced by the weak interaction. These nuclear processes will not conserve parity, where-
as nuclear processes induced by the strong nuclear forces are believed to conserve parity
strictly. The parity-non-conserving amplitudes will be small compared to the parity-
conserving ones, but measurements of the interfcrence between these amplitudes may
eventually prove successful (Michel 1964). The establishment of onc type of “square™
term would sirongly point to the existence of the others. There is another interesting
possibility for experimental investigations. If the weak interactions are due to an wxl
(vector boson) acting as a quantum just as the photon does in the case of the electro-
magnetic interaction, then the interaction current theory follows directly, again just as
in the electromagnetic case.

14. The interaciions of charged uxl's or vector bosons (excluding muon and kaon inter-
actions) can be represenied as follows:

(@) pr+Aa—->Ut—ut
—et+ v,
O pr+no>U—p +V
—e + v,

TABLE 1

THE WEAK INTERACTION: CROSS TERMS
(UNIVERSAL STRENGTH OBSERVED)

Fp)ve)........... ntr—pt+e
or n—p+e+5 Observed beta decay
(wY(pn). ... u+ponty Observed muon capture
(@)ey........ .. u+r—e v
or uo—e+y+v Observed muon decay
TARLE 2

THE WEAK INTERACTION: SQUARE TERMS
(UNIVERSAL STRENGTH ASSUMED)

() pte vt Unobserved neutrino-electron scattering
or &t —yv+3u Unobserved annihilation with neutrino emission
competes with
et —y vy Observed annijhilation with photon emission
G/(&/ hc)P~10718 Fractional competition
(Pr)inip). . ......... Ptn—ptn Nucleon scattering with party violation
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where v, is a Dirac operator, ¢ = (1 + iv;) with v5 = v1 v2 vs ¥4, and the particle
symbols represent the appropriate wave functions. Similarly

J;t = (ﬁYvdP)+ +...= (ﬁ‘ijn) + ... (2)

with 2 = (1 — 2y;). The polar-vector coupling is represented by ¥,/2 and the axial
vector by —1iy,ys/2.

On the principle of universality the terms are all weighted equally in the total sum
for the current. Additional pion terms must be added to the nucleonic terms to give
no change on renormalization for the polar-vector coupling. Physically these pion terms
correspond to the observed decay of charged pions. This decay can appropriately be
added to our list of processes.

11. Charged pions decay through a pair of virtual nucleons lo muons and neuirinos as
Jollows:

@ =@ +A >t ut+yF o P+t + v+ o+,
O r>@Ptn) G+ +V+n)oa (Pt +V+p—ou+v.

Annihilation of nucleons and antinucleons occurs in the intermediate stage.

it will be clear that the “square of the current contains cross terms as well as square
terms, For simplicity we ignore the operators, v,@, and then the cross term, (p)(év)* =
(7ip) (ve), can be read as the destruction of a neutron and a neutrino with the creation of a
positive proton and a negative ¢lectron which is just process (10b), or after transposition
of the neutrino, just neutron decay (2d). The cross term (&v)(sip)* = (&v)(pn) represents
electron capture by protons or proton decay after transposition of the electron. In a sense
this term is redundant since it is just the reverse process to the first cross term discussed.

The two other cross terms, excluding redundancies, correspond to muon decay
(av")(ve) and muon capture (2»")(fn). Although we will not discuss muon processes in
this paper, they may eventually prove of interest in stars if very high temperatures are
attained. Thus muon processes can be added to our list.

12, Muons decay fo eleclrons, neulrinos, and anlineulrinos as follows:

@ p—oet+v+v,
(b) ‘u.+—)£++?+1’.

13. Muons are captured by prolons and neutrons as follows:
(@ p+p—ont+v,
) ut+n—p+¥.

The capturing proton and neutron can, of course, occur as nucleons in nuclei. Examples
of cross terms and square terms are presented briefly in Tables 1 and 2.

The present observational situation indicates that (he transition amplitudes in proc-
esses (1)-(3) and (10)-(13), which involve representative nucleonic, pionic, clectronic,
and muonic cross terms, do have a universal value. However, “square” terms and, in
particular, (&v)(é»)t = (&v)(pe), are involved in processes (4)—(9). Thus process (6) can
be described by first writing (év)(ve) which describes neutrino scattering by electrons,
v+ ¢ — v+ ¢, and then transposing the electron on the right-hand side so that a
positive clectron as well as a negative electron occurs in the initial stage aund finally
transposing the neutrino on the left-hand side so that an antineutrino as well as a neutri-
no occurs in the final stage. The result is e + ¢~ — v + ¥. As another example, trans-
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neutrino typically receive kinetic energies around 1.4 MeV. Thus the loss is 1.4 MeV/
22.8 MeV ~ 6 per cent. In the r-process in Type I supernovae (B?’FH 1957; Becker and
Fowler 1939) approximately three capture gamma rays of considerably lower energy,
~5 MeV total, are followed by a much more energetic beta-decay in which antineutrino
and clectron energies are about 6 MeV each so the direct energy loss is 6 MeV/17 MeV ~
35 per cent of the total. These losses are not as critical as others to be described and will
not be elaborated upon at this time. The point is that some nuclear energy is made avail-
able in the interior of a star by these processes even though some escape as neutrinos.
In 1941, Gamow and Schiinberg proposed process (3) as the mechanism for energy
loss which could lead to catastrophic implosion in supernova events. Losscs of the order
of 10" erg gm™! sec! arise in the equilibrium mvolvmg 2sFe® or (26, 56) as (Z, 4) in
pracess (3) and »Mn*® or (25, 36) as (Z — 1, 4) in pre-supernova stars with central
temperatures near 7 = 7 X 10° degrees and’ density p = 107 gm cm~3. Hoyle (1946)
and Hoyle and Fowler (1960) showed that this process was not nearly as effective a
mechanism for refrigeration as the photodisintegration of iron-group nuclei into alpha-
particles and neutrons which occurs at the temperature and density just indicated and
which is discussed in some detail in Part VIII of this paper. However, with the dis-
covery of processes (4)-(9) the question has been reopened by Pontecorvo and others.
It is now generally agreed on the basis of the universal theory of the weak Fermi inter-
action, the foundations for which were discussed in detail in Part I, that process (6) is
by far the most effective of all the ncutrino loss mechanisms in massive stars with
M > 10 Mo. It alone will be discussed in the sequel. As far as the present authors are
aware, the cross-section for this process was first derived by Levine (1960, 1963) who

found d=iG2( i )z (ﬁ)[(uﬂ— 1)_l(ﬂ>2(w4—2w2—2)+ ]
3x Mmel v S

~1.424% 10-5 (?‘j)(w— 1)cm?,

3)

where W = wm.c? is the total energy (rest mass and kinctic) of the annihilating electron
and positron in their center-of-momentum coordinate system and o is their relative
velocity, while m, is the mass of the vector boson and G = 3.00 + 0.03 X 107% is the
dimensionless interaction constant for the polar-vector beta-decay which, as discussed
in Part I, is experimentally and theorctically close in value to the coupling constant for
the muon decay. The numerical value of G is the average of the experimental results of
Bardin ef ¢l. (1960, 1962) and of Freeman et al. (1962, 1964). The numerical value given
can also be expressed non-dimensionally as G = 1.00 + 0.01 X 10~ (m./M,)*, where
M, = 1822 m,1s the atomic mass unit while in cgs units G#/m.2c = 1.41 + 0.01 X 10~
crg cm?. The other symbols have their customary meanings; #/m.c = 3.8614 X 10~
cm is just the Compton wavelength/2m of the electron. The numerical form of equation
(3) neglects the term in (m,/m;)* < 1075 The cross-section for annihilation with photon
emission is proportional to (e*/m.c*}>. Thus the ratio of neutrino emission to photon
cmission is of order (Ghe/e®)? ~ (137 X 3 X 10712)2 ~ 1071°,

Using equation (3), Levine (1960, 1963) and Chiu and Stabler (1961) have calculated
the neutrino luminosity of stellar material starting with the equation

du,
dt
where n, and n_ are the positron and electron number densities per cm? and the average

indicated is taken over the distribution in total cnergy, W, and relative velocity, v, of
the positron-electron pair. Similarly, one can write

av, _
di

=nin-(arW> ergcm™¥sec™!, @

N+iN-—(ooW) erggm—lsec™t,
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where p dU,/d! = du,/di, p is the density in gm cm—3, and Ny = n,/pand N_ = n_/p
are the positron and electron number densities per gram. (In regard to notation, lower-
case letters will be used for symbols designating quantities per cm?® and capital letters
for quantities per gm.) Numerically, one has before averaging

otV = 349 X 107 (e — o) erg cm? sec! . (8)

The Fermi-Dirac number densities of positrons and electrons in equilibrium with the
radiation field and with nuclei are
n’dn
o eXp[Z(n2+1)L/2i<pl + 1

1 . )/‘“’ w(w?— 1) duw
exp(zat o)+ 1"

m,C

i*Pf\i——'<

where 2 = m,c*>/kT = 5.930/T, with Ty = T/10® degrees, 7 is the positron or electron
momentum in units of 7m,¢, « is the total energy in units of m,c?, ¢ = &/kT i3 the chemical
potential for positrons (use + sign) and electrons (use — sign) in units 27, The chemical
potecntial can be determined by using the auxiliary condition

Ne = H_ — My, 8)

where #y = p No = Zny = pZ/AM, is the number of ionization electrons per cm? asso-
ciated with nuclei of charge number Z, mass number 4, and number density 7y per cm?,
Ny 1s the number of electrons per gram, M, is the atomic mass unit on the new C2 = 12
scale, and A/Z is the mean molecular weight per electron in the absence of electron-
positron pairs. Appropriate averages can be taken in the case of mixed nuclear content.

This paper is concerned principally with Type II supernovae, which, according to
Hoyle and Fowler (1960), occur as the final evolutionary stage of massive Stﬂl‘S (M > 10
M o). In the pre-supernova stages of such stars the electrons and posttrons are non-
degenerate, for which the inequality exp [2(n* + 1)V/% £ 4] >> 1 holds in the region
where the maximum of the integrand occurs in equation (7). In what follows this approx-
imation will be employed so that

ny=p Ny =mexp (F o), ®
where

3 >3
m=pN1=;1;<m£C)_fu expl — z(n?+ 1)12] 2d
1 mcc)-/‘ exp(—zw)( )aﬁdw (10)

() o

=1688X 1023Tg3Kg(z)cm"3 .

MG

In the last expressions Ka(z) = Ki(5.93/Ts) = 32* Ka(z), where Ku(3) is the modified
Ressel function of second order. Figure 1 shows K as a function of 7 = m.c/kz. In the
extreme relativistic (ER) non-degenerate case one has

Ki=1 kT >mst, ER ay
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F1G. 1.—~The function K1(z) = (*/2)Ka(s) plotted versus temperature in 1098 °, Kx(z) is the modified
Bessel function of second order and 5 = m,c3/2T = 5.93/T. K1(g) 1s useful in determining the number
density of electrons and positrons in non-degenerate stellar matter.

while in the non-relativistic (NR) non-degenerate case

T3\ 15 105
R~ (T5) e (=) (g bt )

;:5—9—'-% exp (—'—5—-9—3:)( 14+0.316T4+0.023T24-...) kT < m.c2. NR a2
Ty Ty
In the first case
my =~ 1.688 X 10% T¢® cm—3 ER u¥»
while in the second case
n1 = 1.5321 X 10%7,3/2 exp(—s;)s) cm™. NR a9
9
The non-degenerate approximations yield
nin— = n?
or
N+N-= N, (15)
and
fi/n—=N+/N-=exp(— 2p)
or
i f— N- N— N
= }ln =k Ine—~ [no— ~ Jn—~. (16)
¢ kT %n”_'_ %nN+ DN1 th+
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Equation (15} shows that the product of the number densities is independent of the
density (n,) of electrons associated with nuclei. This is a most important non-degenerate
result, since the product occurs in equation (4) for the neutrino luminesity. Equation
(16) yields the chemical potential if the number densities of electrons and positrons are
known. Chiu and Stabler (1961) combine cquations similar to equations (8), (9), and
(10) to derive explicit values for these densities as follows:

ny = pNy =~ F (n0/2) + [(6/20 + m2]1, an
so that the total number of electrons and positrons is given by
n.=pN,=n_+n = [71-02 + 45 12 = ) [N02 -+ 4N[2]l‘m . (1B)

For no 3> m, n_ ~ ng and ny ~ n*/no, while for m >> nq,n, ~m,n, = n_+ n, = 2ny.
Equations similar to (9), (15), (17), and (18) can be written down for V, and N_ in
terms of Ny and N, all of which are number densities per gram. Higher order approxi-
mations for 7, and N, are discussed in Appendix B.

Figure 2 illustrates the temperature dependence for nin_, {c#W), and du,/dt. The
non-degenerate integral for du,/dt has been evaluated in terms of modified Hankel func-
tions by Talbot (1964) and the high and low temperature approximations given by
Levine (1960, 1963) and Chiu and Stabler (1961) have been confirmed. One has

duy/dt= PdUp/dt

4 3
=$G2(%) m,C? (';') (22K1K2+5K29+2K1K3+-§KzK:s)
3
=0.325 X 102 (i) (22K1K2+5K22+2K1K3+-2—KgKg) (19

1\3
~1.02x10% <;) exp( ~ 23 )erg cm—?sec™!

~4.89X 1087 exp( — 11.86/Ty)
for k(T < moc?/20r Ty < 3,
and

du,/dt=pdU./dt

2260 (") moct () (BBt §uRiRit s Rt by KaR)

= 4. 16 x 10”’ (EI)Q(KQK:;"—%ZEKIKS"'%Z’KZZ+§1%2—B‘K1Kg) (20)

bl
~4,16 X 102 (%) erg cm¥sec!

~ 4,58 X 101T,?
for 2> m,c2/20r Ty > 3.

In these expressions Ki(z) = zKi(z), Ka(2) = 32*Ka(3) and K,(z) = $28Ks(s) with

K.(z) = (x/22)""2 exp (— ) at low temperature (z > 1) and K,(s) — 1 at high tem-
perature (z < 1),
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Expression (20) serves as a rough approximation down to 7'y = 3 where it is about
50 per cent high. At Ty = 6 it is high by 10 per cent. The asymptotic proportionality
of du,/di with the ninth power of the temperature arises from the fact that nn_ =
n® varies as 7° at high temperatures as indicated in equation (10), while ocsl¥ varies
as W? and thus (eoW) as (ET)® at high temperature. In general under stellar con-
ditions p « 7% so dU,/dt = T® for the neutrino luminosity in erg gm= sec™. In the
sequel, for a star having an evolved core with mass ~20 Mo we find p related numer-
ically to 7% in such a way that

aU,/dt~6 X 10° T¢  erg gm'sec. 1)

Actually, equation (21) is a better approximation than equation (20), since we find
that p Increases somewhat faster than 7%, Equation (21) gives a neutrino loss high by
about a factor of 2 at Ty = 2. It is to be emphasized that the number of positrons and

10%° I I ] I
NONDEGENERATE CASE
(MASSIVE STARS) 1058
M % (0Mg
|024.- NEUTRINO
/LUMINOSITY
ERG CM™3SEC™!
_IOGE
107 -
_lOSB
TEMP
IZ::?;IROE(M PER CM™ —————— =
IOIG_ _
LOW TEMP 54
y, APPROX 7'
~
10% [~ (ov W) ig-3e
=——FRG CM> SECT! —-
] -
5 10° 2 -ls 12)'° 10749
TEMPERATURE

Fi16. 2—The neufrino luminosity and the quantities n.#_ aud {(svW) for non-degenerate stars
plotted versus temperature.
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thus the neutrino luminosity are considerably reduced when stellar material becomes
degenerate. This point is discussed by Chiu and Stabler (1961).

It will be immediately apparent from Figure 2 and equaticn (21) that the ncutrino
luminosity of a massive star becomes considerably greater than the photon luminosity
when high temperatures are reached during advanced stages of evolution. Thus when 1
solar mass of the star to which equation (21) applies reaches Ty = 3.3, one finds a total
neutrino luminosity of 4 X 10*7 erg sec™!, which is 10 times that of the Sun. For com-
parison, supergiants have photon luminosities in solar units of the order of 10%, In gen-
eral neutrino luminosity takes over from photon luminosity in stars when the central
temperature becomes 7'y ~ 0.5. Chiu and his collaborators have discussed this matter
in considerable detail, and we will confine our considerations to very advanced stages of
stellar evolution for massive stars—Type II supcrnovae.

IIO0. THE DENSITY-TEMPERATURE RELATION FOR MASSIVE STELLAR CORESB
BEFORE IMPLOSION: EFFECTS OF ELECTRON-POSITRON PAIRS

The basic aim of this paper requires that ncutrino losses in massive stellar cores pre-
ceding and during Type I1 SUPCINOVAE events be compared with nuclear-energy emission
and absorption and that both neutrino and nuclear energetics be compared with the
internal energy content of the star and with the work done by gravitational forces.
These comparisons can only be made in the context of a specified density-temperaturc
relation for the internal material of the star in question. In our first discussion of Typc
II supernovae (Hoyle and Fowler 1960), we took the pre-supernova star to be massive
enough, M > 10 Mo, that its core remained non-degenerate and thus subject at its
center to implosion at the onset of the energy-absorbing, iron-to-helium-neutren phase
change. The explosion of light nuclear fuel in the incompletely evolved material of the
outer portion or mantle of the core was taken as the characteristic Type IT supernova
event. The pre-supernova giant star was assigned a core of mass, now to be designated
by M., equal to ~3 of the total mass, M, with a structure corresponding to polytrope
index, # = 3, for which p « 79. Specifically by M. we mean the mass of the core at
the termination of hydrogen and helium burning in the star. It will subsequently be
necessary to differentiate the mantle of the core from its central region. Outside the
core, the envelope with mass M. ~ 1 M was taken to consist primarily of hydrogen and
helium iu the ratio, 2: 1 by mass, characteristic of Population I material. The discontinu-
ily in mean molecular weight betwecn the uncvolved envelope and evolved core material
was considered to separate the extended envelope from the contracted core to such an
extent that the core could be taken to be gravitationally independent of the envelope
and to have an internal structure as a function of radius and time appropriate to Lthat
of a star of mass M .. Thus M, will serve as an effectize mass value in density-temperature
relations such as equation (28) below. Because of some uncertainty in the ratio, M./ M,
we shall use M. in what follows rather than 3 M used in Hoyle and Fowler (1960). In
order to obtain explicit results we shall take M. = 20 Mo in the numerical example
corresponding to the previous choice M = 30 M . On the other hand M, = 20 M o may
well apply more accurately to M as high as 60 Mo. The important point is that the
results reached in the specific example M. = 20 M o, independent of the exact value for
M, can be taken to hold in general for stars with cores massive enough that electron
degencracy does not set in until the final stages of evolution when the central region
(~ M o) of the core collapscs to a degenerate configuration. We cstimate that the lower
limit for M. falls in the range 5-10 M o so that the lower Jimit for the total mass is
M ~ 10 M . Some calculations have also been made for M. = 10, 40, and 100 Mo or
M = 15, 60, and 150 Mo.

For a polytrope of index n = 3 it is well known that p = const. (7/u8)?, where u is
the mean molecular weight and § is the ratio of gas pressure to total pressure which
includes radiation pressurc as well as that due to the gas. The constant of proportionality
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in the relation just given depends only on the mass of the star, the gas constant, and the
gravitational constant., The proportionality holds at all points in the star and also at all
times as long as the star is in hydrostatic equilibrium, As illustrated in Figure 3, the
structure of the star can be depicted in a p, T/p8 diagram as sliding along 2 given
curve with p « (7/u8)?, the central situation being given by the leading point on the
curve at all stages of evolution. Figure 3 also illustrates schematically the nuclear evolu-
tion along the (p, T/uf) path of 2 star with M = 30 M o. This evolution will be discussed
in detail in succeeding portions of this paper.

Tbe new element introduced by the creation of electron-positron pairs in increasing
number with increasing temperature is now that u « 1/¥ clearly decreases with tem-
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F16. 3.—Schematic diagram of the nuclear evolution of a star with M = 30 M . The effective mass
hag been set equal to M, = 20 4/ 5 and has been taken constant throughout the evolution.

perature. It will be found in what follows that 8 increases with temperature, but the over-
all result is a slight decrease in the product uf8 and hence in (uf)3 so that p increases
somewhat more rapidly than 77, It is now required to ascertain (uB)* as a function of
temperature and thus to make the appropriate modifications in our work in Hoyle and
Fowler (1960) where we considered (13)? to be a constant. These modifications are dis-
cussed in detail in Appendix B and are found to be quite interesting in regard to the re-
sponse of the internal structure of the star to pair formation but do not change in an
essential way our previous picture of pre-supernova evolution.

Tt will, of course, be clear that the problem here put forth can bhe solved accurately
and completely only by a detailed integration of the differential equations governing the
internal structure of a star. Since this is a matter of considerable time and expense even
employing the most rapid, efficient, and economical of modern computers, it must suffice
at this point to employ polytropic models to reach conclusions which it is to be hoped
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are not too wide of the truth. In the development which follows we essentially assume
that only the equations for hydrostatic equilibrium and the perfect gas law need to be
taken into account as a star contracts through a continuous series of guasi-equilibrium
conditions. Neutrino losses reduce the time scale for contraction to the point where radi-
ation transfer can be neglected. On the other hand, the time scale for pressure adjust-
ment under gravitational forces will be found to be short compared to the characteristic
time for energy loss by neutring processes. This brings us then to the consideration of
polytropic gas spheres in which pressurc equilibrium under gravitational forces is the
basic physical consideration. In our analysis we have been fortunate to be able to fall
back on the general principles presented by Eddington (1930) and Chandrasekhar
(1939). In particular the treatment in this paper can be considered as a moderate exten-
sion of the fundamental work of Chandrasekhar to take into account electron-positron
pair formation at high temperature. This will be especially apparent if reference is made
to the general discussion in Appendix B.

Chandrasekhar emphasizes that even for relativistic energies, Boyle’s Law is identi-
cally true for non-degenerate electrons, nuclei, etc. It will be taken that this applies when
electron-positron pairs are created with relativistic energies under non-degenerate cir-
cumstances. In other words, the mixture of non-relativistic nuclei and relativistic elec-
trons and positrons is a perfect gas. The immediate sequel follows Eddington (1930, p.
116) closely, with appropriate modification for variable g and 8. Eddington (1930, p.
128) treated the case of variable molecular weight.,

Even with variable g, 8 the pressure p in a perfect gas is given by

_pRT ol
p= g 3(1—8)" (22)
50 that
_ apf
p_i.%?ﬁ(l—ﬁ)ﬁ (23)

with the gas constant, ® = 2/M, = 8.314 X 10" erg mole™! (10 °)* and the Stefan-
Boltzmann constant, a = (x*/13)(k*/#%c?) = 7.563 X 10* erg cm™3 (10°°)~* Elimi-

nating T'
IR(L—BI A
T

If the structure of the star (or stellar core in the case at hand) is to correspond to that
of a polytrope of index # in which p « p**/* then the factor in braces must depend in
a very specific way on p, namely, as p3/*1, This is now assumed and constitutes the essen-
tial departure from the detailed calculation mentioned above which must eventuaily
be made.

If the factor of proportionality in the pressure-density relation is designated by , then

(24)

-

p= po-I/n , (25)
where

RT [38?‘(1—8)]‘/3

K = =
pol/u aulﬁdpa/n—l

RT, [3934(1—#30)]‘/“‘

ﬂaﬁopal/n a”04ﬂ04p03/ﬂ—1

In the last equation the factor « is written out for reference in terms of parameters de-
scribing conditions at the center of the core which are here designated with subscript 0.

(26)
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Gravitational effects are introduced in terms of boundary conditions af the cenier by
combining Eddington’s equations (57.2) and (58.3) to obtain

(5: 41’; (n-i— 1> (poﬁ ) , @n

where M, is a constant of integration characteristic of the polytrope with index .
Eddington designated this parameter by M’. The total mass of a star 1s proportional to
M, if the star is a polytrope of index n. Solving for the density-temperature relation

yields
p = —— __.__) (_’) ) ( 28)
47| G M,; ﬂgﬂ (

() Go) Gan) " (5)

In terms of conditions at the center of the star

]ﬂ n
P = Po (ﬂ‘ Y (30)

w87,
where ) 1 iy
Po™ 4r - ) (M> p.aBo) =3.90X 10, ( O) < gmcm—a @31

with a, = (n + 1)* M.’ Representative valucs for a, are oy = 24.0, a1 = 78.9, ay5 =
115, ag = 157, as5 = 206 a3 = 2604, azs = 327, a5 = 404, a5 = 648, a,, = 696.

Equmtmn (31) stipulates that the central den51ty varies as (T/ 18),* during contraction
of the star as long as the polytrope index remains a constant. The factor of proportionali-
ty clearly depends on the value of the polytropic index. Consider now the variation of
density for any particular sample of stellar material, not just that at the center. We can
designate such a particular sample as the increment in mass dM, just extcrnal to the
sphere which always contains mass M,. Now for all polytropes it is well known that A,
can be taken as the independent variable in place of the radius, r, throughout the struc-
tureof the star. For each specified value of M, /M ,one finds that p/p. and (T/ uB)/(T/ 1),
are fixed throughout the contraction as long as # remains unchanged. Thus equation (29)
shows that for any particular sample of the stellar material p « (T/ug)? as the star
contracts, but now with a factor of proportionality which depends not only on the index
n but on the location in the star. Chandrasekhar (1939) points out that this result was
originally due to Ritter. This means that each point on the curve in the p, T-plane for
any polytrope of constant index n moves along a contour given by p(ug/7T)® = constant
as a polytrope contracts {or expands) between quasi-equilibrium configurations. The
polytrope 7 = 3 slides along a single contour, while the polytropes with n # 3 sweep
out an area in the p, 7-plane. Equation (22) can be used to show that for a given element
of mass, p « p*/* « (T/uB)* as the star contracts again for any fixed 7, The situation is
illustrated for # = 1.5 in the lower left-hand corner of Figure 3.

In the sequel we will derive and use an important relation, equation (69), which de-
pends only on the facl that the exponent in the “evolutionary” power law relation be-
tween p and 7'/uf is equal to 3 and not on the factor of proportionality, and thus not
on the index » or the particular mass element in the star. However, other important
relations do depend on 1, so some value for this index must be chosen. The range of »n
can be restricted Lo 1.5 < »# < §, however. Convection at the speed of sound sets in if
n falls appreciably below 1.5. The resulting very rapid loss of energy from the core then
modifies the stellar model, in the sense of cutting back the convection. Hence 1.5 may
be taken as a reasonable lower limit for #. The upper limit arises because polytropes
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with n > 5 do not possess finite radius. It follows that the range of a, in equation (31)
amounts to a factor less than 6. And if we choose # = 3 as an explicit case the value of
a; lies within a factor 2.5 of a, for all other physically permissible polytropes. This choice
also has the advantage that p o« (7/p8)? holds good with the same constant of propor-
tionality everywhere throughout the star at all times. Thus, with M5 = 2.018, a3 = 260,

it is found that
{32)
p= er( ) (
Numerically,

ﬂ{ 3
p=1.016 X 107 M@) %) gmcm—?

=2.54X 104 (—2) gmcem~Sfor M, = 20Mp, M = 30My. (33
o

We shall use equations (33) not only at a particular moment of time hut throughout
the evolution of the star. It would be possible to consider # as varying with timc. For
material near the cenler, which is our main concern, such a variation would produce a
change with time of the numerical coefficient in equation (33), this being just thc change
of a, in cquation (31). The change is limited, however, as we have seen, to a factor of
about 2.3, and this is not of importance to the following considerations. In the absence
of precise evolutionary computations, equation (33) gives a very satisfactory approxi-
mation to the relation between p and T for a non-degenerate star of nearly uniform
molecular weight. It is the nature of the path in the p, T-plane which is important
in determining the nuclear evolution of a star; given p = f(7') one variable is removed
from nuclear-reaction rate equations.

The adoption of the case » = 3 requires (1 — 8)/u4*8* to be a constant, independent
both of time and of position within the star. In the past it has been possible to use this
fact with p = 4/(Z + 1) to determine 8. However, u is a variable when pairs are pro-
duced at elevated tcmperatures.

It is thus required to express (¢8)% in terms of p and/or T in order to obtain an explicit
o, T-relation. This can be done straightforwardly. The mean molecular weight can be
found from

1 M, 2N
=N u_n =(.-"\"N-|-E\)'G)Mu 1-|—( } (34)
Y p Ny

where V is the total number of particles per gram mcludmg nuclei (V N) and electrons
plus positrons (¥, = N} + N_). (Note that we express u in the same atomic mass unit,
M, in which atomic weights are expressed and #of In terms of the mass of the hydrogen
atom.) The nuclei are taken to be completely stripped of electrons at the temperatures
of intercst. We have used No = ZNy = Z/AM,, in equation (18). The reciprocal of 8 is
given by

1 aT?
2o 3
5 14 3oNE (35)
so that equations (34) and (35) give
1 N als
- . (36)
= W= e[ (BT 4 ‘

The nuclear term (1/4) can usually be neglected and will be in what follows. Equation
(10) yiclds

2Ny 4 AM,

.L\TO T t

3T
(_ﬁ_t;) r Ky(z)=3. 604)(104:,{1119 K,(5.93/T,). a7
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When equation (33) for the polytrope with » = 3 is introduced, this becomes

2N _ M, A
EVO 47T 23 ﬂla

M.

= —a___
5.51X10 7

=4.41(pB)*K:(5.93/Ty) for 4 =27, M,=20Mp .

V3K ,(5.93/T) (38)

The numerical coefficient in equation (38) becomes 4.75 for 4 = 36, Z = 26.
From equations (32) and (33) we also have

aT® M GuBN?
= 4 3
3, S OBIXIODS o = s ) (

=2.98X 10"

(39)

=1.19(uB)* for M. = 20Mo, M ~ 30Ms .

Equations (36), (38), and (39) can be combined to give an expression for xf8 as a func-
tion of 5 = 5.93/T in terms of the mass M. of the stellar core and the composition
factor A/Z. After some rearrangement one finds

(5

E0) Re(o) — 1] (uer - 2mup) (Lo ) (wg)i =2 =0,  wo
where

720 /BONE /M A8 R M
"= 5 C) 3)_7“;92& ) 3352( @)

=(0.838 for M.=20Mp, M= 30M¢s .

41)

Actually it is only a matter of tedious algebra to derive equation (41) for a polytrope of
index » just as we have done for the special case n = 3. We give only the result

(B22) Rata) (M) (up e

[ (5 CED o (1o ) (40

(130) Rils )(,u.aﬁT s (42)
4 uB)
[ (1-% u8)- (‘;fTT Ty [ e (145 u8)- (“"BT (u8)*] =
where 45 (n-|-1) e 3 R4 M\
™= L ) M) Z;(”“’a?{a_a(ﬁ)' i

For n = 3 equation (42) becomes
(22) Ratortusr— ns (1= Z s )— st [

which is just another form for equation (40).

ﬂ3(1+% uﬁ)— (pﬁ)‘]=0, (44)
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We can now see that equations (40) and (44) reduce to the famous quartic equation
derived by Eddington (1930, p. 117). If we set K2(z) = 0 and p = A/Z in equation (44)
then, setting the first bracketed term equal to zero, it is found for #» = 3 that

. (wp) w (GY ITAL
1-8= 75 720 \Ac (”ﬁM“)4(M3)

(45)
T oG M\ _ L (MY
=4_§“9%T<“@)‘(M3) = 20810 ’(Me) ()"

which is just the quartic equation. The second bracketed term is not equal to zero. It
must be emphasized that equation (45) is true even in the general case with pair forma-
tion, but it is not immediately useful in this case. Use of equations (34) and (35) with
equation (43) leads directly to equations (40) or (44).

Note also that for 2/l polytropes one has an equation at the center similar to equa-

tion (44),
(22) B2 () (o= [ 1a (1= £ ) — ()]
(46)
X [ 30 (142 pga) = ()] =0,
and for Ko*(s,) = 0 and p, = A/Z,
g, B -

This generalized quartic equation holds at the center of all polytropes even at tempera-
tures where pair formation takes place.

In massive stars at low density when the electron-positron pairs greatly out-number
the origimal electrons, Ny = Z/AM,, we can neglect Zu8/ A in the above expressions to
establish the useful approximate relations

(uf)=tl=1q, (,u,,lﬁ_‘ﬂzj)n—a[l_-F 180 R z)]—l

11-4
or
(n—3)/(n+1 (n—3)/(n+1)
s~ u.fs (z) ) )Nﬂnlﬁ (z) ) Kﬂ( 2)~0 @8
T, T,
and
-1
(u.8,)4 = 1:..[1-!- 1340 Ki(z )] at center, all polytropes (49
~ N KZ(Z)NO
Forn=3
' 180 -1
(aB)* s 14— Ral5) |
™
~ 13 K:(3)~0
M, 2 -1
~ 335.2 M?)[1+1:40K2(z)] allr,n=3 0
Equations (34), (37), (35), and (32) then give
12 180 34r180 -1
w=3352(32) [+ 2 R | S0 K| =3 o
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—1
Bz%}@(s’)[l%-%lfz(z)] . (s2)

1 (4a\/t (Ma\'" 180 i
P47 )AN3G (E) [1+ g K:(Z)] T,

1 ~ 3/4
z1.298>(105(ﬂ5[0> [14—15401(2(2:)] Togmem=, n=3. 63

Equation (52) is independent of the polytropic index #. All of the approximations (48)~
(33) hold numerically only for massive stars (M > 10° Mo). However, the relation
o/T? « M ;1233 more accurate than p/7T? « M2 for M > 10 Mo, General relativistic
cffects make these equations only very approximate above M >10° Mo.

The numerical evaluation of equation (40) for M. = 20 Mo, M = 30 Mo leads to

[K2(5.93/T3)—0.293](uf)?40.491 (x8)4+0.206 (% (48)1—0.206=0. b

Table 3 presents approximate numerical solutions of equations (33) and (54) for the
case M. = 20 Mo, M =~ 30 Mo. The quantity g = 5.93/7, has been taken as the inde-
pendent variable since K is an explicit function of z and the ultimatc object becomes
the determination of the density as a function of tempcrature (tenth column). For
2> 2o0r Ty < 3, A/Z = 2 has been used on the basis that C12, O, . . . | Ni* will suc-
cessively be thc most probable nuclear forms as evolution of the core proceeds. Near
g~ 1.5 or Ty ~ 4, Ni¥ transforms to Fe® and for lower z and higher 75, A/Z = 56/26
has been used. Once (z8) has been obtained from equation (54), equations (38), (18),
(17), (34), (35), and (33) can be used to obtain 2Ny, N, N, u, 8, and p, respectively,
as given in the table. The first part of equation (36) solved for & =~ N, can be employed
as a check on the value for V, found from equation(18). The adiabatic coefficients T'y,
Iy, and T'; can be determined using equations {B95), (B96), and (B97), respectively. The

TABLL 3

THE RUN OF VARIOUS QUANTITIES WITH TEMPERATURE IN A STAR WITH M, = 20 Mg,
M=~ 30 Mo TAKEN AS A POLYTROPE OF INDEX, # = 3, WITH ALLOWANCE FOR
ELECTRON-POSITRON PAIR CREATION BUT NOT FOR IMPLOSION

(For0 < Ty <395 4/Z = 2,for 395 < Ty < @, A/Z = 56/26 = 2.13)

z Ts K z . n8 (ug) a 8 log p Iy Iy bl
= 0 g 1.50 | 1 50 [0.834 [0.581 | 2.00 [0.417 |— = 1 4085 | 1.3442 | 1.3607
6 0.9 | 0.030(1.76(1.99 | 834 .580 | 1.99 | .418 | 4.63 J 1.3751 | 1.3374 | 1.3469
5 .19 | 0.066 | 1.81 | 2.06 ' .832 ST7 | 1.97 | 422 | 4.87 | 1.3577 | 1.3295 | 1.3365
4 .48 | 0.139 | 1.87 | 2.16 | .827 | .506 | 1.80 | .436 | §.16 | 1.3323 | 1.3129 | 1.3175
3.5 | 1.60]0.198 | 1.91 12,22 | .820 ! .551 | 1.79 | .457 | 5.34.1 1,3233 , 1.3027 | 1.3074
3 1.98 | 0.277 | 1.96 | 2.20 | 809 | .530 | 1.67 | .484  5.57 | 1.3209 | 1.2943 . 1.3003
2.5 | 237 |0.380 | 2.02 | 2.37 | .794 | .501 | 1.52 . .523 5.83 | 1.3272 | 1.2910 | 1.2992
2 2.96 | 0.508 | 2.10 | 2.48 | .776 | .467 | 1.37 | .565 | 6.15 | 1.3365 | 1.2936 | 1.3034
1.5 [3.95|0.657 | 221 |260|.756| 431 | 1.24 ' 612 ' 6.56 | 1.3448 | 1.3014 | 1.3115
|
1,5 13.95| 0,657 | 2.20 | 2.60 | .758 | 4361 1.26 | .601 | 6.55 | 1.3439 | 1.3007 | 1.3107
1.0 | 5930812 (2.37[2.75| 739 | 404 | 1.15 | 642 | 7.12 | 1.3459 | 1.3134 | 1.3212
0.85| 6.98 { 0.868 | 2.43 | 2.80 | .732 | 302 | 1.12 | .654 | 7.34 | 1.3440 | 1.3176 | 1.3239
0.7 8,471 0.897 | 2.50 | 2.85 | 730 | .38 | 1.10 | .663 | 7.60 | 1.3427 | 1.3217 | 1.3268
0.5 [11.86(0.943 | 2.61 | 2.91 | .724 | .381 | 1.08 | .670 | 8.04 | 1.3395 | 1.3267 | 1.3299
0 © 1.000 | 3.00 | 3.00 |0.718 0.37D| 1.05 |0.682 ® 1.3333 | 1.3333 | 1.3333
|
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TABLE 3—Continued

223

d0/3T log
Tn P P/ Tob zf'g;,/ No/1001 | N-710% | N+/10% | exp g | @/G+) (;::'_jrg,/ (C‘E‘];ﬁfl
deg) sec™l)

0 0 £33 O 301 301| O © 1 +6.22 | —=
0.99 0.0425 | 434 0,24 | 3.02| 3.02| 0.005| 25.1 0.420 3.69 9.34
1.19 0.0735 | 4.37 | 0.52 | 3.05| 3.03| 0.02 11.7 0.361 2.19 | 10.25
1.48 0.145 445 1.06 | 3.19| 3.10| 0.09 58| 0.301 | —9Q.10| 11.28
1.69 0.220 4,57 | 1.47| 336 | 3.18| 0.18 4.33| 0.271| —1.08| 11.81
1.98 0.369 476 | 198| 3.60| 3.30| 0.30 3.3 | 0.243( —1.3%| 1235
2.37 0.668 503 | 2.56| 3.96| 3.48| 0.48 2,72 0.221 | -0.73 | 12.93
2.96 1.42 542 | 3.18| 439 | 3.70( 0.69 2.33| 0.206| -+0.37| 13.60
3.95 3.62 5.84 | 3.82| 4.86| 3.93| 0.93 2.06 | 0.193 1,20 | 14.39
3.95 3.58 58 | 3.8 | 4.78| 3.79| 0.99 1.96 | 0.181 1,21 14.40
593 | 13.1 6.29 | 4.42| 5.23| 4.01| 1,22 1.82 | 0.178 1.41 | 15.48
698 | 22.0 6.48 | 4.59| 5.37| 4.09| 1.28 1.78 | 0.177 1.23 15.86
8.47| 39.6 6.52 | 471 | 35.48| 4.14} 1.34 1.76 | 0.177 0.93 | 16.25
11.86 | 111 6.64 | 4.84| 5.57 | 4.18] 1.39 1,73 | 0.176 0.37 | 17.21

@ @ 6.8 | 5.00| 5.72) 4.26] 1.46 1.70 | 0.176 0 o

quantities p/T % exp ¢ = N_/N, and ¢/(x + z) can also be computed. Figures 4 and 5
show p, 8, and uf8 and the p, T-path found in the calculations presented in Table 3. In
Figure 5 the p, T-path discussed here holds up to Ty~ 6 and has been extended to
T3 ~ 9. Figure 6 shows the p, T-paths for M, = 10, 20, 40, and 100 Mo or M = 15, 30,

60, and 150 Mo.

2.0

03

EFFECTS OF PAIR (e¥)

FORMATION

Mc‘_'ZOM@, M 3OMO

NO IMPLOSION

-,

TEMP {10° DEGREES)

|
2

4

10

F16. 4 —The quantities u, 8, and uf plotted as a function of temperature in 10° degrees for the case
of no implosion in a star with M = 30 Mo.
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It must be emphasized, however, that the iron-to-helium-neutron phase change and
the helium-to-neutron-proton phase change, to be discussed in Part VIII, cause the core
to implode. Equation (33) is then no longer valid, and the actual density substantially
deviates from that calculated here for Ty > 6. The results obtained in Part VIIT are
tabulated in Table 4 and illustrated in Figures 5 and 6 for Ty > 6. As a final comment on
the p, T-relation we note that p/Ts® varies from 4.33 X 10t at Ty ~ 0 to 6.30 X 10*at
Ty~ 6. In Hoyle and Fowler (1960) we used p/T¢® = 4.3 X 10* showing that the new
considerations have not introduced major modifications, even though the number of
electronic particles has increased by ~73 per cent at T'9 ~ 6. The increase in 8 has par-
tially compensated for the fall in x. As a crude approximation over T’y from 1 to 6 we
have uf ~ T35 %7 and p~ 4.3 X 10* T84,

In concluding this discussion of density-temperature relations, it must be emphasized

I I | T T ]
He' —2p +2n p
s
DENSITY _ -
g/_ GRAM CM~3
0% — -
108 -
'07 . P’T 0-9 |
PATH
O-yFe"’s—- 13He* +4n
M.=20M
M =~ 3OM®
10® - o _
TEMP (I0° DEGREES) |
|

4 6 8 to 12 14

Fre. 5.—The p, T' peth for a star with M, = 20 Mo, M =~ 30 M . The almost vertical curve seg-
ments give the fraction by mass of iron group elements converted to helium and neutrons or of helium
converted to protons and neutrons. The curve above which the electrons are relativistically degenerate
13 also shown,
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that equations (33), (53), and athers of similar nature must not be used for a star of mass
M with M,/M considered to be a constant throughout the evolutionary life of the star.
In the initial main-sequence stage M, ~ M, during the red-giant stage M.~ { M may
be a fair approximation, while in the pre-supernova stage of primary interest here we
have taken M.~ 4M. Some judgment must be utilized in choosing M./M at a given
stage of interest. Nonetheless, equations (33) and (53) are still very useful, especially for
massive stars where equation (50) indicates that uf < M.~'? and thus p/T® « M
(nB)~2 « M2 as explicitly indicated in equation (53). In addition it must also be
emphasized that these relations are fair approximations at the center of the star where
nuclear and neutrino processes are important but fail completely in the outer regions of
stars, especially in the case of the extended envelopes of red giants and pre-supernova
stars. We hope these words of caution to the wise will be sufficient.

] | I I [ 1

p,T PATH FOR SEVERAL
CORE MASSES

M= 3M,
DENSITY
] 0‘«.: GRAM CM™3 n
)
6o
& ,:\8

R

108~

He* ~ 2p +2n

FeS®—+13He* + 4an

TEMP (10° DEGREES) —

I L | l | |
4 6 8 10 I2 14

Fie. 6—The p, T paths for stars with M, = 10, 20, 40, 100 Mo or M = 15, 30, 60, 150 Mo
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IV. GRAVITATTONAL AND INTERNAL ENERGY RELATIONS FOR NON-DEGENERATE GASES
CONTAINING ELECITRONS AND POSITRONS; COMPARISON WITH
NEUTRINO ENERGY LOSSES

With methods for determining the p, T-relation in massive, non-degenerate stellar
cores containing positrons as well as electrons and nuclei now established, it is possible
to consider the work done by gravity and the changes of internal energy that occur as
the core evolves along one of the curves illustrated in Figures 5 and 6. Continuing to

TABLE 4

IMELOSION CONDITIONS
M. =20 Mp, M~ 30 Mo

log ¢Q/4T log dU,/dt
Ty log p (erg gm~!/ (erg gm™/
10° deg) sec)
v+ Fett—=>13Hed+ 4w —2.14 X 101% erg gm™!
On/ Qe (per cent):

[ 4.18

4.08 6.80 16.33 14.78
1............ 5.18

S.68 7.08 17.28 15.28
10.. ... ... 6.18

6.39 7.28 17.71 15.55
20.. ......... 6.60

6.76 7.40 17.84 15.65
30............ 6.51

7.06 7.51 17.87 15.72
40. ... ... 7.20

7.33 7.61 17.93 15.76
50, ... 7.45

7.57 7.70 17.95 15.79
G0. ... ... 7.69

7.82 7.81 17.92 15.81
0. 7.95

8.09 7.92 17.88 15.83
80............ 8.23

8.39 g8.05 17,81 15.83
9. ... ........ 8.56

8.78 8.20 17.64 15.83
9 e 9.0

v+ Het32p+ 28 —6.82%10718 erg gm~!
Qu/Q’= (per cent)

L1 9.24

9.74 8.40 17.31 16.05
K J N 10.24

10.58 8.57 17.31 16.29
S 10.91

11.63 8.80 17,37 16.43
10............ 12.35

13.13 9.12 17.34 16.57
15. ... . ... 13.90

14.75 9.45 17.30 16.70
200 ... 15.60
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cmploy the temperature as independcnt variable, we now wish to calculate the quantity
dQ av dU

ar = P aT T ar o9
where — pdV is the increment of work done by gravity on the stellar core material in erg
gm—, p is the pressure exerted by gas and radiation, and dU is the incremental change
In internal energy in erg gm™! for an increase in temperature d7'. Our treatment derives
from that of Chandrasekhar (1939, p. 394), for non-degenerate, relativistic electrons,
although the notation has been changed to allow for the presence of positrons. The
approximations involved in what follows are discussed in detail in Appendix B. The
quantities of primary interest are the work and energy per gram rather than per cm? so
that it is convenient to take ¥V = 1/p and transform equation (55) to
aQ_pdp dU

T m—r‘ﬁ 56

The sign convention used in equations (55) and (56) is opposite to Chandrasekhar’s.
Our dQ is the negative of his. It will be apparent that dQ in equations (55) and (56) is
the increment in available gravitational energy above that needed to maintain the inter-
nal energy. Dynamical energies have not been included. In classical non-relativistic
dynamics the internal energies of a particular sample of material are independent of the
accelerations and bulk motion of that sample. The pressure must be known as a function
?(p, T). In quasi-static equilibrium the polytropic equations yield p(7T). In dynamic
collapse or explosion methods for determining p(7) will be developed as required.

As the star evolves it is possible to compute dQ/di = (dQ/dT)(dT/dt) once dQ/dT is
known from equation (56) and once the rate of temperature change during the evolution
is known. Note that dU/dT is the total derivative equal to 3U/dT + (aU/0p)(dp/dT).

Since Boyle’s Law is obeyed for the gas pressure in the non-degenerate approximation,
relativistic or non-relativistic, and, since radiation pressure must be included in the total
pressure, this latter quantity is given by

p=pNET+ }aT* = p N.kT+ p NxkT + }aT*

—RT_ ) g314 % 1o £ o
up uB
4 4
=3(=8) ;ﬂ;ﬁ,) =2.522X10% 1123 dyne cm~2or erg cm—*.
Y d1 NEdl % dIn
———p: ] lh__‘ D-P i D.p=— P
ot dT Nk + Nuk+3 TInT B dnl wBdnT (58)

The internal energy per gram including radiative energy, kinetic energy of all par-
ticles, and rest-mass energies of electron-positron pairs but not of nuclei and ionization
electrons is

U= =xN.:kT+%NNkT+(Na—lVo)maCQ'Falu/P

u
P
= 1.381X 10T |+ N, + 3 Nn + (N, — No) 2]

+0.7565 X IOZ’Tg‘/p erg gm—! (59)
T .
=0.8314% 10" u( y +gT+ o )
+0.7565 X% 10”Tg4/p erg gm~1 .
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Reasons for this restricted choice of the internal energy are presented in Sections (e)
and (¢) of Appendix B. Nuclear energy from transmutations will be treated quite sepa-
rately, as will changes in ¥y through nuclear reactions except in respect to the appropri-
ate change in internal kinetic energy. The stellar material is to be taken as completely
ionized so that ¥, also can change only through nuclear processes such as electron-
positron capture or emission. In the transmutation 2 0 — §%, Ny = 1/4AM,, changes
but Ng= Z/AM. does not. On the other hand, in the transmutation Ni¥ + 2e——
Fe 4 2», N¢does change. For the mean kinetic encrgy per nucleus we have employed
3 T, which is appropriate for non-relativistic particles. At T4 ~ 10 the mean kinetic
energy of an iron nucleus is only 2 X 10~ of its rest-mass energy. The mean kinetic
energy in units k7 per relativistic electron or positron has been designated by the symbol
x. The mean kinetic energy per relativistic electron in the non-degenerate case is given
by Chandrasekhar (1939) in his equation (236) (p. 396) and is tabulated in his notation
2s U/PV = U/NET in his Table 24 (p. 397). The mean kinetic encrgy is derived by
inserting the kinetic energy in the integrand of an equation corresponding to our equa-
tion (7) and carrying out the indicated integration and averaging. It will be clear from
equation (7) that in the non-degenerate casc the result will be the same for positrons as
for electrons. In our notation x is given by

xzz[SKa(z)+K1(z)_ 1]
4K4(2) '

(60)

where K,(z) is the modified Bessel function of order ». In Appendix B, x is designated
by x.. The properties of the Bessel functions are such that the following useful relations
(see eq. [68] and [69] below) can be derived

o,z Ki(2)+Ki(2)]_ dn K,
3—x—g5=2 2[ X.(2) ]u2+—d1nz
(61)
dnE,_ _dmE
" dlnz  4dInT"

The differentiation of U, equation (59), with respect to T is quite straightforward if it
is remembered that N, and Ny and p are functions of 7. Ny changes as heavier nuclei
(fewer in number) are fused from lighter nuclei as 7' increases. Differentiation of the
first term on the right-hand side of equation (59) introduces the specific heat per elec-
tron at constant volume given by ¢, = d(axT)/dT and tabulated by Chandrasekhar
(1939) as Cy/ V4 in his notation in Table 24 (p. 397). It will be recalled that in the non-
relativistic case ¢, = x = §, while in the extreme relativistic case ¢, = # = 3. The
extreme non-degenerate, extreme relativistic values, ¢, = # = 3.151 are derived in
Appendix B.
The final result for dU7/dT is

av dIn N. a7y ( dlnNN) al® dlnp
dT_kN“(C”+(x+Z)dlnT>+§kNN amr )T\ g
Equations (38) and (62) can then be used in equation (56) to give
a _ ., dlnp dIn N, w (@Inp . dln Ny
e B C Rl s oy ol R e R A
{63
40T% /d Inp )
+ 3p \dInT 3
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It will be noted that equation (63) reduces to the customary form for N, = constant and
Ny = constant. The radiation term in equation (63) can be combined with the other
terms by employing the relation 4a7%/3%pV = 4(1 — §)/8. Then

a0 _ w3~ u_(x+z)dln_ﬂ7e+(4—ﬁ3ﬁ)(dlnp 3>]

ar dInT dInT
69
Ldln Nx | /4—38 (dlnp_ )
+kN“[ 2 dInT +< 8 ) dlnT 3)]

It will be clear from equation (64) that dQ/d7 can be calculated as a function of tem-
perature for any given path in the p, T-plane since all terms can be evaluated once p as
a function of T is given. We shall now work out the necessary expressions for the case
of the evolutionary path of a massive stellar core in the p, 7-plane given by equation
(32). In this case, under the assumption M, = constant, one has

dlnp _ _Sdlnuﬂ
d1nT dInT’

65)

Aslong as p and T and pg apply to the same element of mass, equation (63) is independ-
ent of the polytrope index #, The same will be true of the form of the remaining equations
in this part. Now the first form of equation (36) can be differentiated to show that

d In pp _ *( dln N _ ( ) (Ns dln N, NwdlnNw) o
dInT 4-38)dInT 4--35 N dlnT N dlInT
so that
d In ¥ ( — 3;3) (d Inp ) "
ST 8 dinT °)
and upon substitution of equation (67) into equation (64) one finds
a0 d1n N, 4 In Ny
ﬁ—-k}\h[3—6u+(3—“x—z)dlnT]—Fki\N( +7d—h1T (68}

‘The usefulness of expression (61) will now be apparent. An alternative form of equation
(68) which is of some interest can be written as
dQ

L=wr{ 3~ c,,)(N)+(3—x—z)

J\' Ny o 4Ny

2 4T

69

—|—kT(

It is instructive to consider the meaning of the various terms in equations (68) and (69).
For unit increment in temperature we have:

1. Work done by gravitational forces on existing e~ and e+ = 3%kN,

2. Work done by gravitational forces on newly created et = 3kT(dN./dT)
3. Increase in internal kinetic energy of existing ¢~ and et = ¢,kN,

4. Energy necessary to create kinetic energy and rest mass of new ¢+

dl\'g d.LWTg

=(x+3)tT

5. Work done on nuclei minus increase in their kinetic energy

= 3ENy — 3kNy = 2Ny
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6. Work done on new nuclei minus increase in their kinetic energy
dNx
=37 88N
kT il

Note once again that the change in nuclear rest-mass encrgy has not been included
but will be treated separately. The nuclear density Ny decreases with increasing T
roughly as 7 so that Nn/T + dNx/dT ~ O and the nuclear term in equation (69) can
be neglected in good approximation as will be done in what follows. It will be noted that
radiation terms do not appear in equations (68) and (69). This is in agreement with the
well-known fact that the work done against radiation pressure is just equal to the in-
crease in internal radiation energy. The same is true for extremely relativistic particles
(2> 0, x> ¢,— 3).

In using equation (68) to compute d0/dT as a function of temperature, it is rcquired,
among other things, to evaluate # In N./d In 7. This can be done most simply by using
equations (10), (18), and (61) to derive

dln N, 2Nl)2 dIn N, (2}\* ) ( 45 dlnp o)

dlnT \UN, dlnT " dnT/’

Equations (67) and (70) can be used to climinate 4 ln p/d In T to yield
din N, x+2—3 _ x4-z—3 b

dInT ~ (NJ2N:)2+368/(4—38) (No/2N1)*44/(4—38)

where the approximation ¥, = N has been employed.

Before discussing the actual computations made using equation (68) we derive an
expression for dQ/dT which has proven useful in the eventual implosion of the stellar
core. By substituting equation (70) into equation (63) it is found that

dQ 2N, d d1lnp R 2]\'71)2
ar - N‘§[1+(x+ )( dlnT — o (et x) (w E
(72)
dlnp d In Ny 4aT? /d In p )
T .3 __38 -
TENSA TRT 2T dmT 3p \dInT 3)

The factor 2N/N)t = [1 4 (Vo/2N)*F is a function only of temperature and can be
evaluated directly using equation (37). Equation (72) is much more general than (68
or (69). No relation such as (28) or (32) has becn used, so that equation (72) docs no*
depend on the star’s being in mechanical equilibrium.

Table 3 includes the calculation of dQ/dT using equations (68) and (71} for the quasi
static p, T-path for a star with M, = 20 Mo, M =~ 30 Mo illustrated in Figure 5 fo
T3 < 6. The results for the various electron-positron contributions to dQ/dT, items 1~
above are shown in Figure 7, while d0/dT andQ = [(dQ/dT)dT are shown in Figure &
For illustrative purposes the quasi-static calculations have been carried beyond th
point where the implosion of the core, to be described in Part VIII, takes place. Thes
portions of the curves are shown as dashed lines in Fi igure 8 and apply for the hypothet
ical case of no implosion. For the implosion case, d0/dT has becn calculated using th
methods of Part VITI, and the results have been incorporated in Table 4 and show
graphically in Figure 9 Figure 9 also shows the corresponding nuclear and neutrin
terms, dQw/dT and 4U,/dt.

The most remarkable result of these calculations is that dQ/dT vanishes near Ty =
1.5, reaches a negative value with magnitude ~10' erg gm* per 10° degrees at Ty~
and returns to zero and thence positive value near 79~ 3. As long as a quasi-stat
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p = (T/uB)* curve is followed, the gravitational cnergy which the stellar core can call
upon by contracting is net sufficient to supply the energy necessary to create the new
electron-positron pairs, the rate of production for which reaches a maximum around
Ty = 2, as indicated by the total energy curve for new e* in Figure 7. The pronounced
effect of the tail of the Planck distribution for radiation is evidenced by the fact that
this maximum occurs at 87T ~ Fm.? and not at kT = 2m.c2.

Table 3 also gives the neutrino luminosity from equation (21) for the p, 7-path under
consideration. It will be clear that the neutrino luminosity is moderately large in the
temperature range, 75~ 2 to 3, with du,/dt ~ 10 crg cm™* sec™! or 4U,/dt ~ 10
erg gm™! scc L,

If the stellar core were not able to call upon another source of energy, p would rise
much more rapidly than 7% because of the energy nceded for pair creation. In short,
implosion would begin near 7'y ~ 2. This has led Chiu (1961g, b) to suggest that neu-
trino loss from ¢t 4= ¢~ — » 4~ v is a possible cause of core implosion in Type II super-
novae and that the core matcrial may never reach the stage where the iron to helium-
neutron phase change of Hoyle and Fowler (1960) becomes effective. It will be shown

[ [ t [ |
*/—|o"5 ERG GM~' PER 10° DEG

25~ -

WORK AGAINST
EXISTING e~ ond e*

< <\K1NETIC ENERGY
EXISTING e— and e*

o 4 X }
7/ | \ Mc = 20Mg
r/ I M= 3OM®
sk (NO IMPLOSION)

WORK AGAINST
NEW e®

] l |
2 4 6 8 10

TEMPERATURE (10° DEGREES)

FiG, 7.—Various eleciron-positron contributions to the quantity dQ/dT for a star with M = 30 M »
in the case of no implasion.
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in the sequel that there is indeed an important source of energy upon which the stellar
core can call in order to postpone impiosion, namely, nuclear energy of the rapidly evolv-
ing core material. However, 1t may be well to recall, at this point, our argument for the
strong requirement that the iron-to-helium-neutron phase change must be the cause of
implosion in Type I supernovae,

The argument is based on our point of view that Type II supernovae arc the site of
the equilibrium or e-process in which the iron-group elements are synthestzed. The iron-
group elements are more abundant than their immediate predecessors in the periodic
table and very much more abundant than all of the heavier elements. It is reasonable to
associate their production with the explosion of the massive Type II supernovac. In the
mode! discussed in Hoyle and Fowler (1960) we regarded the iron-group elements as
having been synthesized in the layers of the star situated immediately below the seat of
the explosion and just outside the imploding region. A seli-consistent picture results if
the central region of the supernova core implodes at the onset of the iron-to-helium-

(N Me=20Mo, M~30M, /// 1,
dQ /dT e

10'® ERG GM ™ 10" ERG GM™'TY

5 |~ PER 10° DEG. / 10

T

41 / -8
N\ /

e Q =AVAILABLE
3l \' GRAVENERGY
ol dQ/dT = —pdVv/AdT — du/dT L
WITH IMPLOSION
I o i
| MB)~ . ok 2
LOS,Oﬁe\ -
0 } } } } I 0
2 4 6 8 i0
TEMPERATURE (I0° DEGREES)

F16. 8—The quantities dQ/dT and Q plotted as a function of temperature in 10° degrees for a star
with M == 30 M © in the case of no implosion.
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neutron phase change and if the outer region of the core (still iron-group) is swept up
and out in the explosion of the fuel-rich envelope. Since all of this occurs about Ty ~ 4,
it would not seem to be possible to incorporate iron-group production in the Chiu model
in which implosion occurs at Ty ~ 2, a temperature well below that at which iron-group
nuclei are synthesized, If the observational evidence on the great abundance and the
equilibrium distribution in relalive abundances of the iron-group nuclei are {o be taken
as relevant and authoritative, then we are most reluctant to give up Type IT super-
novae as the site of synthesis, since these supernovae so well meet requirements in
regard to the amount of material synihesized and in regard to furnishing appropriate
physical circumstances for the synthesis. The dctailed analysis presented in the follow-
ing parts of this paper would seem to justify this reluctance completely.

V. NUCLEAR REACTIONS AS THX SOURCE OF ENERGY FOR NEUTRINO EMISSION
BY MASSIVE STARS IN THE PRE-SUPERNOVA STAGE

Stars are thermonuclear fusion reactors in which nuclear-energy generation takes
place as hydrogen is fused into successively heavier nuclei until the iron-group elements

[ I [ I i [
LERG GM™' PER 10° DEG
r 28 M, = 20M ERG GM™! SEC™!]
Si M = 30M
10 0;6 Fise —10®
9, /
aT
3 dU /
0° Sy o/
dt / He% —» 2P +2n
IOlT [ !0|7
d / dQ _ _ﬁN_(IMPLOSION)
T | dT o7 \IN~.3 SEC
/
%Qf [ Fe>®— I3He* + 4n 7 4%
yd dt
| NO IMPLOSION duy
ol | ST =4 a 16
10" — I T~/ — 10
’ TSl
’ TEMP (10° DEGREES)
| | W | | |
2 4 6 8 10 12

F16. 9.—The quantities dQn/2T, 4Q/dT, and dUv/df as a function of temperature in 107 degrees
for a star with M = 30 M 0.
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are reached. The nuclei of the iron-group arc the most stable forms of nuclear matter,
ie., the nuclei in which the constituent nucleons have the minimum internal energy.
(The internal energy, potential plus kinetic, is of course negative so that its absolute
magnitude, usually termed the bdinding energy, is positive and reachcs maximum value
at the fron-group nuclel.) The minimum in energy and maximum in binding energy occur
as the result of the fact that the nuclear-surface energy decreases with atomic mass
while the Coulomb energy increases.

In a star nuclear-energy generation ceases when nuclei at the minimum cnergy are
recached. At this point the nuclear resources of the star are exhausted. In this pact a
brief account i3 given of the various stages in hydrogen-to-iron fusion in the evolution
of massive stars with special emphbasis on nuclear-fusion reactions as the source of energy
for neutrino emission by such stars.

During the main sequence stage a massive star burns hydrogen through the CNO
bi-cycle rather than the proton-profon chain unless the CNO abundance is very low
indeed. The CNO bi-cycle is in gencral more effective at the high internal temperatures
(T7 > 2) of main-sequence stars only slightly heavier than the Sun, since the bi-cycle
is far more temperature dependent with rate proportional to T than the pp-chain with
rate proportional to 74 New tables for the rate of energy generation by the CNO bi-
cycle have been recently prepared by Caugblan and Fowler (1962). In the bi-cycle the
over-all result is

4H* — He' + 25.0 McV (5.98 X 10" erg gm' excluding »-loss) . (73)

The energy release is given by g = 1.602 X 1078 Q/ZA; M, = 0.965 X 10" Q/Z4; erg
gm—, where Q = 25,0 MeV is the energy release in MeV per process and 24, = 4 is
the sum of the masses of the interacting nuclei in atomic mass units. See Section ()
of Appendix C for additional discussion in regard to the encrgy emission per reaction
and per gram. The mean lifetime in seconds for hydrogen to CNO burning in massive
stars is given by

].Og TCNO(J:II) = —8.43 — lOg PXCNO + % log T+ —|‘ 30.70/T71/3 y (74)
and the energy generation in erg gnr! sec™! in the bi-cycle is given by
log emenog = 27.21 4- log pxaxreno — § log 77 — 30.70/T5V8 . 75

Here and hereafter we neglect screening factors. This is justified in massive stars which
have relatively low densities for a given temperature.

When hydrogen is exhausted in 10-50 per cent of the stellar interior, core contraction
occurs and central temperaturcs and densities are reached which result in the ignition
of helium. The initial stage in the helium burning is the Salpeter-Hoyle process:
Het(a)Be#(a)C2* (yy or ¢}, This is a three-body process which takes place in two
resonant stages, The unbound ground state of Be® scrves as one resonance and the 7.63-
MeV excited state of C'? as the other. The over-all result is

3 He*— C2 4+ 7.28 MeV (3.85 X 10! crg gm™1) . (76)

The results of B2FH (1957) for the mean lifetimes of He* to this process must be modified
by the experimental findings of Fregeau (1956), Alburger (1960, 1961), Ajzenberg-Selove
and Stelson (1960), Sccger and Kavanagh (1963), and Hall and Tanner (1964). The
combined efforts of these workers establish T', + Tt = (2.4 + 1.5) X 1072 eV so that
the second equation on page 566 of B?FH (1957) yields the following expression for the
He! mean lifetime in seconds

log r3,(He!) = 6.25 — 2 log px, + 3 log Tg+ 18.75/T% . (77)
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Equation (77) corresponds to a reduction of 0.38 in the logarithm of the mean lifetime
given in the second column of Table ITI, 3 of B*FH (1957).

Under appropriate circumstances the production of C¥ is followed by C"%(a, v)0!* 4
7.162 MeV und, it was thought at one time, by O'%(a, ¥)Ne*® 4 4.730 MeV. However,
it has been recently shown by Gove, Litherland, and Ferguson (1961) that the excited
state in Ne?® at 4,97 MeV which had been considered to serve as a thermonuclear reso-
nance in O'%(a, v)Ne?® at 240 keV has spin and parity 2, and thus cannot be produced
by the combination of O* and He?. The ground states of these two nuclei have spin and
parity Ot, and the parity associated with two units of orbital angular momentum is even
(as indicated by the superscript + ). States with spin and parity combinations (0%, 1-,
2*, 37, etc.) permitting breakup into 0'¢ and He* occur at 5.63 and 5.80 MeV but re-
quire temperatures well over Ty ~ 3 to become effective. It develops then that O%(a, v)-
Ne? does not occur significantly in stars except under such special circumstances as the
occurrence of very high (emperatures in Jow-mass stars for a short period when degenera-
cy is suddenly removed at the onset of helium burning. Helium does not become degen-
erate in massive stars during the contraction of the core. Deinzer and Salpeter (1964)
have shown that small amounts (~ 10 per cent) of Ne?® and Mg?* are produced in the
final stages of helium burning when 3He* — C' is inhibited by the low concentration of
He*. Above 50 Mo they find even larger amounts of Mg?4, Our discussion is restricted
to 10 Mo < M <30 Mo.

For the record, the partial lifetimes in seconds for O to helium burning are the fol-
lowing for off-resonance processes, for resonance at the 5.63-MeV state (E, = 0.90 MeV,
wl.Iy/T = 0.001 eV) in Ne®:

log 7.(0%) = — 10.2 — log 6,2 — log px. + 2 log T + 37.2/T5'/* (off-resonant)
= — 2.3 — log pxa -+ ¢ log Ts -+ 45.4/Ts (via Ne®* [5.63 MeV]) .

(78)

The reciprocal of the sum of the reciprocals of these partial lifetimes is the over-all life-
time for Ts < 30. For the value of the reduced alpha-particle width, 6.2, see the discus-
sion below concerning the corresponding width for C%(a, v). The minimum off-resonant
lifetime is given by 8.2 = 1. With this value the off-resonant contribution to the reac-
tion rate dominates up to 753 ~ 3.

The question of the relative production of C*? and O* in helium burning in massive
stars now remains. It will be clear that the rate for 3 He! — C" is reduced relative to
that for C3(a, v)O'" at the same temperature in going from low-mass to high-mass stars.
This is because in equation (32) density decreases with stellar mass for a given tempera-
ture. The rate of the three-body process, 3 Het — C&, is proportlonal to p* while that
for the two body process is proportional to p?. The mean lifetime in seconds of C'* nuclei
to helium burning is given by madifying the results of B*FH (1957) by the experimental
findings of Swann and Metzger (1957) as follows

log 7.(C"?) = — 10.84 — log 8, — log pxa + 2 log T's + 30.08/Ts'/* + 0.18/T/?
(79)
= — 10.73 — log px. + 2 log Ts + 30.08/T3/3 + 0.18/Tg/ ,

The modification is necessitated by the fact that Swann and Metzger improved on their
1956 results to give a final value I'y = 0.066 + 0.02 eV rather than 0.13 eV for the
gamma-width of the 7.116 MeV excited state in O which dominates the low-energy
cross-section for C'*(a, y)O%. In addition B*FH (1957) took the reduced width for alpha-
particle emission, 4, = 0.1. However, the 7.116 MeV excited state in O is well de-
scribed by the alpha-particle model for O% (Dennison 1954; Kameny 1956) and on this
basis 8, ~ 1 is to be expected. On the cluster mode! of light nuclei, Roth and Wilder-
muth (1960) show that the low-lying excited states of O' consist primarily of the cluster
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C» -+ He* with both components in their ground states or of the cluster C12* (2+, 4.43-
MeV excitation) + He*. Three of the states which are best described by the cluster
C" + He* have reduced alpha-particle widths equal to 0.73, 0.76, and 0.85. The average
of these values is 6.2 = 0.78. Roth and Wildermuth (1960) assign the 7.116-MeV state
in O to the cluster C1? + He?*, so we use 6,2 = 0.78 in obtaining equation (79). For the
C* 4 He* cluster states the average reduced-ground-state alpha-particle width is
fa = 0.024. It is small as expected. Had we employed this value, the constant in equa-
tion (79) would be —9.22 rather than —10.73. We believe that there is very little likeli-
hood that the 7.116-MeV state in O is represented by the cluster C'2* - He*, There is
no justification for averaging all reduced widths as done by some authors. QOur choice
requires that 0.60 be subtracted from the mean lifetimes given in the third column of
Table III, 3 of B*FH (1957). In stars of low mass where C%(a, ¥) does not follow
3 He* — C the energy generation in erg gm™ sec™! is

log €3. = 11.52 + 2 log p+ 3 log xo — 3 log Ts — 18.75/Ts . (80)
Hoyle (1954) showed that if the quantity
732 (He¢)
k= x. 7e(C12) (8L

exceeds the value § then C*%(a, ¥)O invariably follows 3 He*— C% in the long run and
helium burning results in the production of 0% only, with no C*. This quantity has the
Briggs logarithm

log & = 16.98 — log p + log Ts — 30.08/T5"/3 — 0.18/T2/* + 18.75/Ts, (a1

and log » must exceed —0.48 for pure 0" production. For ¥ = 0, only C® is produced.
In addition, for example, & = § yields O%/C'2 = 2. In the case that only O is produced
the general process can be represented by

4 Het — 0% 4 14.44 MeV (8.70 X 107 erg gm™) . (83)
Effectively the mean lifetime of He* in seconds is given by

log r4(Het) = 6.12 — 2 log pxa + 3 log Ts + 18.75/Ts, (84)

and the rate of energy generation in erg gm™! sec™!, after appropriately modifying
B*FH (1957), is given by

log 4o = 11.82+4 2 log p 4+ 3 log 2o — 3 log Tz — 18.75/T5 . (85)

This expression does not hold when x, becomes small especially in very massive stars
where some Ne® and considerable Mg* is produced at the end of helium burning
(Deinzer and Salpeter 1964).

Massive stars of the type under specific consideration (30 M o) are approximately 10°
times as luminous as the Sun. The ccntral energy generation in the Sun is ~30 erg gm™!
sec™), so that scaling up this value by the luminosity to mass ratio (3000) leads to
€sa ~ 105 erg gm—! sec™!. In order to express p in terms of temperature we employ equa-
tion (32), noting that p = 1.6 when z, = 0.5 at the midway point in helium burning.
These values lead to 8 = 0.5 and p = 50 7'¥. Returning to equation (85), we then find
that the helium burning gives the required energy generation at Tg ~ 1.8, p ~ 300 gm
cm~? over a period of 8.7 X 10Y erg gm™' <~ 10° erg gm™! sec™! ~ 9 X 10" sec or
3 X 105 yr. Under these conditions neutrino energy loss is negligible. More importantly
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equation (81) yields £ ~ 2, well over the value § above which 4 He* — O occurs. This
conclusion, of course, depends on the choice 8, = 0.78 made previously for the alpha-
reduced width of the 7.116 MeV excited state in O However, even for 62~ 0.1,
0%¥/C2 ~ 2 and we will take it until further data become available that O is the main
product of helium hurning in massize stars. It will become clear that this conclusion is
most important in determining the time scale in massive stars for the nuclear evolution
from the end of helium burning to the production of intermediate mass nuclei, Ne* to
S%, However, it is not critical to the discussion in Parts VI and VII of the subsequent
a- and e-processes.

Heliwm burning in massive stars where O™ is the main product is thus in marked con~
trast to the corresponding burning in low-mass stars where both C? and O% are pro-
duced. This dependence of helium-burning products on stellar mass may have an impor-
tant bearing on the C/O abundance ratios produced under varying astrophysical cir-
cumstances. We continue with the nuclear evolution in massive stars illustrated in
Figure 3.

Oxygen burning takes place through the reactions O(0%, v)S% 4 16.54 MeV,
Q(0%, #)S% -+ 1.46 MeV, 015(0%, 5)PF 4 7.68 MeV, 0'%(0%, a)Si2 4 9,59 MeV, plus
a number of more complicated reactions which primarily occur through exchange mech-
anisms. Typical of these exchange reactions are 0%(0%, Q)07 — 11.53 MeV in which
a neutron is exchanged and O%(0%, C?)Ne?® — 2.43 MeV in which an alpha-particle is
exchanged. In general these exchange rcactions are endoergic and are not as important
at low-interaction encrgies in stars as the cxoergic mechanisms first mentioned. It will
be noted that these first-mentioned reactions require considerabie amalgamation of the
two interacting O nuclei and thus primarily proceed through compound nucleus for-
mation.

Carbon burning, which succeeds helium burning in stars of relatively low mass, has
been discussed by Reeves and Salpeter (1959). The neutron emitting reaction,
C2(C2, n)Mg?» — 2.604 MeV, is endoergic so that C'2(C?, p)Na? + 2.238 MeV and
C2(C®2, a)Ne* 4+ 4,616 MeV are the two most important primary reactions, The pro-
tons and alpha-particles are captured initially by C®2 to form N8 and O%. At a reasonable
temperature for carbon burning, 77 = 6 X 108 degrees, N'* decays to C'3 before photo-
disintegration and the reaction C'3(a, #)0" - 2.202 MeV then produces additional O,
Eventually the protons and alpha-particles react with Na* and Ne? to produce Mg?,
which is the most abundant product at the end of the carbon burning. However, the
over-all result is a considerable spread in abundance over the nuclei from O to Si%?,

In contrast, in oxygen burning, the neutron-emitting reaction is exoergic and thus
competes successfully with those primary reactions in which protons and alpha-particles
are emitted. If neutrons and protons are produced in equal numbers, as can reasonably
be expected to be at least approximately the case, then the nuclei which result from the
secondary capture of the emitted, p, 7, and a will be close to the stability line along
which Z = ¥ = A/2. Initially the emitted p, n, a are captured by 0% to form F7, 07,
and Ne?. However, at the temperature at which oxygen burning occurs in massive stars,
T ~ 2 X 10° degrees (see discussion to follow) these nuclei very quickly undergo photo-
disintegration through F7(y, )0 — 0.598 MeV, OY(y, #)0"% — 4.142 MeV, and
Ne®(y, a)O'* — 4.73 MeV. Nucleons and alpha-particles are not tightly bound to the
closed shell nucleus O, Thus the primary reaction products are eventually captured by
P# and Si* to form $%. § decays with a mean lifetime of 3.7 sec to P, 5% is quite stable
to photodisintegration at 2 X 10? degrees while slightly heavier nuclei are not. Thus
the first stage of oxygen burning results principally in the production of S with some
spread in abundance over nearby atomic masses. The over-all process can be repre-
sented by

2 0% —> 8 4 16.54 MeV (4.98 X 107 erg gm™) . (86)
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Near the termination of oxygen burning as the temperature rises above 2 X 109 degrees
it will be found in Part VI that considerable Si%® and Ar® are produced.

In Appendix C on nuclear-reaction rates, formulae are developed for computing the
lifetime of nuclei involved in continuum processes such as (86) and for computing the
reaction and energy generation rate of such processes. Since all primary processes cx-
cept scattering lead eventually to 5%, it is the lifetime of O' to compound nucleus for-
mation in 0% + O which is required. Scattering by re-emission of the original nuclei
after formation of the compound nucleus is rare. Taking the intcractions to e “black”
and with R = 1.54 (Aa“'" + A4,Y%) = 7.76 fermis, it is found from cquation (C66) that
the “instantaneous’” mean lifetime in seconds when the O% concentration by mass is

*1s is given by <004
log 716(0%) = — 38.0 —1og pxie+ 2 log T + T-I/B
9

(14-0.0807y)'3. (87

In this and all equations to follow we take f, = 1 and (8;) = 1 (sce Appendix C). The
coefficient, 1.54 fermis, in the expression for the interaction radius, R, has been taken
from the heavy-ion scattering experiments of Bromley, Kuehner, and Almqvist (1960).
A small term designated by B*FH (1957) as a,E, has been incorporated as the term pro-
portional to T's in the last bracket in equation (87). In the situation under discussion
initially % = 1. Note that the concept of “lifetime” must be uscd carefully in cases
where it depends on the concentration of the nuclei to which it applics. Even {or constant
p, T the decrease in number is not exponential in Lime.
The corresponding mean lifetime in seconds for C* in the reaction

2 C— Mg 4 13.93 MeV (5.60 X 107 crg gm ™) (88)

ig, with R = 7.03 fermis,

log 712(C¥?) = —26.9 —log px12+ % log T9+36 2!

TR

The rates of energy generation in erg g sec™! for processes (86) and (88) can be found
by using appendix equation (C72) and are

— (14 0.080T¢)}'72. (9

log éa0 = 53.7 +log px1g*— % log Ty — 3T0 1034( 1+ 0.080T5)* (96)
and
36.57
10g Ecc = 447+10g pxuz* % log Ty — T/ —(1+ 0. 080T9)1/3 (on

As a matter of interest we indicate the mean lifetimes in scconds and encrgy gencratlon
in erg gm™' sec™! for C2 4 Q% — Si2* + 16.75 MeV (5.77 X 107 erg gm™) with R = 7.40
fermis as follows:

1ogna(C‘2) +log pXig — 1.20 =Iog1-12(015) +log pXia — 1.08

46.30 ) o2
TR (14 0.0807)'73,

46.30
T,1/3

= —32.8+2 log To+

log eco = 49.7+)og paiaxis — 2 log To— — (1 4+ G.08075)'3, (93

In what follows, cquations (87) and (90) will be used ncar T's = 2 where, from Table 3,
p = 4.8 X 10 T¢* in a stellar core with effective mass M, = 20 Mo, M = 30 M. Thus

59.04

log r1s(0") = — 42.7 —log x1s — § log Ty -+ 1+~ o

(1-4+0.0807)'73 (94)
for M‘,= 20.-1_{@, M= 30ﬂ/fo )
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and
59.04
log €00 — 604+ 2 log xlg—l—% log Ty —W( 1 —|— 0080T9)1/3 (95)
9

for M,= 20Me, M = 30Ms .

We are now in a position Lo come to grips with the problem posed in Part IV, The
questions at hand are (1) at what temperature does the energy generation from oxygen
burning match pair-creation requirements and the neutrino loss and (2) what is the
duration of the oxygen burning? The calculations will be made for conditions at the
center of the star. It might appear more reasonable to average the nuclear generation
and neutrino loss rates over the entire stellar interior as discussed in Section (k) of
Appendix C and then equate these average values in order to determine the temperature
and to divide the available nuclear energy (5 X 10" erg gm™!) by the average neutrino
loss rate in order to determine the duration. The time scale so calculated will be longer
than that determined for conditions at the center but would imply that all of the nuclear
fuel in the star was expended. The average of dU,/ds over a polytropic structure of index
»n = 3 is found to be about 12 per cent of the central value. However, it is the fate of the
central portion of the star which is important in regard to the time scale. If we take this
central portion to involve ~12 per cent of the stellar mass, a reasonable choice (see
Parts VIII and IX), then these two factors approximately cancel and the calculations
made for conditions at the center of the star will be correct in order of magnitude.

The first step is to equate oo from equation (93) to @U,/dt from equation (14). The
energy required for pair formation ~2 X 10% erg gm~! can be neglected. The result is
dependent on the degree of oxygen consumption, but for 2 = 1, 0.5, 0.1, 0.01, the
results are Ty = 2.1, 2.2, 2.5, and 3.0, respectively. The neutrino loss is ~5 X 10 erg
gm~' sec™! and the “duration” of oxygen burning is ~3 X 107 exrg gm— < 5 X 102 erg
gm' sec ~' ~ 10° sec ~ 1 day. The neglect of photon losses (~10° erg gm— sec ™} which
has been implicit in the calculation is justified by the large neutrino loss just determined.
Had we sct log epo = log dU,/dt = 6 for the photon losses alone, we would have found
oxygen burning occurring at T's ~ 1.5 over an interval of ~10'% sec. The neutrino losses
have shortened the time scale for oxygen burning by a factor ~107! In fact, it will be
clear as emphasized by Chiu and Stabler (1961) that neutrino losses dominate for tem-
peratures above Tg~ 0.5, the result being a marked decrease in the time scale for the
stages of stellar evolution leading up to the ultimate core collapse and envelope explosion.
However, neutrine loss does nof cause final collapse. The free fall time scale at the relevant
density, p~ 6 X 10° gm cm™3, is given by equation (B88) in Appendix B and is the
order of 1 sec, shortcr by a factor of ~10° than the neutrino-loss time scale.

One additional point is important; near Ty = 2.2 the lifetime of O to O%(y, a)C?
can be shown to be ~107 sec so that the fusion of O with O occurs much more rapidly
than the photodisintegration of O, Photodisintegration does become important near
Tg ~> 3.

It is gratifying from the authors’ point of view that oxygen burning is competent to
supply the energy neccssary to sustain neutrino emission just in the temperature range
where energy is not available from the work done by gravitational forces in contraction
under quasi-equilibrium conditions, The nuclear encrgy resources of the star are suffi-
cient to prevent catastrophic collapse even though the neutrino losses are very severe
and do shorten the time scale over that calculated on the basis of photon losses alone
by a very greal factor ~107. Even so, the neutrino losses fail to induce free fall by a
factor of ~10%. Even in drastic circumstances, exoergic nuclear reactions still serve as
stellar thermostats.

At the end of section (g), Appendix B, it is shown that the adiabatic coefficients dip
slightly below £ when dQ/dT < 0 during oxygen burning, This is true only at the center
of the stellar core. The averages over the core exceed 4 and the core is dynamically
stable. This can be ascertained by inspection of Table 3.
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VI. TOE ALPIIA-PROCESS IN MASSIVE STARS

The termination of oxygen burning near 7's ~ 3 docs not lead to a change in the
general state of affairs. The burden of supplying the necessary energy is taken over by
what we will call the alpha-process (a-process) following BT'H (1957). Nuclear energy
is available until the iron-group nuclei are produced near 7'y ~ 4. In the run from 5% to
the iron-group nuclei the energy released is about 2.0 X 10'7 erg gm™" where we have not
included the energy carried away by neutrinos in the beta-processes by which two pro-
tons are ultimately changed to two neutrons in the Fe®. The remainder must suffice for
et 4+ ¢~ — v+ v over a change in temperature ATy~ 1 from Ty~ 3 to Ty~ 4 so
that ~2 X 107 erg gm™ per 10° deg are available from the final nuclear resources.
This is illustrated in Figure 9 by the curve for dQx/d7T. This quantity is to be compared
with dU,/dt in order to determine the time scale Af for a significant change in AT to be
established. Note that dU,/dt has been multiplied by 108 to bring it on scale in the range
2 < T4 < 4 so that the time scale is of the order of 10% sec in the region near the point
where dQw/dT and 102 dU,/di intersect. With dQn/dT's =~ 2 X 10" erg gm~! per 10° deg
and dU,/dt =~ 4 X 10 T's? erg gm~" sec™! from equation (21) corrected for 73 ~ 3 to ¢,
it is possible to reach a better estimate of the duration of the final nuclear burning by
employing equation (B86) to write

P s
at= [ T e 9Ty [Tyt (initial) — T8 (fnal) ] X 10%ec

=~ 3000 sec for the change from Ts~3 to Ty~ 4 .

Equation (96) follows from equation (B86) with the small term d(Q/dT s neglected (see
Fig. 9). This calculation is replaced by more detailed calculations in what follows, but
no great change in A/ results.

The value found for Af is considerably greater than the free-fall collapse time in a
stellar core which is the order of 1 sec (see Part VIII). Thus nuclear energy is ample to
supply the neutrino losses without catastrophic gravitational implesion. Before going to
the situation where nuclear processes begin to absorb energy from the medium, we turn
to certain details of the nucleosynthesis from S% {0 Fe®,

Near the end of the oxygen burning (5 ~ 0.1, Ty ~ 2.5) a marked change occurs in
the nature of the nuclear processes. Photodisintegration of nuclei begins to occur and
with increasing temperature becomes more rapid than direct fusion processes. The
mutual Coulomb barrier between S nuclei is so high, E¢ = 40 MeV, that fusion proc-
esses are very rare indeed. Thus the nuclear burning does not occur through the inter-
action of pairs of sulfur nuclei but through a chain of reactions which B?FH (1957)
termed the a-process. The photodisintegration of some of the sulfur nuclei {rees alpha-
particles, protons, and neutrons, and these are in turn captured by other sulfur nuclej
and reaction products to form heavier nuclei. We first make a determination of the rela-
tive number of alpha-particles, protons, and neutrons released in the photodisintegra-
tion of S* and for this purpose turn to equations (C22) and (C7) in Appendix C. The
appropriate photodisintegration reactions and energies are S¥(y, a)Si*¥ — 6.95 MeV.
S¥#(y, p)P¥ — 8.86 MeV, and §3(y, #n)S% — 15.09 MeV, From the experimental datz
on nuclear reactions involving $* as summarized by Endt and van der Leun (1962) we
find Z[(2J + DHINL,/T).~ 1075, 2 X 1074, and 10~* MeV for the a, p, and # cases
respectively. The effective thermal energies Ey at which the reverse capture reaction:
take place are 3.14 MeV, 1.34 MeV, and ~0 MeV so that Q + E, = 10.09, 10.20, anc
15.09 MeV, respectively. It will be immediately clear from equation (C22) that proto:
and alpha-particle emission will dominate and it is found at Ty = 2.5 that the partia
lifetimes to photodisintegration are 7.,,(5%) ~ 104sec, 7,,(S#2) ~ 102 sec, and 7,,(S%) ~
102 sec. On the other hand at Ty = 2, 7,.(5%) ~ 108 sec and 7,,(5®) ~ 3 X 107 sec
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Thus in the time scale (~ 3 X 10° sec) permitted by the neutrino loss rate it becomes
apparent that photodisintegration of the product S* becomes important in the late
stages (235 < 0.1) of oxygen burning. Overlapping of processes is to be expected at high
temperatures.

The results obtained above indicate that the photodisintegration of S® results pri-
marily in proton emission which exceeds alpha-particle emission by approximately a
factor of 10. However, the residual nucleus in proton emission P* is rapidly photodis-
integrated through P%(y, )Si*® — 7.20 MeV which has a much lower threshold than
Pi(y, a) or P¥(y, n). In turn Si* is rapidly consumed through Si**(y, #)Si?* — 10.61
MeV which has the lowest threshold and similarly Si2® goes by Si**(y, #)Si2® — 8.48 MeV,
again neutron emission having the lowest threshold. It will be clear then that S#(y, p)
is followed rapidly by the cmission of a second proton and two neutrons. These nucleons
also interact rapidly at the temperature and density under consideration and the pro-
duction of an alpha-particle is the ultimate result. Thus, in effcct, S# is photodisinte-
grated into Si*® - He? in an interval determined by the rate of the S#(y, p) reaction,
As noted above this interval is on the average 10° sec and is somewhat less than the time
scale set by neutrino losses. Whether it proceeds by S#(y, a)Si*® — 6.95 MeV or by
S#(y, 2p 21)Si?8 — 35.2 MeV, the over-all result is still adequately described as the
a-process. Let those who will, pick nits!

The ejection of an alpha-particle or four nucleons from S# results in the production
of Si?%. This nucleus is very refractory, the «, p, #, binding energies being 9.99 MeV,
11.58 MeV, and 17.18 MeV, respectively. It will be clear that proton emission will be
the most probable when photodisintegration does eventually occur, and the mean life-
time for this process according to equation (C22) is

log ,5(Si2) = — 17.5 4 3.36/T4* + 58.3/T, , (o7

where we have taken Z,[(2J + 1)[4T,/T) ~ 2 X 10~¢ MeV again from Endt and van
der Leun (1962). Equation (97) yields 7,4(5i2%) = 108 sec, 10* sec, 10° sec, and 1 sec at
Ty = 2.5, 3.0, 3.4, and 3.8, respectively. Thus Si?® is not photodisintegrated within the
neutrino-loss fime scale until the temperature is somewhat over 3 X 10° degrees. The
upshot is the occurrence of a temperature interval 2.5 < T’y < 3 in which S# is subject
to rapid photodisintegration but 1% is not. When Si*8 is eventually destroyed the over-all
result is Si*¥(y, p)(— 11.58 MeV)AR'(y, p)(— 8.27 MeV)Mg®#(y, n)(— 11.10 MeV)
Mg®(y, n)(— 7.33 MeV) or Si28(y, 2p 2n)Mg* — 38.3 MeV which is quickly followed
by 2p 4+ 2n— a + 28.3 MeV. Si®(y, a)Mg*! also occurs directly.

The alpha-particles freed by the photodisintegration of some S* nuclei are captured
by other S* nuclei to form A%, the over-all result being

2 5% 8% 4 A% — 0.31 MeV. (98)

In addition some synthesis of Ca%, Ti', and heavier nuclei in decreasing amounts
occurs. However, as long as Si?® remains refractory, equation (98) is the primary process
and Si?® and Ar® are the major products. Early in this stage of burning S is more abun-
dant than the first Ar® produced and captures the main bulk of the alpha-particles. Fur-
thermore, equation (C9) shows that capture rates decrease with increasing charge num-
ber because of the increasing Coulomb repulsion. Thus the synthesis tails off rapidly
with increasing atomic mass. It might be argued that Ar® eventually becomes more
abundant than S, and at the end of this stage of the burning produces a significant
amount of Ca', etc. However, if one applies equation (1) of Hoyle and Fowler (1960)
to process (98) it is found that the equilibrium ratios are S%/8i% = §#/Ar# ~ 2 in the
interval 2.5 < Ty < 3, i.e., only one-half of the S* is converted into Si?*® + A®. In a
sense, S* and Ar%® survive beyond the temperature at which they would otherwise be
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photodisintegrated just because they come into equilibrium through (v, a) or (v, 2p 2n)
and (a, ) with refractory Si*®. We note that Ar®¥(y, a)5% — 6.64 MeV. Studies of equi-
libria such as 3 5% — 2 Si?® 4 Ca*®, 4 §% — 3 Si®® - Ti#, etc., yield amounts of Ca,
Ti* comparable to but less than Ar®, The time scale is short 2l this point, and it is
doubtful if equilibrium is reached.

Above Ty ~ 3 the photodisintegration of Si?® sets in through Si?8(y, 2p 2n)Mg. Mg
has an alpha-particle binding energy equal to 9.31 MeV, or 0.68 MeV less than S
The result is that the Mg lifetime to effective alpha-particle loss is less than 10 per cent
that of Si%, Ne*, O and C* have even shorter lifetimes and Be® is spontaneously un-
stable to alpha-particle breakup. Thus the photodisintegration of each Si** nucleus re-
sults in complete breakdown and the copious production of alpha-particles. When Si?®
begins to break up, the restriction which made equation (98) the major process is re-
moved, and in fact S® and Ar® are also subject to complete alpha breakup. The time
scale for the breakup of all components, Si?8, S and Ar%, is determined primarily by
the Si*8 lifetime given by equation (97).

The alpha-particles resulting from the breakdown of some nuclei will be captured by
others to form heavier nuclei. As long as energy is gained in the process the “‘equilibrium”
will shift toward greater atomic weight, A. The synthesis will mainly involve the stable
nuclei with A = 2Z = 2N = 4 (n an integer) and will terminate when the most stable
nucleus of this form is reached. This presupposes that beta-processes, electron capture,
or positron emission, are not rapid enough to permit transformations to the even more
stable nuclei having several more neutrons than protons. This point will be elaborated
later in this discussion. We also emphasize once again that protons and neutrons will be
involved in the breakdown and buildup process and that correspondingly other nuclei
than those with A = 4n, with # an integer, will be involved. We neglect this complica-
tion since the general results will be much the same as for a pure a-process. Furthermore,
if beta-processes do not occur, then the total number of protons and neutrons, free and
bound, remain equal and nuclel with Z = N wiil appear most abundantly in the synthe-
sis processes.

Until recently there has been some question concerning the identity of the most stable
nucleus with Z = N. Of those for which direct experimental information was available
up till late in 1963, Fe® is the most stable with a mean binding energy per nucleon equal
to 8.609 MeV. However, it was realized that Ni® is almost certainly even more stable
since it is doubly magic, having both neutron and proton shells closed at Z = ¥ = 28.
An estimate based on beta-decay systematics was given by Way, Gove, McGinnis, and
Nakasima (1961) and yielded a mean binding energy of 8.644 MeV per nucleon on the
basis that the Ni%-Co* mass-energy difference is ~2.1 MeV. This estimate has been
found to be remarkably accurate in two experimental determinations of this mass-
energy difference. Hoot, Kondo, and Rickey (1963) find Ni*-Co* = 2.092 + 0.024
MeV, while Miller, Kavanagh, and Goldring (1963) find 2.114 + 0.0222 MeV, yielding
a mean value 2,103 + 0.016 MeV.

It must be shown that the alpha-particle capture rates are rapid enough up to Ni*
and somewhat beyond so that an equilibrium distribution will be formed around Ni* as
the most abundant nucleus. Calculation of these capture rates required a knowledge of
the number density #, for alpha-particles. An equilibrium calculation based on

Y+ (Z, 4) ::-}He« 0%

will not be wide of the mark as the synthesis changes the most abundant nuclear species
from Si?® through (Z, 4) to Ni®*. This assumes that enough Si%® remains throughout this
stage to maintain the equilibrium abundance of alpha-particles. We calculate the alpha-
abundance from the quasi-equilibrium equation for those nuclei which have reached a
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stationary maximum abundance at a given time. Equation (1) of Hoyvle and Fowler
(1960) yields, for x4~ 1, and log p = 4.7 4+ 3 log Ty

5.04 ;

1 4
~ _—— a 3 - —_
log #a ~ 34.7 A(z1+101ooA)+2(1+A)1ogn 2.
(100)
~ 344 1.6 log Ty — 5T°4Qa, 32< 4 <56,
b

where @, is the average binding energy for alpha-particles in (Z, 4). For example
Q. = 5.67 MeV for S® and 6.14 MeV for Fe®, The result is log 7, ~ 26 or px, ~ 103
during the a-process approximately independent of (Z, A). With log f,{8)1 ~ 0, equa-
tions (C66) and (100) yield

log 7er{(Z, A) ~ —19 — 3.6 222 — % log 2Z 4 31/Ts + 4.9 Z/3/T3* . (1on)

For Fe®(a, v)Ni¥ equation (101) gives 74, ~ 0.5 sec at Ty ~ 3 which is short compared
to the Si* breakup period. It is probably preferable to use (C60"), rather than (C60), in
(C66) in which case 7., ~ 10 sec; and this is still short compared to the breakup period
of Si*,

Thus the rate of breakdown and buildup through the a-process under discussion is
determined principelly by r,,(Si?®). If we exclude the ultimate beta transitions which
follow the formation of Ni*, then the over-all transformations involving only the
A = 2Z = 2V = 4n nuclei can be represented by

2 Si2®— Ni* 4- 0.196 MeV per nucleon (1.89 X 10'7 erg gm™) , (102)

If we recall that some S¥, Ar%, elc., have been produced by processes (86) and (98),
then the net energy release during this stage is only 1.6 X 10V ¢rg gm™. From the argu-
ments just presented it will be clear then that the rate of energy generation in process
(102) is from equation (C71) with 4, = 0,

log €a-proe = log g/ 7,5(51?%) = + 34.7 + log « — 3.36/Ty"/* — 58.3/Ty, (103)

where ¢ = 1.6 X 107 erg gm™! and x represents the time-dependent abundance of all
three of the nuclei S, S1*%, and Ar* which are produced in processes (86) aud (98) and
are Lransformed into heavier nuclei near Ni® as x varies from 1 to 0.

The time scale for the a-process to Ni* can now be calculated in the customary way.
We equate 10g €q-peos L0 log dU,/dt = 10.6 4 6 log T from equation (21) corrccted for
Ts~3todand find x=1,0.1, and 0,01 at Ty = 3.1, 3.3, and 3.5, respectively. The
burning occurs mainly between T s = 3.1and 3.2 50 that

Algyros = 1.6 X 10Y7/4 X 10" T8 =~ 4000 sec . (104)

This result agrees approximately with that found in equation (96). The essential point
is that nuclear processes, which have been discussed in detail, produce the energy
emitted by the star in the form of ncutrinos up to T’y = 3.5.

VII. TIIE EQUILIBRIUM PROCESS IN MASSIVE STARS

The formation through the a-process of the most stable nuclei in a medium, where the
total numbers of protons and neutrons are cqual, temporarily terminates abundance
changes and energy generation at T's = 3.5. The a-process comes to an end. Energy loss
by neutrino emission leads to a mild coutraction of the stellar core and a slight rise in
temperature and density. At this point beta-processes, positron emission and clectron
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capture, begin to play a role in the transformation Lo nuclei which have a greater number
of neutrons than protons, e.g., Fe®, and which are more stable than those with equal
numbers, e.g., Ni%. It is thus necessary to investigate the rate of thcse beta-processes,
given in Appendix A, for the specific nuclei involved at this stage of the nucleosynthesis.

The pertinent question is this: In the time scale permitied by the neutrino losses, how
far w111 the beta—processes go in producing nuclei with a neutron excess? In other words,
in the “equilibrium” or e-process in which the iron-group abundances are finally deter-
mined, does the material come to the complete equilibrium corresponding to the ambient
temperature and density or does the limited reaction rate of the beta-processes impose
an additional constraint? It has been emphasized by B2FH (1957) and Hoyle and Fowler
(1960) that the abundances of the iron-group nuclei found in the solar system (particu-
larly, terrestrial isotopic abundances) show definite effects of such a rate limitation, We
take it that solar-system iron-group nuclei are typical of nuclei produced in the e-process
just outside the imploding central regions of Type II supernovae. These nuclei reside in
the material which is swept out by the explosion of mantle and envelope to be discussed
later. This explosion occurs in such a short time imierval that the quasi-equilibrium
abundances reached before the implosion-explosion are essentially unchanged. In what
follows we will find a most significant connection between iron-group abundances and
the tirme scale set by neutrino losses during the stellar stage just prior to core implosion
and mantle-envelope explosion.

The measure of beta-interaction rates appropriate for our present purposes is the rate
of change of one-half the average neutron-proton difference per nucleus. This can be
calculated from

,8(N~Z) _dN _ _dZ_2tn(N,Z)/7(N,Z) (105

dt T dt at n(N,Z) !

where N = INn(N, Z)/2n(N, Z), 7 = 3Zn(N, Z)/En(N, Z) n(N, Z) is the number of
nuclei contammg N neutrons and Z protons, and f(}\ Z) is the mean Lifetime of these
nuclei for beta-interactions. (We use here the notation #[N, Z) = n[d — Z, Z] rather
than #[4, Z] for obvious reasons.) The positive sign is to be used for positron emission
or electron capture and the negative sign for electron emission or positron capture. The
problem at hand involves first of all the calculation of #(¥, Z) as a function of the ratio
of protons to neutrons, Z/N. This is a task of considerable magnitude if temperature
and dengity are also varied, and a computer program to accomplish the purpose has
been undertaken by Clifford and Tayler (1964) at Cambridge University. Here we will
fix on a temperature and density using some of their results and will discuss only in a
general way what is essentially the “approach” to equilibrium in stellar nuclear processes.

Since B?FH (1937) found that equilibrium calculations at Ts = 3.8 gave excellent
agreement with solar-system iron-group abundances, and since this temperature is just
shightly above that at which the pure e-process ends, we will use this value in what
follows. Then in a steller core with effective mass M, = 20 M 5 we have on interpolation
in Table 3, ps = 3.1, N, = 48 X 10¥ gm™, 5, = 1.50 X 10¥ cm—?, N_ = 3.9 X 10%
electrons gm™1, n_ = 1.22 X 10% electrons cm™%, Ny = 0.9 X 10° positrons gm™!, and
ny = 0.28 X 10% positrons cm—3. The clectron-positron numbers will change slightly as
Ni% changes to Fe* as the dominant nucleus during the operation of the e-process. The
double entry for z = mc2/kT = 1.5, Ty = 3.95 in Table 3 illustrates the change in N,
for example.

The termination of the a-process at Ty = 3.5 follawed by a slight rise in temperature
and density upon contraction brings the material to 7Ty = 3.8 with Z/N = 1 and Ni¥
the most abundant nucleus. Beta-processes will now lower Z/N. For substitution ir
equation (105) one thus needs relative values for n(N, Z) for a series of valucs for Z/N
at Ty = 3.8. A fixed value for Z/:V serves as a constraint on the equilibrium process ir
the manner described by B2FH (1957; see pp. 577, 578). Dr. Tayler and Mr. Clifforc
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have carried out abundance calculations for Z/N = 1.00, 0.975, 0.950, 0.925, 0.900,
0.875, 0.8725, 0.870, 0.865, and 0.860 as part of their general program. The interval
between successive values corresponds to AN = 0.4 neutrons per nucleus when
A(Z/N) = 0.025. A total change of ~2 neutrons per nucleus is thus covered as cxpected
for the typical case 23N1ss% — 55Fe;0%. Table § lists the principal components of the
material for various values of Z/N.

Methods for calculations of the (¥, Z) under stellar conditions are described in Ap-
pendix A. It will be clear that electron capture and positron emission are the important
beta-processes since the trend in stability is toward nuclei with a neutron excess. Under
terresirial laboratory conditions positron emission is more rapid than electron capture
if sufficient energy is available in the nuclear transformation to produce the positron
rest mass and give the posilron kinetic energy at least comparable to its rest-mass
equivalent energy. However, in dense stellar interiors the electron density at the nucleus
is considerably greater than in the undisturbed atom so that the rate of electron capture
is greatly enhanced. This effect is discussed in detail in Appendix A. The result is that
the proton-te-neutron change in radioactive nuclei which normally capture elcctrons or
emit positrons is increased in rate and even stable nuclei, ¢.g., Ni%, have fairly short
lifetimes for capture of electrons having high energy in the tail of the thermal energy
distribution.

Reference to Table S indicates that the nuclei which make important contributions
in equation (105) are: Ni% (2 X 107 sec), Nié7 (2 X 102 sec), N1*® (5 X 104 sec), and
Feb (4 X 104 sec). The proton (4 X 103 sec), Co% (2_X 10? sec), and Fe® (101 sec) also
contribute. In general the transformation from Z/N = 1.00 to smaller values can be
followed in Figure 10. At Z/N = 1 the principal constituents are Ni®, Ni%?, and Co®.
These capture electrons or emit positrons to become Co%, Co®™, and Fe®, respectively.
The Co*® immediately becomes Fe¥ and Ni®® through fast nuclear processes since
2 Co% — Feb 4 Nit8 + 4.45 MeV. Fet and Ni*® capture electrons to become Mn® and

TABLE 3

A, THE APPROACH TO EQUILIRRIUM AT T = 3.8 X 108,
p=3LX 104 M. =20 Mg, M= 30 Mo

3 @-2) Z/% 108 %y/%n o

1o, 0.0 1.000 8.62 0.0
0.1

2. 0.4 0.975 7.36 o 0.1

3o 0.8 0.950 6.61 0.2
0.2

b 12 0.923 5.18 0.4
0.8

oo, 1.6 0.900 4.04 1 1.2
6

6o 2.0 0.875 2.94 , 2.8
‘0.4

Toooo| 204 0.8725 2.74 o5 3.2

8........ 208 0.870 2.48 3.7
18.0 1.3

9. .......| 216 0.865 1.76 5.0
3.0

0........| 2.2 0.860 1.1 8.0
12.8

t........| 240 0.850 |............ 20.8
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TABLE 5—Contisned

B. ABUNDANCE IN PER CENT BY MASS
{(Naturally Radioactive Nuclei in Parentheses)

Nucleus. . . v vvuv (Ca™) (N b8) (Ni%7) Nis# Febd (E e8E) Fest Fedt Fets
Product..,..... . |(Fef)Mnd|(Cof)Feht  (CaosT)Fet? (Co®ny (Mn&) Mns¥ (Mp%) | .......
Energy diff. (MeV). 3.46 2.10 3.24 ~-0.38 ~0.69 0.23 =371 e el
Tane (5CC). o0\ | 2X1D8 25108 2% 102 S)I04 | 4% 104 101 10 | ]
| D 3.3 89.1 29 | 0.7 1.7 { 3x10-3| 61080, . ... ) ... ....
20 8.7 | 34.3 7.3 7.9 [ 193 0.2 LX)
3o . 8.2 21.4 6.8 , 6.7 [43.4 09 | 0L ...
Y D 2.1 1.0 1.5 , 18.5 | 60.1 6.0 1 4.1 |2x10°3|. ... ..
S 0.3 [3X102| 0.2 ( R3 |[34.0]| 12.0 1 290.2 ) 6X102| 4X10°8
6 21072 5X104| 91073 1.2 6.8 7.9 | 62.9 0.4 0.1
T 88X 1072] 2X 10~ s><10—=[ 08 4.7 6.7 66 2 0.3 0.2
8 A 10730, 2X107 0.4 2.8 5.3 69.2 0.7 03
L 4% 104!, 2%104] 0.1 0.6 2.5 70.5 1.5 1.2
10............. cod |2x10-= 0.2 1.2 64.3 | 2.7 4.0
|

Co®® which change by fast nuclear processes Lo Cr%2, Fe® and Nif°. Fe® and Co® produce
Min® and Fe®?, Eventually nuclear processes produce the equilibrium abundances which
mainly reside in the stable ruclei which form the shaded “steps” in Figure 10, namely,
Cro25434 Mn® Fe*5758 Co®®, and Nif%2 (the last two nuclei are not shown). Some
material remains as stable Fe’* and Ni** and also as stable Cr™ (not shown) and the
other rare iron-group nuclei.

RADIOACTIVE su/éLE

. 27
NL | 56 57 8 59 o8
©~JENDOERGIC
& IELEC. CAPT.
EXOERGIG | 2
ELEC,GAPT.
Co 27

Fe 26
4

Mn 25

Cr 24

32

F1c. 10.—The flow of nuclear material in the N, Z-plane during the equilibrium or ¢-process showing
the effects of the slow heta-interactions and the rapid nuclear interactions. The e-process results mainly
in the production of Ni* with about 10 per cent Co8, Ni¥7, Fe®, and Fe® (not shown),
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Table 5 gives the time intervals calculated using equation (105) for the changes
through Z/N = 1.00, 0.975, . . ., to 0.860, and the total time to each value. Table §
also gives the quantity 6 = logie 7,/n., the logarithm to the base 10 of the ratio of
densities of free protons to free neutrons external to the complex nuclel. As pointed out
by B*FII (1957) equilibrium calculations can be made quite simply using 8 as a parame-
ter. It will be clear, however, that 2/ is the more significant parameter. The computer
program of Clifford and Tayler (1964) essentially finds the values of 8 which yield the
chosen values of Z/N and calculates the corresponding cquilibrium abundances. It will
be noted immediately that, as expected, very large ratios of {ree protons to free neutrons
are required external io the complex nuclei to maintain the larger values for Z/N, e.g.,
6 = 8.62 for Z/N = 1.00. In simple physical terms a dense atmosphere of protons is
necessary to prevent the nuclei with Z = N from decaying to the more stable nuclei
with Z < . The electrostatic repulsion between protons in the nucleus which leads to
increased stability for Z < N is seen to have a powerful effect.

TABLE 6
TRON ISOTOPES—IPER CENT OF TOTAL g-PROCESS ARUNDANCE BY MASS
(M. =20Mp, M=~ 30 M)

|
| |  Electron
Z/N log ny/n5 Fett F et Fet™ : Fett '+ Capture Time
| ! (10t sec)
1.000.. 8.6 1.7 R9.1 2.9 0.0 0.0
0.950 . 6.6 43.4 21.9 7.2 0.0 0.2
0.900. 4.0 34.0 29 6 4.7 0.04 | 1.2
O 6
0.860.......... 1.2 | 02 64.5 30 4.0 8.0
0.850........ .| .. ...l T FPR R TR 20.8
|l— — _ e e |—_— e — e [e—_—
Solar-terr vaiues. ... .........

* Interpoiated from calculated values 2t 0.8725 and 0.870.

B?FH (1957) found the optimum correspondence between solar system iran-group
abundances and the calculated values for the case 75 = 3.8 and § = 2.5 illustrated in
their Figure IV, 1, on page 579. We have already seen that 7'y = 3.8 is reached naturally
in the stellar and nuciear evolution under discussion. The new calculations of Clifford
and Tayler (1964) yield optimum results at ¢ = 2.7 which differs insignificantly from
the B?FH values, Correspondingly Z/N = 0.872 and A(N — Z) = 2.0, showing that the
beta-processes changed approximately two neutrons into protons in the transformation
from material with Ni® the most abundant nucleus to material with Fef the most
abundant,

The correspondence between the observations and the calculations of Clifford and
Tayler (1964) is illustrated for the stable iron isotopes Fef4%5%58 in Table 6. The solar-
terrestrial values are those found first by dividing the iron abundance by mass by the
abundance of all the equilibrium process elements (V, Cr, Mn, Fe, Co, Ni) using the
solar spectroscopic data given by Aller (1961). The resulting value 73 per cent was then
divided among the iron isotopes according to the ferrestrial isotopic abundance ratios.
The chondritic iron abundance given by Suess and Urey (1956) is somewhat higher than
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the solar value. This higher value can be obtained from the equilibrium-process calcula-
tions by employing 2 slightly lower value for the temperature without changing the
isotope ratios significantly. The calculated values in Table 6 have been obtained from
the abundances of Clifford and Tayler (1964) given in part in Table 5 by assigning all
of the material at mass 56 to Fe®, for example, on the basis that if the equilibrium process
terminated at a given value for Z /N then Ni¥ and Co% would subsequently decay to
Fe® and so forth. o

The table shows that almost exact correspondence is obtained at Z/N = 0.872 or
6 = log n,/n, = 2.7 as noted previously. The time required for the electron captures
up to this point is seen to be 3.2 X 10* sec. This value holds for a star of mass M =~ 30
Mo with core mass M, = 20 Mo where Ty = 3.8 and ps = 3.1 are the assumed equi-
librium conditions. In the calculations, positron emission, electron emission, and positron
capture have been neglected relative to electron capture. The detailed treatment in
Appendix A justifies this neglect. At still lower Z/N, as complete equilibrium is attained,
all processes, in particular positron capture, must be considered. The time required for
the fast nuciear reactions to re-establish equﬂibrium as the electron captures take place
has also been neglected. This is justified since, for example, the lifetime of Co* to Co*
(v, n)Co®™ ~ 10.07 MeV is ~10 % sec at Ty = 3.8, p; = 3.1.

It will be noted that the time required for a given change in Z/N orin § (N — Z)
rapidly increases after Z/N = 0.872. Table 5 shows that the change 0.875-0.850 requires
more than ten times the interval required for the change 0.900-0.875. Tablc 6 shows that
the total time from 1.000 to 0.850 is more than six times that required to reach 0.872.
Thus we are in position to reach an answer to the question posed in the second paragraph
of this part of this paper. In the time scale permitted by the neutrino losses, how far will
the beta-processes go in producing nuclei with a ncutron excess?

To answer this question it is necessary to compute the neutrino time scale under the
couditions of temperature and density which have been reached in a star with M = 30
Mo when the beta-processes operate to change Ni% and other Z = NV nuclei produced
in the a-process to nuclei such as Fe’ with § (V — Z) = 2. In the Ni®-Te% {ransforma-
tion the energy release is 6.6 MeV or 1.13 X 10V erg gm~! which is reduced to ~10"
erg gm~! by direct neutrino losses. At Ty = 3.8 and ps = 3.1, dU,/dt ~ 10" erg gm™
sec? 5o the time scale is 7, ~ 1017/10* ~ 1000 sec ~ 17 min. This calculation under-
estimates £,. Some Ni* begins to decay as soon as it is first produced at the beginning
of the a-process. Thus an upper limit for ¢, is the sum of the interval for the a-process
plus that for the Ni*-Fe’ transformation. This sum is 4000 sec 4 1000 sec = 5000 sec.
As an intermediate value we tentatively adopt £, ~ 3000 sec.

The value just adopted tentatively holds for the time scale at the center of the star.
Since the neutrino loss decreases rapidly with decreasing temperature the time scale,
from the considerations of section (&), Appendix C, will be somewhat longer throughout
the central region in which the Ni*-Fe* transformation is taking place. Rough calcula-
tions lead us to adopt £, ~ 6000 sec finally. The Ni*-Fe* transformation is relatively
insensitive to temperature, and no correction is necessary.

Thus we find /, ~ 6000 sec is considerably shorter than £, ~ 3 X 10* sec. However,
it must be recalled that our calculations have been made for a particular example,
M =~ 30 Mo or M. = 20 Mo, of the type of stars which Hoyle and Fowler (1960) sug-
gested would evolve to become Type IL supernovae, namely, stars for which 10 Mo <
M < 50 Mo. Return now to a perusal of equation (53) in Part Y1, This equation indi-
cates that for a given temperature and polytropic structure the central density is propor-
tional to .72, The neutrino loss rates per gram at a given temperature vary inversely
with the densxty, while the electron capture rates vary almost directly as the density.
The ratio of the neutrino-loss time scale to the electron capture time scale thus varies
as p* or M. We require larger p or smaller M. The two time scales can thus be brought
into correspondence in a variety of ways. The lower range of stellar masses may well
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have contributed relatively more e-process material than the higher range. Second, our
choice of M, =~ (£) M may be too large. Third, the numerical coefficient in our p, T-rela-
tion may be low.

Thus, it would seem that quite close correspondence in the time scales exists for
e+ et — v 4+ v and for Ni%® + 2¢~ — Fe® 4 2» with a universal Fermi interaction for
these two types of beta-interactions if the stars in which solar system e-process material
was produced had masses 10-50 Mo as originally contemplated by Hoyle and Fowler
(1960). All of the processes, resources, losses, and time scales discussed in Parts V-VII
and VIII to follow are listed in Table 7 for M =~ 30 Mo.

The point under discussion here can be sharpened by a consideration of the time scale
if &= 4+ et — v -+ v was not operative. Photon losses in the interval 3 < Ty < 4 can be
estimated to be ~107 erg gm™! sec! rather than the value ~10* erg gm™ sec™? for

TABLE 7

NEUTRINO L0ss AND PHASE-CHANGE TIME INTERVALS
(M, =20 Mo, M= 30 Mp)

Nuclear Neutrino Loss Core Imterval
Temperature Process* Resources (erg gm—! Gec)
(erg gm™1) sec™l) sec
2—-3X10°%. ... ... 2 O18—Size Hed 51047 SX 10w 17
34X100. .. ..., 2 Si**—Nij* (a) 2107
6X 101 S000
4X10°. . ... ... Nif—Fef (g) 1017
A4514X108, ., ... Fe®—13 at4n —2X 1018 SX 10
0 3jfree
a—2p+21 —7X 10 4310 *fall

* For Niss=—Feb effective interval ~ 6000 zec.

dU,/dt. Thus the photon-loss time scale for Ni* to Fe® is ~6 X 10 sec ~ 2000 years
or ample time for the beta-interactions to reduce Z/V well below the last values tabulat-
ed in Tables 5 and 6. The result, as shown in Table 6, would be, among other things, an
enhancement in Fe’ and a decrease in Fe* completely in variance with the terrestrial
ratio. Clearly the time scale was not this long. Photon losses by the stellar material
were not competent to decrease the Lime scale to the necessary value. On the other hand
the neutrino time scale set by assigning the universal Fermi interaction strength to the
process et 4 ¢~ — v + v in the pre-supernova stage of massive stars is closely that re-
quired to match the electron capture times involved in the formation of the Fe-isotopes
and the other iron group nuclei. The isotopic abundance ratios in any sample of terres-
trial jron are circumstantial evidence for the universality of the beta interactions.

This much can be asserted with some certainty: The lerresirial iron group isolopic
abundance yatios strongly indicale the operalion in massive stars of an energy loss mechanism
having a loss rate of the same order of magnitude as thal calculaied for et 4+ e — v+ von
the basis of the universal Fermi inleraciion sirengih. If this process does not occur directly
through the universal coupling then the Pinaev (1963) modification of the Urca process
(process (3] in Past I) is probably the most likely allernative. It does noi vequire universality
in the weak inieractions but has a somewhot smaller reaction rate than the divecl pair
annihilaiion. o

A comment on the ultimate values for Z/N or 8 = log n,/n, reached when the beta-
interactions are in complete equilibrium is in order at this point. B*FH (1957) estimated
¢ = 1.4 from a consideration of the equilibrium between free neutrons and free protons
and electrons. This value is only an approximation at best. It does in principle cover
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the equilibrium between free protons and free neutrons and positrons. The difficulty
involves the fact that neutrinos and antineutrinos escape and do not enter tuto reverse
reactions once produced. This means, among other things, that energy musi be supplied
to maintain equilibrium at a given density and temperature. Granted this energy supply
the equilibrium will depend more on the properties of the heavy nuclei than on those of
the free neutrons and protons. The electron-positron ratio wifl be given as calculated
previously in this paper on the basis v = ¢t <+ ¢~. Then when electron capture and
positron emission are balanced exactly by positron capture and electron emission, equi-
librium in the beta-interactions will have been reached. We found above that it was not
necessary to carry the calculations this far. In principle this could be done but would of
necessity include all beta-processes involving all nuciei and would be fairly complicated
in detall.

The preceding analysis has been based on the assumption that a unique abundance
distribution characteristic of a particular final value for Z/N or ¢ can match the obser-
vations reasonably well. However, it has also become clear in the discossion that the
value reached by Z/N through beta-interactions depends on the time interval available
for the e-process and thus on the mass of the pre-supernova stellar core. Henee, different
abundance distributions are produced in supernovae of different masses and the solar
system iron-group abundances represent an appropriate averaging over abundance dis-
tributions characteristic of a range of supernovae masses. We do not propose to carry
out a detailed calculation along these lines at the present time but do wish to make some
comments an the possibilities inherent in this line of attack.

Clifford and Tayler (1964) have confirmed the findings of B2FH (1957) that the cal-
culated results for 8 near 2.7 yield too low values for the abundances of Cr*° and Ni*¥
by a factor of the order of 10. Averaging over a range of distributions characteristic of
varying time scales may serve to correct this defect in the calculated results. Consider
a mixed abundance distribution with contributions from low-mass supernovae (10-35
M o) and from high-mass supernovae (35-50 M o). The first contribution will dominate
on the reasonable basis that the lower-mass stars are sufficiently greater in number such
that a greater total mass has been processed in lower-mass supernovae than in those of
higher mass. The major contribution will be characterized by a value for 8 slightly lower
than the unigue value which gives the optimum fit as described above. Take Z/N =
0.870, § = 2.48, £ (N/Z) = 2.08 as a possibility for this case. Then, for example, Fe®
will be somewhat greater than observed and Fe somewhat less.

Now dilute this abundance distribution with that from very massive supernovae
(~ 10* M) in which the time scale is not only too short for many beta-interactions to
occur but is also too short for certain nuclear processes. As Ni%® decays to Co™ the nuclear
processes will quickly convert the Ca® into the more stable nuclei having the same N — Z
value, namely, 2. These are Cr®, Fe4, and Ni%. Zn® with N — Z = 2 is not very stable
and hence not very abundant at equilibrium. The conversion of the Co¥ is mainly accom-
plished by the ejection of p and # from some Co® nuclei and the addition of these p
and # to others. As long as the numbers of free $ and » are not changed this results in
the mean molecular weight per nucleus remaining fixed at ~56. Actually equilibrium
calculations indicate that n, (free protons) tends to decrcase through capture so that
the mean atomic weight A tends to increase for this reason. On the other hand the light
nuclei Si*8, S Ar® Ca® can serve as seed nuclei for the synthesis of new iron-group
nuclei by capturing p, #, a and the mean molecular weight in the iron group might thus
be changed. However, the equilibrium abandaunce of these nuclel is too small for this
process to be effective.

New iron-group nuclei can also be made by the formation of C™ from three alpha-
particles followed by subsequent p, #, a captures. Because of the low equilibrium density
of alpha-particles this process will be infrequent on short time scale. Another possibility,
but also much too infrequent to be effective, is the complete photodisintegration of Co®
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nuclei into p, 7, ¢ with reassembly into nuclei which do not necessarily have A = 56.
Given a long enough time scale this process does operate to decrease A below 56. It
would seem that nuclear processes which will change A are too slow when /£, becomes
very short. Thus complete equilibrium will not be reached and the transformation of
the Co® must keep A = 36 or slightly increase it because of free proton capture, It will
be clear that one Ni®® is needed for each Ie® and three for each Cr5 if A remains fixed
at 56, again neglecting Zn®, As stated previously it can be reasonably expected that Ni*
and Feb* will be the most abundant in the short time-scale distribution, with Cr® en-
hanced over the abundance expected on a complete equilibrium calculation. Clearly the
addition of such a contribution will tend to remedy the deficiency in Cr®®, Ni%, and Fe®
previously mentioned. This is borne out by the calculations in Table 5 for Z/N = 0.925
where complete nuclear equilibrium is assumed, but even so the results show considerable
enhancement in Ni®® and Fef4, Furthermore, the addition of some Ni% which has not
decayed but which eventually becomes Fe® will restore the Fef8/Fe® ratio to a value
close to that observed. In fact, this dilution improves practically all ratios since with the
notable exceptions of Cr*®, Fe* and Ni®* the calculated ratios to Fe™ are in general high
by ~30 per cent for § = 2.48. Rough calculations indicate that one part short time-scale
distribution plus two parts long time-scale distribution will give improved agreement
with the observations. Our basic conclusion previously reached is reinfotrced, but now
it is necessary to postulate some ¢-process contribution from stars with M up to ~10® Mo
as well as from M ~ 10-50 Mo.

A general comment on the comparison of e-process calculations with iron-group ele-
mental abundances is in order at this point. Isotopic abundances for a given element
depend primarily on the ultimate value reached for Z/N or for . We have stressed iron
isotope abundances, computed versus observed, in this discussion. Similar results hoid
for the four isntopes of chromium. On the other hand, the general shape of the iron-group
peak, as determined by elemenial abundances depends primarily on the value for Ty, the
temperature at equilibrium. The B2FH (1957) choice, Ty = 3.8, was determined by fit-
ting to the solar spectroscopic values believed to be correct at that time. Meteoritic iron-
group abundances scem to indicate 2 relatively greater iron abundance, i.e., a sharper
iron-group peak. This can be obtained theoretically by choosing a slightly lower tem-
perature. Conversely the choice of a higher temperature tends to flatten the peak. (See,
however, the paper “The Iron Group Elements and the Equilibrium Process in Nucleo-
synthesis” presented by W. A. F. at the I.A.U. Symposium on ‘““Abundance Determina-
tion from Stellar Spectra” held in Utrecht, August 10-14, 1964.)

It remains only to inquire whether beta-processes were fast enough during the run
from Si?® to the iron-group nuclei with time scale ~4000 sec to change Z/N signifi-
cantly from unity. In particular would mSca® (7 = 1.0 sec), 3V*® (7 = 0.6 sec),
aMne® (7 = 0.4 sec) or 27Coi™ (7 = 0.3 sec) be sufficiently abundant to bring
about the necessary number of beta-transformations? We investigate this problem by
assuming, for example, that V* has its maximum abundance when the material is essen-
tially equally divided between Ti** and Cr® on the way from $% to the iron group
nuclei. Then under equilibrium conditions

Ve e VR w(46) 5.04, . .
logTi44+Cr4s—10gz(ﬁucrm)m—log2[w(44)w(48)]m T, X 3.545
(106)
=0.77—17'9=—4.SatT9=3.2,
Ty

where M (V%) — § M(Ti*#) — 1 M (V%) = 3,545 MeV/2 and the o’s are statistical
weight factors. Since Ti** 4 Cr*® will not constitute all of the material this is an upper
limit on the V# abundance, With 7(V*) = 0.6 sec the effective processing time becomes
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>4 X 10¢ sec, say ~10° sec. This is to be compared with that portion of the time, say,
~4 X 10% sec, when the material has maximum concentration near 4 = 44-48, This
large dlscrepaucy of 250 cannot be made up by the arguments involving p? « Mt
advanced earlier in this section, and we conclude that Z/N = 1 up to 4 = 56.

Vi, CENTRAL CORE IMPLOSION

The production of the iron group nuclei, principally Fe%, at 7y~ 4 exhausts the
nuclear resources of a star, In fact, at higher temperatures the energy flow is reversed
and endoergic photodisintegration replaces exoergic fusion. Because of the great stability
of the alpha-particle, the iron-group nuclei are not immediately broken up into protons
and neutrons. A preliminary stage occurs in which the nucleus (4, Z) is photodisinte-
grated according to

y+(A,Z)~+%He‘+(A—2Z)n. {107

Through what follows calculations will be made for Fe® for which equation (107)
becomes
y + Fe®— 13 Het 4 4n — 124.4 MeV (— 2.14 X 10" erg gm™) . (108)

Eventually even the alpha-particles are photodisintegrated according to

v + Hel— 2p + 21 — 28.3 MeV (— 6.82 X 108 erg gm™1) , (109)

so that the complete photodisintegration can be represeunted by
v 4 Fe— 26p 4+ 30n — 492.3 MeV (— 848 X 10'® erg gm™) . (110)

Even this breakdown is an oversimplification, but it is sufficient for most purposes. The
energy losses are much more severe than the neutrino losses and must be made up from
the gravitational-energy store of the star. This can only be done through an extremely
rapid rise in density or, in other words, through the implosion of the central regions of
the star affected by the nuclear photodisintegrations.

Eventually the stellar matter becomes degenerate, and the equations developed in
this paper are no longer adequate. The final stage involves capture of the clectrons by
protons to form a neutron core. A consideration of the properties of such a core lies out-
side the scope of this paper. Siafic neutron stars have been considered by Oppenheimer
and Volkoff (1939), Harrison, Wakano, and Wheeler (1958), Cameron (1939a), Salpeter
(1960), Hamada and Salpeter (1961), Saakyan (1963), and Morton (1964).

A lower limit for the time of collapse arising from the photorefrigeration is set by the
time for free fall. For this to be the case the sum of the mean photodisintegration times
for Fe® and subsequent products must be less than the frec-fall time. At the start of the
photadisintegrations at 7 ~ 4 the use of equation {C22) indicates that the mean life-
times of Fe®, and the first few products are comparable to that calculated previously
for Si?®, namely, 1 sec, so that the total time is at most 10 sec. As the process proceeds
and the temperature rises, the individual times decrcase markedly, the total time typi-
cally being the order of 10"‘i sec at Ty = 7. The free-fall times (see equation [B88],
Appendix B) are given by

. 1 446
tyf=p/p=(24ﬂ_6p)l/, v

sec . (11

At Ty =4, p = 3.6 X 10° so that £, ~ 0.2 sec, while at T3 = 7 we shallfind p = 3 X
107 so that 1, ~ 0.1 sec. Thus the photodisintegration rate may be somewhat of a limi-
tation at the start of the implosion but not at all as the temperature rises.
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It is now proposed to make an approximate calculation of the p, T-path during the
implosion resulting from the iron-to-hclium-neutron phase change and part of the sub-
sequent change to the proton-neutron phase. In this calculation we use equation (72)
for dQ/dT. On the assumption that the implosion is too rapid for neutrino and photon
losses to be appreciable, we would then set dQ/d7T = 0 for an adiabatic process. However,
it will be recalled that in the derivation of equation (72) from equation (56) we neglected
the nuclear energy in equation (59) preferring to introduce this energy as a separate term
at this point. When this is done the adiabatic equation becomes

9, 40 _ g

ar T -~ iz

In this equation we have followed the usual convention in nuclear physics in taking
changes in Qx as positive for exoergic reactions and negative for endoergic reactions such
as equations (108) and (109). On the basis that Qy is a part of the internal energy U it
would be preferable to use the opposite convention. The temperature derivative of Qx
will be calculated from the equilibrium abundances as a function of T as detailed below.
Conventions aside, it is important to realize that equation (112) with equation (72)
for dQ/dT is the correct energy equation for each element of material cven when accelera-
tion up to free fall occurs. With initial conditions given by the hydrostatic equilibrium
solutions before implosion, equation (72) will give the correct p, T-path when substituted
in equation (112). We are interested primarily in that part of the core which implodes
homologously. Homologous collapse occurs over the region in which the acceleration due
to gravity, g, is linear in radial distance. It is well known that g starts linearly in all
polytropes, flattens out to a maximum value, and then decreases. For # = 3 the maxi-
mum occurs at r/R = 0.22 or M,/M = 0.31 where M, is the mass interior to radius r.
The linear relation holds to 20 per cent out to M,/M = 0.1 so that approximately i of
the core collapses homologously along the same p, T-path. It is, of course, true that
equation (112) does not include the work done by gravity in accelerating the material.
Use of the dynamical equation
d*r _ dp  GM,
Pap™ " dr Py

(113)

is required to calculate the dynamical energy of motion, §p(dr/d!)?, imparted by gravity.
Knowledge of the p, T-path and the equation of state of the material yields the p, p-path
for use in equation (113). However, for our purposes equation (112) is sufficient for the
calculation of the p, T-path of the homologously collapsing central regions of the core,
'(l‘his)calcula.tion will now be made for the two stages governed by reactions (108) and
109).
In the case of reaction (108)

Qv

Q’Fe
with xy, equal to the abundance by mass of the iron-group elements centered on Fett
and O’y = —2.14 X 10'® erg gm. The prime on Q’y. is used to designate the partial
breakdown of Fe into alpha-particles and neutrons. For the complete breakdown into
protons and neutrons, Qr. = —8.48 X 10'8 erg gm~!. As reaction (108) proceeds and
xy. decreases from ~1 to ~0 the equilibrium equation governing this reaction yields
one relation between p and T for the collapsing material. By the use of equations (1)
and (1’) in Hoyle and Fowler (1960) this relation is found to be

In p=26.04—1210(1~2s) + 7 0 2e,+31n Ty —

=1— x5, (114)

90.2
Ty’

(115)
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since x, = 13(1 — x3) and 2, = #A;(1 — x) with s+ 2. + 2, = 1. In terms of
Briggs logarithms one has

log p=11.32—17log(1 — x¢.) + {5 log xza+ 2 log Ty ———. (116)

With the substitution of equation (114) the cquation in Naperian logarithms becomes

In p =26.04 —17In Q"-{- (1—Q,l)+31 n T —02;2. (117)
Differentiation yields
dlnp dlnp 1 d]an\+ _'_&g .

dlnT dInTy  ¢(Qx) d1nT,

where
e (Ox)=(Q're — Ox) /(2210’7 — On) = 21/ (2r. + L)

At this point it is convenient to set the term d In Qy/d In Tq =dln QN ‘dln T =
(T/Qx) d O~/dT in cquation (118) equal to —(T,/Qn) dQ/dT using equatlon (112) and
then to substitute for le/a!T by the use of equation (72) with the approximation that
the nuclear term containing kN, can be neglecied. After some algebraic manipulation
it is found that

dlnp —[§4(90.2X108/T))(Ox/T)p(On)+EN.C'.+4aT?/p

TInT —(On/T)0(Ox) + kN.6.” F 4aT3/3p r
where .
o= ot (n 201 (B2 020
2
-*1—[—(x+z)(](}h). (121)

Equations (117) and (119), respectively, give a relation between p, T and the slape
of the p, T-curve as a function of the independent variable Oy which runs from ~0 to
~(g. as the collapse proceeds. Thus the p, T-curve can be constructed by numerical
methods, and this has been done approximately with the results given in Table 4 and
illustrated in Figures 5 and 6 (6 < T3 < 9). Fifty per cent of the Fe® is disintegrated
at Ty= 745 logp = 7.65 while only 1 per cent remains at Ty = 9.0, log p = 8.3.
In general the behavior of the p, T-curve discussed by Hoyle and Fowler (1960) is fol-
lowed.

A similar analysis of reaction (109) leads to the following equations:

8_3“_1~14xh (122)
with @'z = 120, = —6.34 X 10"® erg gm™. The maximum value for the fractional
abundance of helium after completion of reaction (108) is x, = 1}. In our notation
Oro = Q're + Qo = —8.48 X 10" erg gm~, Then

Inp=22.29—-21In —) (15*—)4—1}5 In xa+—lnT9—1—0T?~'—3 (123)
9

=23.29—%1ng-,%(§,%+%)—1—%1n<1— )—1—31 Ty— 1(;,93, (124)

5
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or
_ Ox /0Ox On 47.5
logp = 10.13 *%log@; Q’G+T2§ +1 log (1 _a>+% log Ty — T, (125)
dlnp dlnp 1 dlnQnx,, 1093
= e 3 — ( }
dinT 4Ty g0y dnTs 13T 7 e
where

¥ (Ox) = 3(Q%— Ox)(2Q"a+ 130%) / (4Q°a* + S 0Q"On — 390x7), (127)
and finally

_dlnp  —[3+(109.3X10%T)]1(On/T)¥(Ox) +2N.c's+ 42T/ p
dInT — (On/TIW(On) + kN "+ 4aT?/3p '

The p, T-curve up to Qx = 0.2 (', has been constructed approximately with the
results given in Table 4 and illustrated in Figures S and 6 (T > 9). The material be-
comes relativistically degenerate at T3~ 15, log p ~ 9.5. The curve for relativistic
degeneracy is given approximately by p = 10% Ty gm cm—® by equation (B140) of Ap-
pendix B. Table 4 also includes a column for dQ/dT = —dQy/dT during implosion cal-
culated using equation (112). The neutrino loss @U7,/dt is given for comparison. The
results are illustrated in Figure 9 for Ty > 0.

Figures 5 and 6 show that core collapse begins at p ~ 3 X 107 gm cm™?. The collapse
time can be cstimated approximately by use of the free-fall equation (B88) given in
Appendix B. If the e-folding time for » (or p!? = T) is employed this equation yields
s = 1338 712 sec ~ 0.3 sec. Thus the central core implosion is very fast indeed. In
fact, ATy ~ 1 requires only the order of ~0.1 sec so that dU,/d: in Figure 9 for Ty > 6
should be multiplied by ~0.1 for comparison with dQ/2T = —dQx/dT.

(128)

IX. MANTLE AND ENVELOPE EXPLOSION

The implosion of the central portion of the stellar core described in Part VIII leads
to the detonation and ejection of the outer regions of the star. This subject has been
previously discussed by Hoyle and Fowler (1960), and the discussion to follow consti-
tutes a revision based primarily on the effects of neutrino losses in speeding up the pre-
supernova evolution of the central regions relative to the main bulk of the star.

The effect of neutrino losses must at first tend to prevent the temperature from rising
in the central regions. The star can moderate the losses by growing an isothermal central
region in the core. However, it is known that in non-degenerate conditions such an iso-
thermal region cannot contain more than about 10 per cent of the total mass. This was
shown originally by Schénberg and Chandrasckhar (1942) and has been confirmed in
recent years by other workers, using numerical methods. The same result can, moreover,
be demonstrated analytically. We shall therefore regard the discussion of Parts VII and
VIII as applying to an inner core of mass ~0.1 M. Tt is in this rcgion that the iron-group
elements are built, The central part of this region implodes as described in Part VIIT
while an overlying shell is swept outward in the subsequent explosion resulting in the
distribution of the iron-group clements (Part VII) into the interstellar medium.

A considerable fraction of the outer region of the star consists of potentially explosive
O'. A precisc computation of the early, pre-neutrino, evolution is necessary to determine
the exact amount of O%. It is suggested that it will correspond approximately to the
convective zones that must develop during H and He burning, Such zones have the
effect of synthesizing and mixing, first Het and then O, through a substantial fraction
of the stellar mass, For the fairly massive stars (10-50 M o) under consideration in this
paper the convective zones are large, and throughout this paper we have assumed the
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convective core mass to be 3 M and the unevolved envelope mass to be 3§ M. When an
inner core with mass 0.1 M develops, this leaves 0.57 M for what we will call the mantle
of the core. Thus the structure of the star can be taken to be as follows:

Inner core of rapidly evolving material......... ~0.1 M
Mantle composedof O*®. ... ... ... ............ ~0.5T M
Quter shell composed of original H and He. . . .. ~0.33 M

These regions are illustrated in Figure 11 for various stages of a supernova event.
When the inner core has grown to ~0.1 M, and an isothermal structure can no longer
be maintained, the central temperature rises again. Neutrino losses produce a situation

EVOLUTION OF A 30Mg STAR

TYPE O SUP
POST-SUPERNOVA STAGE SUPERNOVA

ENVELOPE /\
104, UNBURNED H + Ha

MANTLE OF CORE
Mg UNBURNED (0)
|OMg BURNED (51--) Phatan Losses

INNER CORE N
EJEGTED SHELL eret—yiy
2M, (IRON-GROUP)  Neulrino Losses

SUPERNOVA STAGE
T —

EXPLOSIVE BURNING
QOF HYDROGEN

EXPLOSIVE BURNING
OF OXYGEN

BRAKING ACTION OF
ROTATION OR MAG. FIELD

ENDOERGIC PHASE CHANGES
CENTRAL CORE IMPLOSION

l IMPLODED CENTER
IMg

Fic. 11.—The evolution of a star with M = 30 M ¢ illustrating the pre-supernova, Type II super-
nova, and post-supernova stages. It is assumed that braking action due to rotation or some other mech-
anism ultimately leads to mantle-envelope explosion following core implosion caused by endoergic nu-
clear phase changes. The explosive burning of previously unburned oxygen is taken to be the source of
energy in the explosion. The explosion results in the ejection of unburned “primordial” material plus
products of hydrogen burning, helium burning, oxygen burning, the a-process, and the e-process.

in which evolution accelerates as it proceeds; the more advanced material runs further
and further ahead of the rest. This causes the inner core to develop far ahead of the
oxygen mantle. The development of the inner core requires a time of the order of only
1 day (~ 10° sec). When implosion consequent on the phase change of iron-group ele-
ments to helium takes place, the inner core withdraws from the rest of the star. The
outer part, comprising 90 per cent of the mass, can be regarded as an almost separate
stat in which oxygen in the mantle is compressed to explosion point at 7'g = 2,

The question now arises as to whether a spreading detonation of the oxygen can pro-
duce an outburst of the whole mantle and envelope of the star. To decide whether this
is possible, it is necessary to construct an energy budget, as was done formerly by Hoyle
and Fowler (1960). The situation here is different from the previous discussion, however,
in that the fraction of the star now in the mantle and envelope is much greater than
before—a situation caused by the neutrino losses and by the retreat of the core.

The model we shall adopt for drawing up the energy budget is one in which the star
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is a polytrope of index 3 possessing central temperature T's = 2.5, This temperature is
chosen because it is that temperature at which oxygen burning is 90 per cent or almost
entirely complete at the stellar center according to the calculations of Part V. Above this
ternperature the development and isolation of the inner core take place. In calculating
the gravitational binding energy which must be supplied to disrupt the star, an upper
limit is 8 GM*/R where M is the total mass and R is calculated for polytropic index 3.
However, the “giant” envelope is much less loosely bound than implied by this expres-
sion and the gravitational binding energy of the imploding regions need not be included
at all. As a better compromise we will evaluate the mean gravitational potential as
3GM./R., where M, = 2M is the core mass and R, is the core radius, but then multiply
by M to obtain the gravitational energy.
1. Gravitational energy before delonation.—Equation (B124) of Appendix B yields

GM, T T,
-—=1.17(— ~ 109 ——) -
R, rB /s uB/, erg gm (129

=~ 3.1 X 10Y erggm—1

for (Ty), = 2.5 and (uf), =~ 0.79 from Table 3. From this the gravitational binding
energy according to our prescription is |Q| = 4.6 X 107 M = 9.2 X 10% M /Mo ergs.
This expression and others to follow is evaluated for M = 30 Mo in Table 8.

TABLE 8

ENERGY BUDGET, TYPE II SUPERNOVA EXPLOSION
M, =20Mp M= 30 Mg

Ergs
Gravitational energy required........ [Q] = $(GM./R;)M = 2.8 X 10%
Thermal energy available. ......... . (1-=0.248) @ = 2.5 X 104
Balance required. .. .............. 0.24 8 |2 = 0.3 X 10%
Explosive energy at 5000 km sec™. .. My = 0.7 X 10®
Total required. .. ... ......... =1.0X 108
Erg/Mo 2 0% — Si* 4 Hef. ... ..... 5 X 10Y X 2 X 102 = 109
Oxygen burning required. . ........ = 10 Mg

2. Thermal energy before deionalion.—From the virial theorem, the absolute magnitude
of the gravitational energy is three times the volume integral of the total pressure as
indicated in equation (B143) of Appendix B. The thermal energy of matter plus radiation
is obltajnad by multiplying the pressure by the factor given by equation (B70) with
g = 1andn, = n:

%:3—&[3—3;—;;(1—@ |

#e

- 3.01 _
~3-5[3—1.91—3.a (1_3.-33 ]z3(1 0.248) (130)

=2.67,

where the entries for 8 = 0.457, etc., at Ty = 1.69 in Table 3 have been taken as appro-
priate averages over the mantle. Hence the internal thermal energy is a fraction of order
1 —0.24 8 = 0.89 of the gravitational binding energy. Thus the thermal energy is
0.89 || = 4.1 X 10" M =~ 8.2 X 10 M/Mo erg.

3. Binding energy before detonation.—The difference between the gravitational energy
and the thermal energy is 0.11 |Q| =~ 0.5 X 1017 M = 1.0 X 105% M /M ¢ erg.
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4, Delonation encrgy.—The energy released in 2 0 — 83 is 5,0 X 107 erg gm™. Al-
though the mantle of the core contains 0.57 M gm of oxygen, not all of this will be
burned in the detonation. A realistic estimate for the fraction burned would seem to be
about ~60 per cent of the mantle material or ~% the mass of the star so that the over-
all energy release is 1.7 X 10’ M =~ 3.4 X 10°% M /Mo ergs.

S. Enmergy excess—Taking the difference between the detonation energy and the bind-
ing energy, the energy excess for detonation of the estimated amount of 0¥ is ~1.2 X
107 M erg. If converted into dynamical energy this would endow the whole mantle plus
envelope with an average explosion speed of ~5000 km sec™?, in good agreement with
the observed expansion speeds of Type II supernovae.

The margin by which the detonation energy exceeds the binding energy is adequate
but not great. It depends both on a fairly high assessment for the detonation cfficiency
and the amount of O" involved such that the total quantity of O burned is of order
T M. It is possible in some cases that either the detonation is not complete enough or
that the amount of O is not sufficient to give excess positive energy to the whole en-
velope. In such cases we would still expect some expulsion of matter into space, through
the outward propagation of shock waves from the detonation region to the surface. The
shock-wave problem has been discussed by Colgate and Johnson {1960), Ono, Sakashita,
and Ohyama (1961), and by Ohyama. (1963).

There is also a problem associated with the requirement of some braking action which
will prevent the oxygen mantle from imploding along with the inner core before it can
burn and produce enough nuclear energy for explosion. There is some question whether
the internal pressures can support the mantle for the burning period and it may be that
rotation, internal turbulence, or an entrained magnetic field, plays the dominant role
as a brake on the mantle implosion. If this is the case not all stars in the range 10-50 Mo
would be expected to become Type IT supernovac but only those with sufhcient rotation,
internal turbulence, or cntrained magnetic field at formation. It is now realized that
there is no problem in massive stars imploding without loss of mass to the gravitational
limit in contrast to the previous belief, widely held, that all mass in excess of ~M o had
to be ejected at some evolutionary stage. This matter is considered in some detail by
HEB? (1964).

Only in the case of a complete expulsion of the whole mantle plus envelope can the
iron-group elements be ejected from the star. With the mantle plus envelope removed,
and perhaps with some of the detonation energy carricd inward through shock waves, we
expect the outer parts of the core to join the outward-moving gases. Again, tentatively,
we set the quantity of iron-group elements as ~2 Mo for M =~ 30 Mo on the basis that
the imploding central part of the core must be of the order of a solar mass. This is some-
what less than the value ~3 Mo given previously by Hoyle and Fowler (1960). The
galactic enrichment of iron-group elements over a period of 10'® years, even at a rate of
1 supernova per 10® years, is ~2 X 107 M o, giving ~0.02 per cent of the total mass of
the Galaxy, a result in good agreement with present observational estimates by Aller
(1961).

Tinally, we point out that the ratio of Fe group elements to the products of O* burn-
ing, the Si group, is 2 Mo/10 Mo for M = 30 Mo or approximately 1, a value again
in good agreement with observation. Thus Aller (1961) gives a table (8-3, p. 192) for
solar system abundances for which, after slight modification for other sources of evi-
dence, we find Si group = 1.3 X 10~* by mass and Fe group = 2.5 X 10—4. On the
other hand, we note that Type II supernovae cannot contribute very much to He or
CNONe synthesis, since these groups are much more abundant than the Si or Fe groups
and on the basis of the arguments given here only a relatively small amount of He* and
O or other light elements remains unburned during the explosion.
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X. SUMMARY

The nature of neutrino processes in stars, and energy loss rates resulting from neutrino
emission, have been reviewed in the first two parts of the paper. On the assumption that
the universal Fermi strength applies to four-lepton interactions, it is found that neutrino-
antineutrino emission by electron-positron pair annihilation is the most important neu-
trino process in massive stars (M > 10 M o). From the discussion of the effects of neu-
trino emission by this process in pre-supernova stars, two conclusions stand out as re-
quiring special emphasis:

1. Although neutrino losses greatly speed up evolution when Ty exceeds ~1, the loss
rate is not sufficient to produce a frce-fall implosion. Free-fall must await the phase
change of iron-group nuclei first to helium and free neutrons and ultimately to free pro-
tons and free neutrons.

2, In BFH (19537) it was shown that the observed relative abundance of the iron-
group nuclei could be understood in terms of an equilibrium or e-process, provided two
parameters Were appropriately chosen—the temperature and the ratio of the densities of
free neutrons and protons, with logarithm denoted by 8 = log #,/1,. Other choices for
these parameters did not lead to a satisfactory correspondence with the observed abun-
dances. In this early work, no satisfactory explanation could be given to show why Ty =
3.8, 8 = 2.5 are the particular values necessary to explain the observed abundances. In
Part VII of the present paper we arrive at an explanation, however. The explanation
turns out to lie in a relation of the evolution time scale, as set by nentrino losses, to the
time required for certain nuclei on the proton-rich side of the stability line to move to-
ward the stability line. The indicated temperature is reached at the end of the a-process
which produces nuclei such as Ni* having the maximum stability for equal numbers of
protons and neutrons (Z = N). To arrive at an appropriate value for 6 in the typical
transformation from Ni® to Fe® by electron capture, if is necessary that neutrino losses
iake place at a rate of the order calculated from the universal Fermi interaction strength. An
order of magnitude deviation from the universal interaction would lcad to a wrong value
for 8. The Pinaev (1963) modification of the Urca process does not require universality
and may be rapid enough to result in the required limit on the time scale. Exact calcula-
tions for the Pinaev process require more accurate knowledge of the relevant beta-
Interactions than now available.

Evolution proceeds most rapidly at the center of the star. If radiation transfer is
neglected and if temperature is chosen as the independent variable, then the time scale
under neutrino loss is determined by the equation

dt_(pdp dU  d0x\ /dU,

dT " \p*dT 4T ' dT at’

(131)

in which U is the internal energy per gram, including matter and radiation and also the

rest-mass encrgy of electron-positron pairs produced by the radiation field, dQw/dT is

the nuclear energy released per gram per unit rise of temperature, and 4U,/df is the

neutrino loss rate per gram per unit time. Formulae for dU,/dt by pair annihilation are

given in Part II. It is convenient to take the first two terms in brackets together, writing
&Q _pdo dU

~EZE_Z27 3

iT ~p1dT  dT e
Here dQ/dT is the energy made available per gram per unit increase of temperature by
the compression of the evolving material. The first step in evaluating dQ/dT is to obtain
a formula relating the density p to the temperature 7. This question is considered in
Part IIT and Appendix B where arguments are presented to show that p and T can satis-
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factorily be related by equation (33), p = 107 (M o/M.)? (T+/18)? gm cm—?, so long as
the star is in quasi-hydrostatic equilibrium. This equation involves not only the effective
core mass of the star, which may be considered known, but also thc product p8. In the
non-degenerate case the gas law for the pressure p also involves u8. A determination of
this product is complicated by pair creation. This problem is also considered in Part III,
where it is shown that the well-known quartic equation for 8, applicable in the absence
of pair creation, is now replaced by a quartic equation for (u8)* in which the modified
Bessel function, Ky(m.c¥/ET), appears. The formulas developed allow p8 and also p
and 8 individually to be evaluated, Equation (53), in which p~ 10° (Mo/M.)/2 T4
gm cm™?, is the approximate result for massive stars. Hence the (/0% dp/dT term in
equation (132) can be calculated when the temperature and the mass of the star and
its chemical composition are specified. (The latter is known from nuclear considerations.)
Turning now to the internal energy U, formulae are obtained in Part IV which allow
aU/dT also to be calculated when the temperature and the mass of the star and its com-
position are specified. Results for a mass, ¥, = 20 Mo, M = 30 Mo, are shown in Fig-
ure 8. The remarkable feature emerges that dQ/dT is negative for Ty ~ 2. There is an
energy deficit amounting to ~10" erg gm™' (10 deg)~! arising from pair creation at
temperatures near this value. If dQy/dT were zero, equation (131) would lead to a nega-
tive time scale for evolution, an impossible conclusion. The inference would be that
equations (33) or (53), based on a quasi-cquilibrium of the star, had become invalid. In
short, the star would implode when the central temperature reached about 2 X 10°
degrees. However, dQx/dT is not zero. Nuclear reactions, in particular oxygen burning,
are taking place, and these give ~5 X 10*" erg gm—? over the relevant temperature range,
more than ten times what is needed for the pair creation. Using the value of dU,/d:
appropriate to Ty ~ 2 we find (7dt/dT)~ ~ 10° sec, so that evolution in the tempera-
ture range important for pair creation takes about a day. Although this is very short
compared to normal time scales for stellar evolution, it is still long compared to the time
of free fall, about 1 sec. Quasi-static equilibrium is still maintained and p and T can still
be related by equations (33) or (53). Nuclear reactions serve as stellar thermostass.
Nuclear energy continues to be supplied by nuclear processes up to I's~ 3.5. The
a-process discussed in Part VI follows oxygen burning. However, the energy yield from
the a-process is less than that from oxygen burning. Also the neutrino loss rate increases
with the temperature. The effect is to shorten the time scale for evolution to ~5 X 102
gec. But this is still much longer than the time of free fall. There is still no implosion—
in the sense that dynamical velocities do not develop in excess of the speed of sound.
As the temperature rises above Ty ~ 3.5 exoergic nuclear reactions effectively cease.
Until endoergic reactions set in a Tg ~ 6 the dQw/d7 term in equation (131) may be
taken zero. The only source of encrgy is then from compression—i.e., the 4Q/dT term
of equation (132). But at T4 > 3.5 this term has again become positive. For example,
at T’y ~ 5 we obtain dQ/dT ~ 10'7 erg gm™' (10° deg)~. At this temperature dU,/dt ~
10% erg gm—! sec™\. Hence the time required for evolution to lift the temperature from
Ty = 5to Ty = 6isabout 100 sec, still longer than free-fall time, now <1 sec, We con-
clude that quasi-equilibrium is maintained up to the onset of endoergic reactions.
Endoergic reactions imply that dQx/dT becomes strongly negative. Equation (131)
yields the impossible result of a negative time scale, implying that quasi-equilibrium
ceases, and that the density and temperature can no longer be related by equations (33)
or (53). The time scale for evolution is no longer set by neutrino losses but by the free-
fall time. Indeed, neutrino losses can now be neglected. The equation

dQ |, 40~ _
2wt a0 e
determines the density-temperature relation during the implosion. The path of material

in a p, T-diagram is shown in Figures 5 and 6 for several stellar masses up to the onset
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of relativistic degeneracy. The equations given in Part IV for calculating dQ/dT cease
to be valid under conditions of relativistic degeneracy.

The discussion given in Parts VI and VII of the a-process and e-process, respectively,
is an important by-product of the argument. With a knowledge of the evolutionary time

+ scale determined by cquation (131) it is possible to gain additional insight into these

processes. We define the termination of the a-process as being set by the complete
photonuclear disintegration of Si?%, This occurs at T9 ~ 3.5, a value slightly below that
found by B?FH (1957) as the best operating temperature of the e-process, Ts ~ 3.8.
Our point of view is that the sample of e-process material most likely to escape from a
supernova is that which lies just below the region in which the a-process takes place
and just abave the region where implosion is induced by endoergic nuclear reactions as
shown in Figure 11. This will be material only slightly above the a-process temperature,
Le., slightly above Ty~ 3.5, in agrecement with B2FH (1957).

Following the photodisintegration of Si?® a rapid synthesis occurs in which the initial
equality of the total neutron and total proton densities plays a dominant role. Thus the
most abundant nucleus initially is Ni%, not Fe®, as in terrestrial iron-group material.
However, the Ni%* decays to Fe’ by electron capture in the time scale, 4. ~ 3 X 10* sec,
comparable to the evolution time determined by neutrino losses, £, ~ 6000 scconds in a
star with mass M ~ 30 Mo. If stars with somewhat lower masscs are considered or if
core masses somewhat less than M, ~ % M are specified, then ¢, and ¢, are very closely
equal. The decay of Ni%* to Co®® changes the ratio of proton and neutron densities, and
this is cquivalent {o changing the value of the parameter 8. This in turn changes the
equilibrium abundances. Hence the evolution with respect to neutrino losses is equiva-
lent to an evolution with respect to 6. It turns out that as the former speeds up @ tends
toward a limiting value. In stars of 10-35 Mo the limiting value is close to just that
obtained by B*FH (1957). In stars of larger mass 6 reaches a limiting value that corre-
sponds to a distribution of iron-group elements systematically more “proton rich” than
terrestrial material. It seems then that the iron-group elements of the solar system were
mainly derived from stars of mass 10-35 M o, rather than from more massive stars. It is
of considerable interest, however, that the equilibrium distribution for 10-35 Mo is
notably deficient in two typically proton rich nuclei, Cr*® and Ni%*. To explain the abun-
dances of these isotopes, it is necessary to suppose that, while the terrestrial e-process
elements were mainly derived from stars of masses in the range 10-35 Mo, a smaller
component was also derived from stars of larger mass.

So far we have been concerned with the physics of a particular element of material.
The evolution of a particular element is not much affected by uncertainties concerning
the structure of the whole star. However, the explosive outburst of a supernova is much
affected by the over-all structure. Until more is known about the development of the
model, a discussion of the outburst can of nccessity only be qualitative. We expect the
accelerating evolution to produce a situation analogous to that found in subgiants, where
a dense core, not containing more than 10 per cent of the total mass, develops at the
center. We suspect that neutrino losses have the effect of significantly reducing the mass
of the imploding inner region below that estimated by Hoyle and Fowler (1960).

Material outside the core with temperature less than Ty~ 2 at the moment of im-
plosion will fall inward and will experience compression. A rise of temperature to Tg ~ 3
produces an explosive burning of oxygen—i.e., a time scale for oxygen burning less than
the time required for a sound wave to travel through a star. Consideration of an individu-
al element shows that the density cannot exceed ~10° gm cm™?* during oxygen burning,
which implies that explosive burning occurs long before the outer part of the star col-
lapses onto the imploding core, Hence the energy from the nuclear reactions, amounting
to ~35 X 1077 erg gni 7, is released at a stage where the gravitational binding of the outer
mantle has not increased appreciably above its value at the onset of implosion. A general
energy budget suggests that the total binding of the mantle and of the outer envelope

© American Astronomical Society » Provided by the NASA Astrophysics Data System



S....90.0201r

153€ennTE

262 WILLIAM A. FOWLER AND F. HOYLE

can become negative—a necessary condition for explosion. We find that the ecnergy ex-
cess can exceed 107 erg gm™1. If this excess is converted into the dynamical velocity of
outburst, the resulting speed is of order 5000 km sec™, in agreement with the observed
speeds of Type II supermova shells.

We have regarded a discussion of the dynamical behaviors of the imploding corc as
lying outside the scope of the present paper. There is also a problem associated with the
requirement of some braking action which will prevent the oxygen mantle from implod-
ing along with the inner core before it can burn and produce enough nuclear energy for
cxplosion. There is some question whether the internal pressures can support the mantle
for the duration of burning period and it may be that rotation, internal turbulence, or
an entrained magnetic field plays the dominant role as a brake on the mantle implosion,
If this is the case not all stars in the range 10-50 Mo would be expected to become
Type II supernovae but only those with sufficient rotation, internal turbulcnce, or en-
trained magnetic ficld at formation. It is now realized that there is no problem in massive
stars imploding without loss of mass to the gravitational limit in contrast to the previous
belief, widely held, that all mass in excess of ~M o had to be ejected at some evolution-
ary stage. This matter is considered in some detail by Hoyle, Fowler, Burbidge and
Burbidge (1964). At this point we conclude this “Handbuch der Eay-Prozcsse.”

The material presented in this monograph was first discussed in part by the anthors
at the Herstmonceux Conference, April 17, 1962, at the Royal Greenwich Naval Observ-
atory, Herstmonceux Castle, Hailsham, Sussex. One of the authors (W. A. F.) incorpo-
rated part of this material into the Henry Norris Russell Lecture delivered before the
114th meeting of the American Astronomical Society at the University of Alaska, Col-
lege, Alaska, July 23, 1963.

The authors are indebted to Dr. R. J. Tayler and Mr. F. E. Clifford for discussions
of the e-process, for communicating their own results before publication, and for recalcu-
lating the special e-process distributions originally presented in B2FH (1957). In addition
they are indebted to Professor C. C. Lauritsen, Professor G. R. Burbidge, and Dr. E, M.
Burbidge for general discussions of the content of the paper, to Professor M. Gell-Mann
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APPENDIX A
BETA-INTERACTION RATES

a) General Eguations

In this appendix we discuss the rates of the weak interactions involving nuclei. These
are known collectively as the beta-interactions and include electron-antineutrino emis-
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sion, positron-neutrino emission, electron capture with neutrino emission, and positron
capture with antineutrino emission. In the first and fourth of these, a nuclear neutron
is transformed into a proton (Z — Z + 1), while in the second and third, a proton is
transformed into a neutron (Z — Z — 1).

The rates of these interactions in stars can depart considerably from the terrestrial
rates. A comprehensive discussion and bibliography has been given recently by Bahcall
(1964). For the purposes of Part VII of this paper, we can limit the present discussion
in regard to stars to the case of completely ionized, non-degenerate, non-relativistic
nuclei, and non-degenerate but relativistic (E > m.c?, v > 0.87 ¢) electrons and posi-
trons. No discussion is included for very low-energy electron emission where atomic
binding-energy contributions to the terrestrial energy release and terrestrial bound-state
decay complicate the terrestrial-stellar comparison, The effect of the exclusion principle
is negligible at the temperature and density of interest. Screening and certain nuclear
size effects have been neglected. In a private communication Bahcall (1963) has pointed
out that the electron concentration under consideration here, ~10%* cm—3 is about a
factor of 100 greater than the electron concentration surrounding Fe atoms under ter-
restrial conditions; this electron concentration is in fact about equal to the concentration
surrounding U atoms under normal terrestrial conditions. Reitz (1950) has shown that
screening changes electron and pesitron decay probabilities by less than 20 per cent for
particles emitted from U atoms with energies of the order of 300 to 400 keV (3T ~ 4 X
108 degrees K). This indicates that screening is not very important for stellar atorns in
the Fe peak at the temperature and density under consideration here. Bahcall (1964)
has also estimated that nuclear size effects increase the capture rates calculated in this
paper by approximately 1S per cent. Relativistic Coulomb effects have been included
only in a multiplicative factor which is a rough approximation near Z = 26. Only
allowed transitions in which the lepton pairs have zero orbital angular momentum in the
noun-relativistic approximation will be considered; antiparallel spins for the pair then
corresponds to the vector Fermi transition and parallel spins to the axial vector Gamow-
Teller transition. The selection rules on the change in spin and parity in the nuclear
transition are therefore AJ = 0, AII = 0 for the Fermi case and AJ = 0, +1 (no 0 — 0),
ATl = 0 for the Gamow-Teller case. Bahcall {1964) has investigated forbidden decays
in the most important of the specific cases discussed in (¢) and has found the allowed
decays to be faster.

Under the restrictions stipulated in the preceding paragraph, it can be stated that
the electron or positron emission rates for a transition between given initial and final
nuclear states are not greatly different in stars from those in the terrestrial case. We have
specifically excluded from our discussion the case of degenerate stellar material where
electron or positron final states may be partially or completely occupied so that the
exclusion principle serves to inhibit the emission rates. However, even in the case of non-
degenerate stellar material which is the primary interest of this paper, we will find, as
is intuitively obvious, that stellar electron and positron capiure rates are very sensitive
to temperature and density and for a given transition can differ considerably from ter-
restrial values.

There is one important respect in which the stellar situation always differs from the
terrestrial case. At thermodynamic equilibrium in stars, nuclei exist in all their various
excited states as well as in the ground and isomeric states for which it is possible to
measure beta-decay rates in terrestrial laboratories. This fact has been known for many
years (see, e.g., Chandrasekhar and Henrich [1942]) and was taken into account by B2EFH
(1957) in their discussion of the equilibrium (e) process. These authors did not include
excited state abundances in their treatment of neutron capture processes (s and ), since
they took the temperatures for these processes to be low enough that excitation of
nuclei could be neglected in first approximations. In a discussion of neutron processes at
higher temperatures, Cameron (19595) pointed out that the excited states of a mucleus
may have quite different beta-decay rates than the ground state of the nucleus.
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For each excited state of a nucleus, it is necessary to calculate the beta-decay rate
by the method to be discussed in what follows. Then, to obtain an cffective decay rate,
this calculated value must be multiplied by the relative population factor for the state.
This factor is given by

= (2J+1)exp—E*/kT
Zi(2Ji4 L)exp—E*/ kT’

(A1)

where J Is the angular momentum of the state and E* is its excitation encrgy above the
ground state for which E* = 0. The sum of the effective decay rates over all states will
then give the over-all decay rate for the nucleus in question.

With the above preliminaries aside, we now turn to the case of allowed 8+ emission.
The differential decay rate, d\, for allowed 8* emission in the energy interval duwg is
given by (see Preston [1962])

AN(B%) = ZC M |°F1(Z, wg)w,p.wsppdews (42)

where w is total energy in units m.c?,  is momentum in units #2.c, subscript » applies to
neutrino or antineutrino, subscript 8 applies to electron or positron, £, is a relativistic
Coulomb factor, the energy X momentum products come from phase-space factors for
the emitted leptons and

ZCM2=Cy2 | My |2+ Cu2 Mgz |? (A3
with
Gyt

s __ UV
Cv 273k / m,c?

=1.13X 10=4sec™,

M » = Fermi nuclear matrix element, Gy* = square of dimensionless vector interaction
constant = 0.90 1 0.01 X 10723 corrcsponding to the square of thc absolute constant,

gv? =Gy (mec?)2(h/m.c)*=2.00 4 0.02 X 10— erg? cm® ,

T 27/ mc?

and

C 42 =1.58 X 10—*sec!,

Mer = Gamow-Teller nuclear matrix element, G,* = square of dimensionless axial
vector interaction constant = 1.26 + 0.05 X 107 corresponding to the square of the
absolute constant

g% = G 2(mc?)? (B/m)® = 1.40 + 0.08 gy? = 2.80 + 0.10 X 1078 erg? cmé .

If the maximum total energy available to the electron or pesitron be designated by w,
in units m,c?, then p, = w, = w, — wg = w, — w on dropping the superfluous subscript.
In the non-relativistic limit

21y
= A
Fe(Z,0) |exp - 27n— 1" @)
where
2
=Z_e_= a.Z—€=a.Z£ (A4")
hy 9 P

is a positive quantity for both electron and positron emission with » the electron or
positron velocity, e = k- the fine structure constant, and Z the charge number of the
final nucleus. The relativistically correct expression for F.. is known but is somewhat
complicated and (v/c)F, = (p/w)F, = 2x oZ(F,/2xy) has been tabulated by Rose,
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Dismuke, Perry, and Bell (1953). It is convenient to abstract the term 2#» from F, so
that

dN(Bt) =27aZZC? | M |2

Fi )(wo—w)zw’dw. (AS)

Upon integration over « from unity to w,, the followmg expressions for decay rate (),
mean lifetime (), and halflife (¢) result:
1 In 2

)\(ﬁi)zT(ﬁi)=t(6i)=EC2|M|2f(ﬁt)’ (A6)

with

7(8%) = 1az (> (55 -5 +% 1) )

<—>(———>
-—21ra.Z< >( (A9)
f(8*+)=2raZ <27.-+ >[(Qa3—02)5+ (Qagz)‘_'_ (ga;2)3]‘ (A10)

f(g=) = 2ﬂ'aZ< >(qa -I-q'l + (A11)

where Z is the charge number of the final nucleus. In these expressions, e, = w, — 1 is
the maximum B8* kinetic cnergy in units m.c?, g. = Qn./m.¢* is the difference between the
initial and final nuclear masses expressed in energy equivalent units m.c® while ¢, =
Qa/m.c* is the corresponding difference between the initial and final afomic or nuclidic
masses which are the ones customarily tabulated. Except for very small atomic rear-
rangement terms, w, = ¢ + 1 = g,. It is also true that g, = ¢ + AZ — Ab, = ¢, + 1
(plus for B+ emisgion, minus for §~ emission) where AZ = 41 is the initial charge
number minus the final, Ab, = AB,/m.? and where AB, = 36.6 Z*/* AZ eV is the cor-
responding change iu atomic binding energy. The quantity AB; is at most only a few
kilovolts in energy for the Z-values of interest and can be neglected except for very small
Qa- Thus, @, = g4 F 1 and ea(ﬁ—) = g, while &(8*) = ¢a — 2.

It will be seen that equations (A6)—(A11) do not represent an explicit integration of
equation (AS) since an appropriately weighted “mean” values for (F./2mn) must in
general be calculated. Fortunately, in the range of relativistic electron or positron ener-
gies, (F,/2wn) varies slowly with energy. The tables of 2raZ(F,/2ny) prepared by
Rose et al. (1955) can be used when highly accurate calculations are warranted. For our
purposes, we find near Z = 26, (F_/2rn) =~ 1.6, and (F./27n) = 0.5. Over the elec-
tron-energy range which contributes predommantly to the decay rate (F_/Zm;) varies
only by approximately 10 per cent so that the use of a fixed value for (F_/2r7) is a quite
good approximation. In the positron case (F/2rg) varies by as much as 30 per cent so
the approximation using a fixed (F./2wn) is relatively poor.

In the zero charge limit, F,(Z = 0, w) = 1 and the integration of equation (AS)
yields the well-known expressions

Jul8%) = (= 1)1 (S5 =20 8 ) L % g [, 4 (w2 = 1))
UDB (&)D:
R'J%_?-f- Z~0,wa>2 (A12)
~0,2155,7*+.... Z~0, =0, — 1< 1,
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Electron capture occurs terrestrially from bound atomic orbits. The rate for bound
electron (es~) capture in the allowed case (K, Ly, etc.) is given by
1

)»(eb_)='1‘_‘(—a):'5'

=ZC | M|2f(ev ), (A13)
with

fle) == (2 19.(0) |72

A 3
=,,z<
MmeC

where w, = go = ¢» + 1 is the energy (single-valued) of the emitted neutrino, ¢, is the
nuclear mass difference in encrgy equivalent units m.c®, corrected if the accuracy re-
quired is high for the atomic binding of the captured electron ga 1s the corresponding
atomic mass difference, and |¢.(0)|? is the density at the nucleus of electrons with
appropriatc angular momentum for allowed capture. The factor w,? is proportional to
the phasc-space factor for the emitted neutrino. Allowed capture occurs primarily from
the K-shell and to a sufficient approximation

s 0 fE 2 2 h
(4.00) | 2wt =7 (m,c

(A137)

|%,(0) |2(ga+ 1)2,

2
fg.(0) 2= <ch), (AL4)

where Z is the charge number of the nitial nucleus. Thus
fle™) = 27(aZ)? ¢d'. (A15)

Electron capture occurs in stars from bound and continuum orbits, and for nuclei
under the conditions discussed in this paper it is the continuum capture which is impor-
tant. Positron capture from continuum orbits can also occur in stars, although it is not
of great importance in the considerations of interest in the main body of this paper.

The allowed differential rate for et capture from the energy interval dw in the con-

tinuum (subscript c) is given by
DN (e) =3O M| Far (ot gt () 222 da, s

m,c

where o, = (v + ¢,)* = (w+ ga £ 1)? is proportional to the phase-space factor for
the emitted neutrino or antineutrino and the differential electron density,

dd’;i :2 Mo ) ( )m’exp —zwT p] (A17)

can be obtained from equations (7), (9), and (10) of Part IT. When this is done, one has
with z = m,c’/lzT and n,/m = exp F o,

¥

d)\(eai) = 27aZ3Ct| M |2 F*) —

exp ( ~— sw)w(w+ga) dow. (A18

To obtain A(e*) we must now distinguish two cases. In the first case let go = Qn/m.c?
the nuclear energy difference in units m.* between the capturing state and the fina
nuclear state lie in the range ¢, > —1 so that the range of integration 1s 1 < w < ®
and in the second case let g, < —1 so that the range of integration is {¢.| < w <
Then

MeT)=32Ct|M|*f(e.%) (A16
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with
flet)=2xaZ <2ﬂ_.’7 ‘Jt, (A19)

where Z is the charge number of the initial nucleus. From the main text, equation (10),
= (2/=)(kT/he)* Kala) .
As z— 0, ny — (2/x2)(RT/kc)?, while as 3 > =,

m.k

3
ait) P (—m.c?/kT).

m—(1/283) 2 (m.c/B) (kT /m.c?)3 2 exp(—3)=2
For g, > —1,

Ii=[mexp( —zw)o?(w+ ¢.) dw

(420)
_exp— g 2 2) ( é __) 4 12 2 24
s [q"i(1+z+22 24 1+z + +(1+ z’+ ]’
while for g, < —1,
Ii=f exp( — zw)ol(w — | ¢ | ) e

[y,

2 — |On/ kT 6 12
= 2o O (g 14+ S gt +22).

(A20")

An approximate value for the average of (Fi/Zrn) = |exp + 2xp — 1|~ can be
found by employing appropriate values for 2x4. For g. > — 1, it is sufficiently accurate
in most cases to use the mean value for 2xy, namely,

(Fi/2mn) = |lexp+ (279d> — 1|1,

2raZ 2,2
Kty (1Tt e

with
<27r1;> = 21|'aZ< 6/1!> =

(A21)
2m.ct

rkT

—2xeZ for e—0, T'— o .

172 1/2
—>21ra.Z(2—Tg) =27raZ ) for o 0, T'—0

For g, < —1, it is sufficiently accurate in most cases to use the minimum value for
27m, namely, (F./27) =~ |exp + 2#n)min — 1|7 with

(277 ) min = 27aZ(@/ P ) min = 271aZ leq:'lm
27mal
Tl | — N2 n S — n 1 A217)
T (2lqn] = 2)iA TS 1, lgnl2 (21
—2xaZ for [ga|>1.

If {2xy) is very large, equation (A20) will not be valid for positron capture since in
this case the term (exp 27y — 1)~! = exp — 277 must be included in the integrand in 7.
One then finds for z > 1, g, > —1

’ ' s
flect) wg—ﬂ—gﬁ Tiny (%) (ga+1)272e— (A22)
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with
7=3(n%2Z%m.c2/2kT )13 = 3.48(Z2/Ta)V/3. (A22")

There is no problem in the electron case since (1 — exp — 2x9)~' = 1 for 27y large.
In the region of interest in the main text, we have chosen (F_/2q9) = 1.6 and

(Fy/27n) = 0.5.In terms of atomic mass differences ¢, = ¢, — 11in the electron-capture

case and ¢, = ¢, 4 1 in the positron-capture case. We are primarily interested in the

electron-capture case, and so we express J_ in terms of g, as follows:

For g. > 0

R G IO I
2

LB (a2 (D) e e () D)

while for g, < 0
(1 +—+ 12) (A23")

2exp—(z+ |Qa/kT|)
Note that equations (A23) and (A19") yield for kT < m.c® and 27T < Q. the following

53
expression:
1/2
fle) =272 <~—> (m ) (2:;; ga?. (A24)

Thete is an interesting point to be noted about the case g, < —1 or Qp < — m,c.
It will be recalled that expression (A19) for A(e.*) which includes the term for 7, given
by (A20") must be multiplied by s from equation (A1) to obtain the effective decay rate
under stellar conditions. From s and I, the factor exp —(1Qa| + E*)/kT" can be
abstracted, wherc we recall that E* is the excitation of the initial nucleus. Now,
|On] + E* is the same for transitions to a given final nucleus in a given state from all
initial states for which Q,, < —m.c*. We have [Q.| + E* = |Q,,{ where g designates
the ground state of the initial nucleus for which E,* = 0. Thus, in the important expo-
nential term, all initial states “bound’” as far as beta- decay is concerned are equivalent.
The requ'u-ed excitation can be supplied either by photon energy or by the captured
electron’s energy. The polynomial factor in equation (A20") docs, of course, depend on
the individual ¢, or Q, values, favoring the ground state. For ¢, > —1, sI, from equa-
tion (A1) and (A20), with Q, = Qn, + E* exhibits a complicated dependence on E*,
the polynomial factor in ¢, = (Qn; + E*)/m.2 tending to compensate for the cxponen-
tial factor exp — E*/RT. However, for the case of primary interest in the main text
where Ty = 3.78, z = 1.57, it can be shown that the maximum value for 7, exp —
E*/ET occurs for the ground state E,* = 0. Thus, if the ground state of the initial
nucleus has an allowed transition to a low- -lying state of the fAinal nucleus, this transition
will dominate in the decay rate. However, if an excited state has a high J-value and an
allowed transition to a lower state in the final nucleus, say, the ground state, it may
dominate. Other things being equal, transitions to the ground state of the final nucleus
are favored.

I =

|qai{1+\§: )+

b)) Numerical Eualuation of Bela-Interaclion Rales

The various beta-interaction rates which have been presented in this appendix will
now be evaluated numerically. We define an effective matrix element squared by

1
M= | M2+ %Vi) (Mor|*= |Mg|*+1.40| Mor]?. k29
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With this definition, from equations (A3), (A6), and (A13) we find
log ft = 3.78 — log | M|?2. (A25)

For allowed transitions near Z = 26, log ft = 4.1 to 5.8 and |M|? = 0.5 to 0.01. Then
for all encrgies in MeV and all rates in sec™?

M(BE) = 4,98 X 107 | M2 <2FTi>(Q,,E— 1.330,2+ 1.020, — 0.21), (A26)
n

M(B+) =2.49X 10-5Z | M |2(Q.F + 2.560.4+ 2.610.°), (a27)

with Qp =Q.,— 1.022 MeV =0, — 05311 MeV, Z=Z (final nucleus), and
(Fy/2rn) = 0.5. Similarly

A(B™) = 0.80 X 1075 Z| M |2 (0.5 + 2.56 Q4! + 2.61 0.3) , (Aze)
with 0, = 0 — 0.511 MeV, Z = Z (fmal nucleus), and ¢(F_/2rn) = 1.6. Finally
M) = 1.07 X 10-% Z3| M |2 0.2, (A20)

with Q, = Q. + 0.511 MeV, Z = Z (initial nucleus).

In order to express the continuum capture rates numerically, we choose the conditions
of major interest in the main text: Ty = 3.78, 3 = 1.57, ps = 3.12, n_ = 1.22 X 10%
per cm? n, = 0.28 X 10% per cm?, and #; = 0.58 X 10* per cm® Then, for Q, >
—0.511 MeV and Z = Z (initial nucleus),

Meci>=o.82><10—5211{12<zi}>(%)(g,2+z.28@,+1.57), h30)
n 1
and for Q, < —0.511 MeV

Me£) =103 X102 M|* 5%><’:1_jl: (A31)
X (1Qnl*+1.95]Q.] +1.27)exp~3.07|0,|.
Thus, for Q, = 0, + 0.511 MeV > 0 and (F_/2x9) = 1.6,
Mes) = 2.76 X 1075 Z| M |*(Q.2 + 1.26 Q. - 0.663) , (A32)

and for Qs = O, -+ 0.511 MeV < 0,
Mec) = 0.724 X 1075 Z| M |> (|Qa]2 + 2.97|Qu] + 2.33) exp — 3.07|Qa] , (A3

where exp —3.07 |Q,] = 101381l For consistency in numerical computations, three
significant figures have been retained in the above expressions. The uncertainties arising
from the factor (F +/2#n) may be as high as 10 per cent in electron cases and 50 per cent
In positron cases.

Again it must be emphasized that the decay rates given by equations (A26)-(A33)
apply to a transition between a specific initial state and a specific final state. For a given
initial state a sum must be performed over the transition rates to all final states. This
sum must be multiplied by the statistical factor s from equation (Al). Then to determine
the effective decay rate for a given nuclear species, a sum must be performed over the
effective decay rates for its ground and excited states, We can represent the situation by

1 1

Tatar = N (Al4)
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where A is the decay rate for a specific transition of interest from an initial state having
population weight s, while x formally represents the summations of the effective decay
rates over all transitions from all initial states divided by the effective decay rate sA
for the specific transition. We will not explicitly evaluate y in our calculations, but it is
clear that x is always greater than unity and equation (A34) will be useful only when
the specific transition involved dominates the transition rate so that y ~ 1.

) Stellar Rates Evaluated from Terresirial Dola

Calculations of electron-capture rates in stars using the preceding equations require
a knowledge of the square of the nuclear matrix element for the transition or transitions
involved. In some cases this is known from terrestrial measurements of the lifetime and
energy of the transition. The simplest procedure is then to take the ratio of the two
appropriate equations so that |M |? cancels out of the resulting relation. Thus, if the
bound electron-capture rate has been measured in the laboratory, then 0, > 0 and one
has from the ratio of equations (A29)~(A32)

o) _flem)_ (aDMgd/10) .
o) o) (F/2mnnymy -8 X107 H__(l 26)+ 0665> - (43%)

The appropriate Q, will be that for the ground state or long-lived isomeric state since
laboratory measurements are only possible in general on the ground state or isomeric
state of the capturing nucleus. It must always be borne in mind that excited states for
which A(es™) is not known may contribute significantly to the decay rate in stars, espe-
cially if the ground-state decay is forbidden and thus equation (A33) when inverted may
not give the over-all A(e;”) in stars.

If the positron emission rate has been measured, then 0, > 1.02 MeV and 0, > 0
and one has from the ratio of equations (A27)~(A32) taking Z(initial) = Z(final):

(=205, (ga=2)*, (ga—2)°
x<ﬁ+>=f<ﬂ+)_<F+/2m>[ A
M) f(éc_)_<F—/2"”7> (n—/m1) I (A36)

(Qa'5 + 2-56041’4'!' 2-6 1Qa'a)

(04 1.26Q0,+0.665)

If it is assumed that the positron decay rate is unchanged in the star and that bound-
electron capture in the star can be ignored on the assumption of complete ionization,
then

Rl Z2Z 2 1) 1 Me ) INEYD | Mes) TIHMED) /N o)1
Terc(Z—0Z—1)  sxNe)+HN(BY)  sxA(e)LIHNBT)/N(e)

_M(8Y) [1+>\(er)/>\(6+)]
sxyN(e~)LLFN(Bt)/N(e.~)]1"

Thete are important cases in which the terms in brackets in one or the other of the last
two terms in equation (A37) may be set equal to unity. It will be clear in this connection
that a useful ratio is
AN(BT) 2.33X10% (Qa?+2.560,44 2. 61Qa»“)
)\( 6y~ ) VA Qa

The statistical factor s has been introduced into equation (A37) for reasons already dis-
cussed—the state for which 7, is known has relative statistical weight s in the star. We

= 0.090

(A37)

(A38)

© American Astronomical Society » Provided by the NASA Astrophysics Data System



S....%..201r

13€chnT

MASSIVE STARS AND SUPERNOVAE 271

emphasize that the ratios in equations (A33), (A36), and (A38) apply to allowed transi-
tions between the same pair of initial and final states. The factor x has been introduced
in equation (A37) as in equation (A34) to indicate that the state for which e is known
may not be the only one which contributes significantly to Aegar = 1/75¢ar.

If negative electron emission has been measured in the laboratory, then the stellar
lifetime of the reverse reaction—endoergic continuum electron capture—can be cal-
culated from the ratio of equations (A28)-(A33). We take Q. < 0 and Q, > O from the
stellar point of view and then

ruar (Z—Z~ 1) _ N(8)
Terr{Z—Z—1)  sxA(es)

_ 111 (1Qa|*42.56(0a]*+2.61]0.]*)
©osx (10al®+2.9710.1 +2.53) exp 3.07|Q.].

We have used equation (A11) to determine the numerator in equation (A39). For light
nuclei it is preferable to use equation (A12) without approximation.

(A39)

d) Stellar Rates Evaluated from Estimaied Malrix Elements

Terrestrial information is not available for certain transitions of importance in the
termination of the e-process and in other astrophysical applications. Under these cir-
cumstances it is not possible to use equations (A35)—(A39), and it is necessary to make
an estimate for | M |2 which appears in equations (A26)-(A33). Moreover, in the transi-
tion between a given initial nucleus and a given final nucleus, it is necessary to make a
determination on theoretical grounds of the states of these nuclei between which the
most probable transitions occur. In some cases little is known about the excited states,
and nuclear models must be employed to furnish some information on level structure,
spacings, spins, and parities.

The procedures which we have employed will now be outlined and then applied to the
decay of nuclei which are of primary interest in the main fext, namely, Ni%558 and
Fef48588, Tt iz first necessary to establish those transitions which are allowed, i.e., those
for which AJ = 0, 41, AIl = O for the change in spin and parity between the initial
and fina] states. In estimating |M |? for the allowed transitions there is a further com-
plication which is best discussed in terms of the nuclear-shell model. In this model with
a simple harmonic potential, nucleons progressively fill nuclear orbitals of increasing
radial quantum number and increasing orbital angular momentum, viz: 1s*, 15—, 1dt,
2st, 1f~, 247, etc., ete. Parity (IT) of the orbitals is indicated by a + superscript. Spin-
orbit splitting leads to the following ordering of the orbitals: 1s1,2%(2), 1ps;5(6), 191,57 (8),
ldslf" 14), 251/2+(16), 1d3/2+(_Z_Q), 1f7,2—(,2§;), 2?3/2"(32), 1f5/2_(38), etc., etc. The numbers
in parentheses indicate the number of nucleons which can be accommodated in the
filling of a given orbital and all previous ones. Those numbers underlined are the so-
called magic numbers designating closed shells or important subshells in nuclei. For the
iron-group nuclei and for their predecessors in the e-process, we have 22 < Z < 28 and
24 < N < 34. On the basis of the strict shell mode], particularly for ground states, the
outer protons fall in the 1f;;2~ orbital while the neutrons fall in this orbital for N < 28
and m the 2pys— or 1fss orbitals for N > 28, However, the configurations for excited
states and even for ground states are not at all pure and can be represented by mixed
percentages of 1f75~, 2paz~ and 1f;,;~ orbitals. In addition, for ¥ > 28 holes can occur
in the 1fs,5~ subshell. The implications of these points arise from the fact that in strictly
allowed beta-interactions involving the transformation of a single nucleon from a proton
into a neutron or vice versa, the orbital angular momentum of the nucleon does not
change. On Fermi selection rules the leptons are emitted with zero total spin, Thus there
is no nucleon spin flip and the nucleon remains in its original orbital. On Gamow-Teller

D American Astronomical Society » Provided by the NASA Astrophysics Data System



S....%..0201r

13€chnT

272 WILLIAM A. FOWLER AND F. HOYLE

selection rules the leptons do carry off one unit of angular momentum, the result being
a nucleon spin flip as for example in 1fz~ — 1f52~ or vice versa. For the orbitals of
interest at this point the l-allowed transitions are 1fy,s~ — 1f7,s™ or 1fs,e, 1fs — 1fss™
or 1f75~ and 2ps,s™ to 2p3,4~. The other possibilities such as 23,5~ 1f5,2 to are I-forbidden.
In transitions allowed by A7 = 0, +1, AIl = 0 the actual value of the matrix element
| M |? will depend, among other things, upon the possibilities for [-allowed transitions
between the initial and final states. For example, 2Cra#¥(0) decays 100 per cent by
bound electron capture to the 0.42-MeV state in 23Ves*®(17) with a mean lifetime of
1.2 X 10% sec and an energy Q. = 0.98 MeV. From equations (A29) and (A25’) we find
|M |2 = 0.4 and log ft = 4.2, This relatively large value for | M|? can be attributed to
the fact that 5,Cry4*® predominantly has the neutron (#)-proton (p) configurations
(15 )a* (If727),4:07 while 23Vo*® predominantly has the configurations (1f7z).
(1f5+7),*: 17 so that in the transition a 1fs. proton transforms into a 1f75~ neutron as
permitted by Fermi selection rules. On the other hand, in the discussion below of the
Fe®(3/27) transition to Mn®(5/2-), which is allowed on the basis of AJ =0, +1,
AIl = 0, we will find that /forbiddenness is a reasonable explanation for the fact that
|M[? = 0.008 and log ft = 5.9,

In the cases involving nickel and iron isotopes which have been previously noted as
being of primary interest we have Z < 28 and & > 28. Thus in proton to neutron trans-
formations, the transitions between the strict shell-model orbitals (1f7,57), and (29357)a
are forbidden. The |M|? are determined by the mixing in of other orbitals. We have
made an analysis of observed [M |2 values in the region 52 < A < 59 and concluded
that when substantial mixing occurs, | M |2 ~ 0.1 or log fi ~ 4.8. The values for allowed
transitions range down to |M |2~ 0.01 (log f¢ = 5.8) and even lower in a few cases and
this we attribute to Jforbiddenness, i.e., almost pure configurations between which
l-allowed transitions cannot occur. In the detailed analysis to follow on Ni®, etc., we
have used the shell model as a guide in order to determine those transitions which are
substantially /-allowed and have employed | M |2~ 0.1 in these cases. These transitions
are primarily those between the ground state of the initial or final nucleus and appropri-
ate excited states of the other nucleus. We consider excitations of only one nucleon. In
the excited states of the initial nucleus a proton raised to (2ps2 ), decays to a neutron
m the same orbital in the ground state of the final nucleus. Alternatively a ncutron in
the initial nucleus can be excited out of the (1f+,5). closed shell so that a (1fy;™) proton
can transform to fill the shell once again in the beta-interaction. The final nucleus may
have excited states containing a (2ps2) neutron to which the (2p54~) proton in the
ground state of the initial nucleus may decay. Our procedure probably overestimates
the decay rates and underestimates the decay lifetimes, but this is compensated by the
fact that we probably overlook many allowed transitions and neglect forbidden transi-
tions entirely, The lifetimes to be quoted are probably accurate to within an order of
magnitude, i.e., to within a factor of 3 either way.

) Specific Cases

The reader is referred to Way el al. (1961) for energy level diagrams of the nuclei dis-
cussed in the specific beta fransformations which follow.

28 V195%8—1C029%.—The ground state of Ni® is described on the strict shell model by
(If52)a? (Uf527),7: OF where f designates a jfilled subshell when used as a superseript.
Wells, Blatt, and Meyerhof (1963) have shown that Ni* decays primarily (> 94 per
cent) to the 1.74-MeV state in Co™ with possible weak transitions (< 3 per cent) to two
lower states. They find the half-life to be 6.1 4. Taking Ni®¥-Co* ="2.103 + 0.016 MeV
from Part VI, we find Teer = 8.5 X 10° sec, | M |2 = 0.39, log ft = 4.2 for the 0.36-MeV
transition to the 1.74-MeV state and log f/ > 6 for the other possible transitions. Equa-
tions (A29) and (A235’) have been used to obtain | M |? and log s¢. The 0.36-MeV transi-
tion is certainly allowed. The 1.74-MeV state in Co*® presumably has J* = 1% arising
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from the orbital (1fs2).+" which represents one neutron in the 1f54~ subshell plus the
orbital (1fy57) 7!, which represents a hole in the 1f7;~ subshell for protons. In the transi-
tion a 1f;»~ proton in Ni* transforms into a 1f;»~ neutron in Co**. The ground state
of Co%®is (2pas )™ (1f7ys7), 11 4% on the shell model with spin and parity experimentally
determined. Three other low-lying excited states in Co* probably correspond fo the 2%,
3*, and 5t states also expected for the ground-state configuration. Other low-lying states
found by Miller e/ al. (1963) probably correspond to (15 )% (1f75)5: 1 to 6+. The
ground state of Ni*¥(O*) has an allowed transition, as observed, only to the 1+ state
among all of these states. On the basis of the 0.36-MeV transition and neglecting the
forbidden transitions we find from equations (A33) and (A37) that 7etar/Tierr = 3.1 X
1073 50 that 7gar = 2700 sec at Ty = 3.8, ps = 3.1

Experimental information has recently become available on three and possibly four
excited states in Ni%* through the studies of Miller ¢ al. (1963) and Hoot ef al. (1963).
These states may correspond to the 2+, 3*, 4+ and 5% states expected in Ni% from the
excited configurations (1f727)n/ (If727) s> (2p3s7) 5™ o (76 )a (2370t (1f757) 4
The only state with low enough excitation energy to be of interest in the present discus-
sion is the state at 2.68 £ 0.02 McV with spin and parity probably equal to 2*. This
state can have allowed (ransitions with the emission of high-energy positrons to low-
lying I+, 2+ and 3* states in Co®. However, the population factor is only ~10—2 times
that for the ground state of N1®¥ at 75 = 3.8. A rough estimate indicates that the excited
state may enhance the decay rate by 20-50 per cent. Thus we adopt 744,(Ni%¥) ~ 2000
sec at Ty = 3.8, pg = 3.1.

38V 199"7—2:C05",—On the strict shell model the ground state of Ni%7 is (2p327)."!
(1f7y7)4” 2 3/2~ while that of Co® is (2pg,5)at? (1f727) » *: 7/2~ where the spin and pari-
ties have been experimentally determined. On this basis a beta-transition between the
ground states is forbidden (A7 > 1) and indeed is not observed. The ground state of Ni%
is observed to decay with half-life 37k about equally by positron emission and electron
capture to three excited states in Co®: 3/2— at 1.37 MeV, 1/2— at 1.49 MeV, and 5/2-
at 1.90 MeV. The transition energies for electron capture are 1.87, 1,73, and 1.34 MeV
with log jt = 5.6, 6.1,and 5.4, respectively. The | M |2 are of the order of 0.01. This sug-
gests that these excited states of Co’” can be described in part at least by 2 neutron con-
figuration (2p35 ), (1fs3 )" in which one neutron lies in the 1fys orbitral so that
in the transition a 1f74~ proton transforms into a 157~ neutron. Alternatively the ground
state of Ni*’ may be described in part by a proton configuration (1f71)g (2ps27),™
so that in the transition a 2py,s~ proton transforms into a 2py,; neutron. Using equations
(A35) and (A37) and summing over the three transitions, we find that e = 7000 sec
far the ground state of Ni%7at Ty = 3.8, ps = 3.1. However, there is the strong possibility
that excited states of Ni*? based on the excited configurations (2p39 )™ (Lfys)s !
(2p3)57) 5 or (2pa,5 )st? (U757 )a" (1f727) 7 will give a considerably smaller lifetime. In
fact if we assume that several such states (5/2-, 7/27,9/27) cluster around an excitation
energy of 1.5 MeV with |M |2~ 0.1 we find 7. = 6000 sec for the transition to the
ground state of Co® alone. Combining 7000 sec and 6000 sec one finds 7uar = 3200 sec.
A reasonable estimate for additional transitions to the low-lying states of Co® already
described leads us to adopt Taw-(N157) ~ 2000 sec at T's = 3.8, ps = 3.1,

26V130%—27C055%.—O0n the strict shell model the ground state of Ni*® is (2pg:).1?
(1f757) 5" : O while that of Co® is (2p3;5 )™ (1f727 )5 *: 27 where the spins and parities
have been experimentally determined. Ni* {s 0.38-MeV stable relative to Co® and elec-
tron capture from the high-energy tail of the electron continuum is forbidden since
A4 = 2. The first excited state of Ni¥® at 1.45 MeV with J* = 2+ can be reasonably as-
sumed to be made up in part by the configurations (2pys )™ (Lfzs ) * (2ps27)ptt: 2F
or 2pgz7)nt® (If i) (1fy57)5’: 2+, The transition is then allowed and s = 5 exp
(— 5.0/3.8 X 1.45) = 0.06 n equation (A34) is not prohibitively small. With |M{? =
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0.1 and Q. = 1.07 MeV we ind raar = 1/5\ (e7) = 7 X 10* sec. In consideration of
other possible transitions we adopt 7eer (N1%¥) ~ 5 X 104 sec at 7'y = 3.8, py = 3.1.
seFea® M n2f*—The endoergic transition (—0.69 MeV) from the stable ground
state of Fe¥, (1f7,57).f (1f72)572: OF, to the ground state of Mn®, (29357 ). (1f72),72: 3
is forbidden. Endoergic transitions to the low-lying states of Mn® at 0.06, 0,18, and 0.40
MeV are also presumably forbidden since these states are probably the 2+, 4+ §* states
also expected from the ground-state configuration. It is reasonable to expect that the 2+
excited state of Fef at 141 MeV is made up in part of the configurations (1/47)."
(Ufp ™2 (2p327) g™ 27 o (L) (207)51 (Lf32) 5% 2* from both of which transi-
tions to the 2 and 3+ states of Mn® are allowed. As in the case of Ni® the statistical
factor s is not too small and with | |? = 0.1 for the several transitions possible we find
Torar(FeMt) ~ 4 X 104 sec at Ty = 3.8, p = 3.1. Transitions from the ground state of
Fe® to excited states (E* > 1.0 MeV, |Q.| > 1.69 MeV) in Mn® having configurations
in part describable as (1fs2)n't (1f72),~° do not greatly decrease the effective lifetime.

26 e0 o™~ M 1505 and ;C 00 —eF €26 —The ground state of Fe® is (2p3,57 ), (1f727)
3/2~ while that of Mn® is (2p3,27)at? (1f72 )5 3: 5/2-. The 0.23-MeV transition occurs
100 per cent by electron capture with half-life 2.7 year so that |M}2 = 0.008 and log
ft = 5.9. The low value for |M|? can be understood on the basis that the transition is
I-forbidden. The corresponding value for ruar is approximately 1.5 X 10° sec. However,
Fe® has excited states at 0.41,0.93 (5/27),1.32,1.41 (7/27), and 1.50 MeV and numerous
additional states at higher energies, while Mn® has a 7/2~ state at 0.13 MeV. If the
reasonable assumption is made that the excited states of Fe% are made up in part of the
configurations (2¢357)a™ (Lf157)5* (2357) gt or (1f5s)a ! (2pays )st™ (Uf )5 )%, then
there are numerous allowed transitions to the two low states of Mn%. On this basis we
find 7y¢ar(Fe®®) ~ 104 sec at Ty = 3.8, p = 3.1. For the 3;Cos,% decay, with energy 3.46
MeV and terrestrial lifetime 26 hours, we find Taear{Co®) ~ 2 X 102 sec, again mainly
due to excited states which decrease the lifetime by a factor of ~10.

2ol €305 s M n3%.—The ground state of Mn®, (2p3,57),7% (1f55), *: 3t is heavier than
the ground state of Fe%, (23,5 ). (1f727)p 22 OF in mass-energy equivalent units by
3.71 MeV. The electron emission transition is forbidden terrestrially and in stars the
reverse transition is very endoergic. This situation for Ie™ is typical for the stable nuclei
Ti*, Cr®2, Fe Ni®, and Zn ¢, which are reached after the nuclei resulting in the
a-process such as Ni* have undergone the transformation of Lwo protons into neutrons.
Electron capture by the stable nuclei such as Fe® from the tail of the electron continuum
can be expected to be very slow, while the electron emission from Mn* is known to be
relatively fast. Only when Mn® is very rare compared {o Fe® under stellar conditions
will the third proton transformation take place. This is borne out by our detailed cal-
culations. Mn® does decay by electron emission with 2.6 hour hali-life to at least four
excited states of Fe® and in several cases | M |2~ 0.01 to 0.1 indicating that configura-
tions of the type discussed under Fe** and Fe® contribute to these excited states of Fe®.

Moreover Mn®™ has an excited state at 0.11 MeV having J* = 17 30 that an allowed
transition to the ground state (OF) of Fe® is possible. Taking all possibilities into ac-
count we find s (Fe®) ~ 108 sec ~ 3 years. The corresponding lifetime for the clectron
decay of Mn® is 7oa(Mn%) ~ 200 sec if the (1) to (0*) transition dominates with
| M|2~ 0.1. On the neutrino loss time scale discussed in the main text it is clear that
clectron capture by Fe% and similar nuclei to form still more neutron rich nuclei is very
slow indeed and is opposed by much more rapid electron decay by Mn* and similar
nuclei.

Eleclron capture by the prolon and posiiron capture by the neulron.—Equation (A39)
with |Qa| = 0.783 MeV and sy = 1 yields

Totar(P) = 7_(p) ~ 4 X 10° sec. (A40'
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Then for the neutron lifetime to positron capture one has

T+ (n) =;’:fexp( —1.294/kT)r—(p)

(A41)
~ 350 sec.
Combining this with the natural decay mean lifetime (1000 sec) yields
Totar(#) ~ 260 sec. (A42)

The stellar values hold for Ty = 3.78, py = 3.12, n. = 1.22 X 10%® electrons cm™* and
n, = 0.28 X 10% positrons cm™3.

APPENDIX B

EFFECTS OF ELECTRON-POSITRON PAIRS ON STELLAR
STRUCTURE AND EVOLUTION

a) Particle Densily

In this appendix we generalize many of the relations used in Parts IT and IIT in regard
to the consequences of electron-positron pair formation in polytropic structure and
evolution. We start with the exact expression for the Fermi-Dirac number densities of
positrons and electrons (eq. [7] of the main text), and introduce a power series expansion
for the denominator within the integrand. If the momentum P, temperature 7', and
chemical potential & are replaced by » = P/m.c, 2 = m.c*/kT, and ¢ = ®/kT, then the
Fermi-Dirac distribution becomes

"y ==_l_(:"¢4¢i)3d/na, ﬂzd’T
w2\ B o explz(92+1)12Lel+1

=1 mc)f n*dnZ( — )" lexp] —nz(n2+1)12Fnpl,

7t

B

where the summation runs over all integers from » = 1 to «. Our procedure is exactly
that of Chandrasekhar (1939) and of Chandrasekhar and Henrich (1942). The positron
density is included on the assumption that the equilibrium 4 = ¢* 4 ¢~ implies that
the chemical potentials (in units 27°) obey ¢y + ¢ = 0 or ¢, = —p_ = —¢. Integration
term by term yields a summation over modified Bessel functions of second order as
follows

ny= 1 e 6) E(— exp( Fne)Ky(nz). (B2)

Again the summation runs over all integers from 7 = 1 to = and this will be the case
throughout this appendix. To avoid the singularity in Ky(nz) at T = © or 3 = m.s?/
kT = 0, we introduce

Ry(nz) = § (ng)? Ka(ns), (B3)

which varies from O to 1 as T ranges from 0 to = as illustrated for K,(z) in Figure (.

Then
ni=—(§ ) > (= )n+ exp( Fno)Ky(nz)

(B4)
= 1.688 X 10273 Z(iexp( Fre)K.(neg)em—?
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The number of pair electrons and positrons is just fwice the number of positrons. The
total number of electrons and positrons per cm?® can be written

3 __ yn+1
n,=n—+n+=;r4—2(%§) z-(—— ) cosh ngKz(nz)

n3

(B5)
— Yyn+41
=3.375 X 10%T3 E(_Zi_ cosh #oK (12 )em=?,

while the difference in number of electrons and positrons per cm?® can be writlen
4 /BTN? (— w1
no=ZnN=n——n+=p(h—1£) ETsmh npKo(nz). (B6)
The total number of particles in the gas per cm? is

8 o \n+l 1. 3
n=n,+nn =%(§l€> E%(cosh ngo—l-z sinh mo) Kiy(nz)., (BD

Greal care must be exercised in the use of all equations in this appendix similar fo equations
(B4)—(B7) as T approaches zero. Although Ka goes to zero in this limil, o becomes infinite.
The gas becomes completely degenerate.

Equation (B6) can be used in principle to determine the chemical potential k7 since
¢ is the number of ionization electrons per cm? required to neutralize the charge on
nucle, ie.,
pZ

i B
A (B8)

(D) =Zny =

where #y is the number of nuclei per cm?® with charge number Z and atomic mass number
A while p is the density in gm em™? and M, = 1.6604 X 10~ gm is the atomic mass
unit (C2 = 12). The quantity 4M, should be taken as the mass of the nucleus plus Z
electrons. Thus, neglecting small atomic binding energies, tabulated gfomic masses are
sufficiently accurate and are to be employed rather than nuclear masses. 4 is the exact
mass and not an integer.

It might be thought appropriate at this time to inciude the pair rest-mass energies
in the mass density p. This can easily be done. It will be noted, however, that radiation
energies and electron-positron kinetic energies are comparable to rest-mass energies at
the temperatures at which pairs are created by the radiation field. The theory of general
relativity indicates that all forms of mass-energy contribute to the inertial and gravita-
tional “‘mass” in dynamical equations. There is thus some arbitrariness in dividing the
mass-energy density into two terms, p + 2/¢% where p is the mass density and « is the
internal energy density. We find it best to include the rest mass of particles produced
by the radiation field in #/¢* rather than in p. Then the total number of nuclei and asso-
clated electrons in a stellar system is invariant to structural evolution over time intervals
in which no nuclear reactions (no nuclear phase change) take place, This means that p
scales inversely as the cube of the radius of the stellar system while otherwise it would
not as new particles are created. In case nuclcar reactions take place the original number
of nuc'=ons remains mvariant and an appropriate choice for p can still be made, Further
considerations along these lines are beyond the scope of the present paper but are impor-
tant in general relativistic situations and are discussed in HFB? (1964).

At this point attention will be turned to approximations valid under various ¢ircum-
stances, non-degenerate (ND), extreme non-degenerate (END), non-relativistic (NR),
and extreme relativistic (ER). All approximations will be labeled appropriately and all

approximate or limiting equalities will be indicated uniformly by = rather than =,
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more in a precautionary physical sense than in an attempt at spurious mathematical
rigor. In those END approximations in which only the first term in the appropriate
sertes is retained, the sign ~ will be used. We do not consider degenerale situations.

The expression “‘extreme relativistic” requires some qualification in regard to its use
throughout this paper. It applies only to electrons and positrons in the sense that
kT >> m.c? or T3> 6. However, we do not consider the formation of muon or other pairs
s0 8T < myc?or Ty < 103, Furthermore, we never consider nuclei to be relativistic.

Non-relativistic approximations for the various number densities above can be found
in terms of the low temperature (k7" < 7 m.s?) approximation for the K;, namely,

Ki(nz) z(%yﬁ (nz)*exp( —nz). NR @9

In case Ka(nz) appears with terms of order unity we frequently neglect it entirely in NR
approximations. The use of equation (B9) yields

JET\3/2 — ynt1 B
ny =2 1,',211-};2 E( ) exp( Fne—mnz), NR @®10)
3/2 — YntL
n, = 4 %%) 2( i cosh np exp( —nz), NR @11}
and
ET\3/2 — \n$1 -
no =~ 4 ’;‘M,) S 3% sinh ne exp( —nz), NR ®i2)

m kT3 ( — )n+1 1.
2 ﬁi) E e (COSh n¢+2‘ sinh n¢> exp( —nz)

(B13)
~3.054% 100702 S L (g g 2 sinh (—nz). NR
=3.054X 9 2 eyl T ngo"l-z sinh ne ) exp nz).

It will be apparent that the series in these expressions will converge only for
¢ S 2, NR (B14)
or in terms of the chemical potential
& < met. NR @m15)

For ¢ in excess of z the series terms for large # diverge exponentially between alternate
positive and negative values. These conditions for non-degeneracy will be extended to
the relativistic case in the last section of this appendix. Expression (B10), when applied
to posnttons is an exception to expressmns (B14) and (B15). For matter as opposed
to antimatter, ¢ 2> 0, so expression (B10) is always a fair approximation for positrons in
stars (not zmtlstars) since the terms in the series for #, contain exp (— #p — nz). In
antimatter ¢ < 0 and the positrons are non-degenerate for —¢ < z or |¢| < z. For
le|> =2 either the clectrons or positrons are degenerate, and in this case Peterson and
Bahcall (1963) have shown that ¢, =~ FWyr/kT, where Wpis the Fermi energy includ-
ing rest mass,

The non-degenerate approximation for electrons used throughout the main text as
appropriate for massive stars neglects unity in the integrand of equation (B1) relative
to the exponential term. This is equivalent to retaining only the first term in the expres-
sion (B4), or

ne=n exp( Fo), ND aue
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with
2 /ETN\S -
111=F (}2_6) K;a( z)=1.688X 1028T93K2(6.930/T9). ND @)

In this approximation
no=Znx=2nsnh ¢, ND ®is)

ns = 2n1 cosh ¢ = (8l +4n?)127 ND ®1s)

1= 2n, (cosh (o+):_1z- sinh go) = (nld+ 4n2) 2 4+ ny/Z . ND B20)
From equation (B19)
¢ = &/kT = sinh™! (ny/2m;) = sinh™! (N/2N)) . ND (B21)

From equation (B16)
#+/n-=exp(—2¢), ND ®z2)

[ (1e/2)2 - n2] 2 4-1nq/2
[(1e/2)2+n2 |12 —no/2°

In equation (B21) we introduce N and Ny, the number densities per gram, for reasons to
become apparent in what follows. In the non-degenerate case with #,(p) given as a
function of density onty and #,(7") calculable from equation (B17) as a function of tem-
perature only, it is possibie to evaluaie ¢(p, T) using equation (B21) and then to deter-
mine #.(p, T) and n(p, T) from equations (B19) and (B20), respectively. The second
expressions in these equations give the solutions in terms of 74 and 7.

Clearly the ahove non-degenerate expressions cannot be employed when the series of
which they are the first terms do not converge. Thus it might be surmised that expres-
sions (B14) and (B15) are the necessary conditions under which stellar material can be
treated as non-degencrate, and this can mdeed be rigorously shown 1o be the case as
long as the temperature is not too high. Alternative procedures for high temperature are
discussed in Sec. (k).

Equation (B21) for the non-degencrate casc illustrates the general principle that the
chemical potential is determined essentially by #, or N and not by the pairs created by
the radiation field. This leads to the result that, if stellar matter is non-degenerate for
electrons at low temperature (¢ < 3), then the additional electrons created by the radia-
tion field cannot induce degeneracy at higher temperatures since Ny = Z/AM, remains
constant, Ny increases, and hence ¢ decreases with increasing temperature. Physically
this is to be expected since high temperatures produce electrons with high energies and
low-energy states are not filled as in the degenerate case.

In the case of very massive stars in which the density is relatively low at a given tem-
perature it is possible (Sampson 1962) to improve on the customary non-degenerate
approximation. Under the circumstance of low density at sufficiently high temperatures
for pair production, it can be assumed that the number of electrons and positrons per
cm?® or gram are essentially equal and large compared to the number of electrons asso-
ciated with nuclei, #_ ~ n, > n,. From equation (B4) it will be clear that this is equiva-
lent to setting ¢ equal to zero, and thus in this extreme non-degenerate approximation
(B4) can be written

2 /BTN? — ynt+1 2 7ET\? -
=L (S Rt ~ 2 (D) Rus) . END 2

or
ND B23)

e~=3In(n-/ny)=2%In
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In the second approximation only the first term in the series is retained. In the limit of
very high temperature 2T > m.c? or z = 0 so that in the leading terms of the series in
expression (B7), Ks(nz) = 1, cosh np = 1, sinh mp = 0, and to a sufficient approxima-
tion for the extreme relativistic case one has

nmemtn oy () D4 %)’[%;(3)]
(B25

~0.9015 X— (};T) = 3.043 X 1087 crm— ENDER

where {(3) is the Riemann Zeta-Function. We note that approximation (B25) gives a
10 per cent lower value for n, than do expressions (B19) and (B17) with 2 = ¢ =~ 0 and
is of course more accurate under these conditions. However, equation (B19) is to be
preferred under circumstances such that ¢ is appreciably greater than zero and g is
greater than or equal to ¢, i.e., 5 > ¢ > 0. Neither approximation is good for electrons
when electron degeneracy sets in for large ¢ > 2, but equation (B16) is then still satis-
factory for positrons, i.e., for n;.

b) Pressure
Turn now to considerations of the pressure exerted by the gas particles, electrons,
positrons, and nuclei. An expression similar to equation (B1) can be obtained for the
pressure excited by the electrons and positrons. It is only necessary to multiply the
integrand by
i) 7"

M. =—-— m.C2. (B26)
3 ¢ 3w

Eventually following Chandrasekhar (1939) one finds the pressure of the electrons and
positrons to be given by

1 - ®  pi(ni41)-12dy
pe=p-tpr= % ) ’”‘”2[[, explz(PF 1) E—p] +1

. (24 1)1
+/ exp[Z(n’+1)‘/’+¢]+1] w2

4 3 — yn+1
=;(_§l;) sz(n—Zcosh neKy(nz).

In terms of the Stefan-Boltzmann radiation constant a = (w%/15)(k!/4%¢*)

De= :_0 T4E(_) cosh neKi(nz)

®28)
—_ Jrtl
=4,660X 10“Tg‘E(n—2 cosh noK ;(nz)dyne cm™2 or erg cm—*.

In what follows we will frequently use ¢7* in appropriate expressions especially in rela-
tivistic approximations.

In the non-degenerate approximation corresponding to equation (B16) for xn, the
pressure is given by

P'N—(;) kT cosh oK, (2), ND ®29)
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or

Pe z% 2T% cosh oK, (3). ND 30

From equations (B29), (R19), and (B17)

P, = nkT ND @iy
which is Boyle’s Law, true relativistically or non-relativistically in the non-degenerate
electron case even when positrons are included.

The gas pressurc also includes that due to the nuclei for which Boyle’s Law holds quite
precisely in the temperature-density range under consideration in this paper. Thus

* kT
pN—nNkT—?kT— ) =3

The gas pressure can thus be written

=p.+ pn=— 4 ( ) kTL(_) ! (cosh m,a-i—’Z—t sinh ngo) Ki(nz)

(— )n-l—l _
sinh neKy(nz). (B32)

(B33)
—_ n+l
=% aT‘E( cosh mp—l——smh n:,o)Kg 7z,
so that in the non-degenerate approximation
4 /ETN? 1. -
pgﬁdp<ﬁ kT(cosh qa-l—zsmh go) K,(s)
=nkT (B34)

=5%2=0.8314X 10”p—T°dyne cm™? or erg cm™?. ND
u

The approximation for the pressure in massive stars corresponding to equation (B24)
is obtained by setting all cosh ne = 1, sinh mp = 0 so that
_ ys+t 6 _
s Pe’uh‘_‘ T4E_(-;Z—-‘K2(”Z)N—?- (ZT{KQ(Z). END mas)

In the limit of very high temperatures, s =~ 0 and all Ky(#z) ~  in the leading terms
of the series so that

(=)™ 60
Po = .~-aT‘E =— aT* [F&(4)]
ENDER ®36)
_Ix?
180
since ¢(4) = «%/90 = 1.0823 and Z{(4) = 7a*/720 = 0.9470. This remarkable result

combined with the expression for radiation pressure p. = }a7* indicates that in the
limit under consideration

ETV?
p kT = TaT*,

po= pe = Ips, ENDER (B37)
and thus that the total pressure is

p=pot po = Hpr

ENDER (B3g)
a2 HaT* = 6.935 X 10% T'y* dyne cm™ or erg cm—3.,
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In order to display deviations from Boyle’s Law it is convenient to define two ratios
as follows:

(— )1 _
» E_n—“_ cosh neK,;(nz)
qt =n knTz ( — )ﬂ+1 B (BSQ)
¢ ETCOSh ntng(ﬂZ)
and
( _ )n+1 "o, -
E (cosh ne 4= sinh mp)fxg(nz)
q= Pﬂ _ qsts —l_ﬂl\ Z (Ba0)
— n+1 ~ bl
nkl % E( (cosh mp—l—zlsinh ngo) Kolng)
such that in various approximations
g g1 ND or NR
CES[(=) nt] K, (nz)
END @4
S I(= )/ Ra(nz) *
zig‘(4)/{(3)=1.0505. ENDER

In the non-degenerate approximations used in this paper Boyle’s Law holds to <35 per
cent.
Finally one has

Py = gn.kT + nykT = qnkT (B42)
and
p = qm.kT + kT + 32T = gnkT - §aT*. (B43)

¢) Inlernal Energy Densily

It is now appropriate to consider the internal energies of the gas particles. Again the
results of Chandrasekhar (1939) can be extended to include positrons and the total ener-
gy density including rest mass is

___1_ me ) "‘ wi(w?— 1)1 dw
v mec? o explzot o] +1

B44)
1 /m,.c

— \n+1
< et T e (F me) [3Ka(5) + 1R (02,

where K1(nz) and K3(nz) are the modified Bessel functions of first and third order, re-
spectively. These Bessel functions can be expressed in terms of K,(ng) and its derivative
as follows:

1 2 dlnKy(nz)l,
3K:(nz) +1Ki(nz) = (m)a[3‘ R |&stns), e
so that o
k <—) et dln Ry(nz)1.,
:I:——(h ) kTE exp( Fne )[3—-713-(72)—]](2(”2)_ (B46)

The internal energy of interest consists of the total kinetic and rest-mass energy of
the pair electrons and positrons but only of the kinetic energy of the ionization elec-
trons. Thus

2, = W, + w_ — nemc?. (B47)
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The internal kinetic energy of the nuclei is quite simply

ux =gnnkl = — nokT, (B48)

3
2Z
so that the internal energy of the gas of electrons, positrons, and nuclei iy

o _4 (— )n+1
T <ﬁr) kTE (B49)

X icosh ”“’[3*%—;(:)2)]-{-" ;Z— z) sinh qog Ki(nz).

At this point it is convenient to introduce the mean kinetic energy for electrons and
positrons in units 27" which is given by

Wy — By, c?

BT T Ty kT
2(_n)n+lexp(+n¢)[ “”Z_dzlinlrﬁiz(:f)]m( 5o
E(_ cxp(+n¢)Kz(nZ)

For the combination of electrons and positrons it is possible to define

Wi +w_ — nm,m, o’
n.kl

(=)t _dInKy(n3)7 B51)
D cosh mp| 3 —nz = LRI [ Ry(ns)

E% cosh neK,(nz)

X, =

Note that in general x; > x_ 7 x,. However, in the non-degenerate approximations
these quantities will be approximately equal. In fact, in the non-degenerate approxima-
tion used throughout the main text in which only the first terms of the series expansions
are retained we recover equation (61) of Part IV and its approximations as follows:

t,~ry~3—-z2—-dInK,(z)/dIns ND
=3 NDNR
~3 NDER
— \n+1 7 _
E ( )-—[3—-nz —M]Kz(nz) ®s52)
n4 dIn(nz) .
~3 END
(— )+
ZT Kg(nz)
ng,z§§(4)/§'(3)=3,151. ENDER

In deriving the NDNR approximation we have employed equation (39). We wish to
emphasize explicitly the important relation x, = 3¢, in the last approximation, In Part
IV z, is designated by =.
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The specific heat at constant volume for the electrons and positrons can now be
generalized. The results are

_d{xT) _ dx,

w=—gr —*tTp
~3 NDNR ®s53)
~3.151, ENDER

where we have used the fact that dx,/dT = 0 in the two limiting cases.
The specific heat at constant pressure becomes

cp=¢+ 1
= 3 NDNR @54
~ 4,151 . ENDER

The ratio of specific heats can also be derived with the following results

_ &g 1

Y= 1+ p
z% NDNR ®ss)
=~ 1,317. ENDER

Note that v is less than % in the last case.

It must be emphasized that the extreme relativistic limits for g., #., etc., depend on
the degree of non-degeneracy. Only in the case of extreme non-degeneracy or pairs com-
pletely dominating are the limiting values g. = 1.050, x, = 3.151, etc. Otherwise limiting
values intermediate between these last quoted values and ¢, = 1, x, = 3, etc., are the
case.

The internal energy of the gas of electrons, positrons, and nuclei can now be written as

U, = (% + 2)nkT — nome? + kT
= [xe + Z(l - ﬂo/ne)]nekT -+ %nNkT
= ankT + (n. — no)mec’

= xnkT + 21, m.* .

B56)

In the last equalities in equation (B56) we have introduced a generalized x for both
electronic and nuclear particles. (In the main text x has been used for ,.) It will be clear
that xn = x,#, + § nx. The non-degenerate approximation at low temperature (», = 1,
x =~ 2) and at high temperature (5, > 7, 2 = 0, x = 3) are, respectively,

u, =~ 3(n. + m0)kT = $nkT NDNR
(B57)
=~ In kT + FnxkT . NDER
Equations (B56), (B8), and (34) in Part IIT yield
r
U,=uy/p =%[x—|—z(m—nu)/n]
(B58)

=0.8314X 1017%[x+z(n,—-1z0)/n]erg gm~!,
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The approximations given in equation (B37) can be improved upon at high tempera-
tures using the extreme non-degenerate approximation for which cosh #¢ = 1 and sinh
ne = 0 in all the terms of equation (B49). Then

— \n+1 7
60 E( ) [s_danQ(ﬂZ)

~ ~ -=—r ‘
Uy = £ MR = wi+w A aT nd d In(nz)

]Kz(nz)

60 _dang(z)
o "T[s dlngz

]KQ(Z) END @59
Ng aT*(x.+3)K.(3).

In the leading terms of this expansion at high temperature K,(nz) = 1, d In Ky(nz)/d In
(ng) ~ 0, and

L 180 s .y
uﬂ" T‘ 021 ng‘(4) ]_‘3;41‘4 (B50)
=~ 1.324 X 10%Tp* e1g cm ™2, ENDER
or
1y = InkT(IE(4)/¢(3)] = 3.151 nkT . ENDER (Bs1)

The total internal energy including radiation becomes
%=ty + t = [5.+ 3(1 — no/n) kT + 3mkT + aT*
= 2 kT + SnxkT + aT4 4+ (n. — no)m.c’ (B62)
ankT + (n — ny — noymc*+ aTt,

so that in the various approximations under consideration

u =~ 3nkT + aT* NDNR
~ ZaT* 4 aT* = 32T+ ENDER (B63)
= 2,080 X 102 Ty* erg c @, ENDER

These results along with those derived in the previous section indicate that the electron-
positron pressure and encrgy density are just 7 times the corresponding quantities for
radiation in the extreme relativistic limit. For the total pressure and energy-density the
corresponding ratio is 1%,

d) Iniernal Energy Density-Pressure Ralios

Tt is frequently required to know the ratio of internal energy density to the pressure
exerted by gas and radiation. For radiation
#,  al*

= =3. (Bé4)
#: 1al*

For the gas, sections (b) and (¢) yield

ﬁ=x,+z(1—na/m)
P ’

(B65)

ps
u_N=
F2%

3, B66)
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and
#_ xet2(l—no/n)+3nx/20, _ 2+ 3(n.—n)/n ®67)
PD Ge + nN /nc q
In the non-relativistic, non-degenerate approximation, x = §, %, = #,, S0
%arg, NDNR @ss)
Po
while relativistically, x = 3¢, n, > ne = Znx,
B Yo 3, ENDER ®69
s P

We emphasize the obvious point that in approximations in which the ionization electrons
arc neglected relative to the pairs it 1s also justificd to neglect the nuclei.

The introduction of the ratio 8 = p,/p and 1 — 8 = p,/p makes it possible to in-
corporate equations (B64) and (B67) into

% u.+u, xte(n,—ng)/n
2= =3(1-8)+8| ]
P prtp q
(B70)
_ [ x-i—z(m—no)/n]
or
—_ E[ e— X.— 2 1_720//”9)_1—377&\7/2”5}
3 q.‘.+n‘1/ s
%[SQr‘xe_z(l_nO/ne)] ﬂg>nN (B71)
~1— 5[1‘1___—_5] o > e,
3 qs
The non-relativistic and extreme relativistic approximations are respectively
* 18 NDNR
3p 2 (B72)
=1, ENDER

Equations (B70), (B40), (B8), and (34) in Part IIT give

U=u/p=23q %%T%l—ﬁ [l—x‘l'””;q—ﬂu),/n“

=12.494% 10V (i_?){ 1—8 [1 _ :c—i-z(n\;q—na)/n} Eerggm‘l

B873)

It is worth noting that the last form of equation (B71) indicates that under some cir-
cumstances (x. = 3¢., z > 0) u can cxcced 3p which can never be the case without pairs
(mo = 15, g = 1, 2, < 3).

) Diflerential of the Available Energy
In the main text we have defined

dQ=—pdV—dU=f—2dp—dU, ®74)
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m which our sign convention is the opposite of that commonly used as, for example,
by Chandrasekhar (1939). This choice was made primarily so that dQ could be positive
during compression (dp > 0). Then when work is done in compression against the inter-
nal pressure of a given mass element, dQ is the excess energy over that stored internally
in radiation, particle motion, or pair formation. The results obtained previously in this
appendix make it possible to give general expressions for dQ. Since Q and U = u/p are
measured in erg gm~! rather than erg cn™ all of the » which have appeared above will
be replaced by N = n/p.
Insertion of equations (B43) and (B62) into (B74) yields

40 = g, N.AT (4;33) d In p— N.AT (c.,—l— 124, 1—5—‘9) dInT

— Nk (x.+2)d In N, (B75)

+ 8t (F5°2) d tn o — NaT (3 +12 3#) dWT—3NukTd In Nx .

The coeflicient of Vyk7d In T can also be written — 3(8 — 78)/28. It will be recalled that

the rest-mass energies of the nuclei and the ionization electrons have nof been included

in U. In what follows we will not give the nuclear term explicitly. It can always be

derived from the electron term by the substitution N, — Ny, ¢s— 1,6, = 2. — 3,5 0.
With N, = N,(», T) equation (B75) can be transformed into

dQ = N.kT| g (4 36) (20 2 )“‘“\]

dInp— NT

B76)
oIn N,
olnT

If the temperature is taken as the independent variable then equation (B75) can be re-
duced to a form which constitutes the generalization of equation (64) of the main text,
to wit,

Q. o dmn N, (4—33)(d1np_>
dT—k.Vel:3qe Lo (xﬂ+z)d1nT+q’ 8 dInT 3] (B77)

X [ e+ 124, (——>+(x,+ 12222 In T+ mucl. terms.

4+ nucl. terms .

If a given mass element is followed in evolution through stages of guasi-siatic equi-
Iibrium (QSE), then from equations (65) and (66), Part IV,

dlmp_ ., .dlnuB _ ( dIn N
dInT—S 3dlnT 3+3 4—38/dInT"

QSE ®7s)
Substitution in equation (B77) yields the generalization of equation (69) of Part IV
28 =11 3g.— ) (F)+ (30— v = )2 +-nucl.temms, QSE @)

where 1 < g, < 1.050, 2 < x, < 3.151, and § < ¢, < 3.151 over the range from non.
relativistic to extreme relativistic non-degenerate conditions.
When pairs are dominant in the extreme relativistic, extreme non-degenerate regime
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equation (B74) takes on a particularly simple and useful form. Make use of equations
(B38) and (B363) to obtain

_? _,eu _poU
dQ—pdlnp papdlnp TalenT

4 4 ‘4
=}—1£§—d]np+%g§—d1np—1la~§—dlnT (®30)
1y aT* ENDE
——:TT(dlnp—SdlnT). h R

In quasi-static equilibrium in the extreme relativistic case we will find that p « 72 with
kB constant for a given stellar mass so that

dg =0, QSEENDER (ms1)

which is just what is required for radiation and relativistic particles.

At this point we emphasize that 4Q is the available energy calculated by a local ob-
server co-moving with a given mass element. With the exception of equations (B78),
(B79), and (B&1) the expressions for dQ hold for such an ebserver even during accelerat-
ed contraction or expansion. If the gravitational forces and pressure gradicnts are not
balanced the mass element may gain or lose bulk kinctic energy from or to the gravita-
tional field. However, this will be separate in a sense from the internal energy calcula-
tions of the local observer who needs only to know the equation of state of the material
and the amount of expansion or contraction to make his calculations. Powerful use can
be made of this consideration in problems involving supernova core implosion and
envelope explosion.

1) Time Scale for Free Expansion or Conlyaction

In the circumstances under discussion in this paper radiative transfer can in general
be neglected compared to nuclear-energy generation and neutrino losses, Thus the con-
servation of energy for a given mass element over a time interval df demands

d0 = (p/)dp — dU = (dU,/d)dt — dQx . ®82)

In this equation (dU,/d1)dt is the energy lost in neutrino processes during the time
interval under consideration. It is assumed that the neutrinos are not absorbed in the
stellar material and are not in equilibrium with other particles and radiation. An explicit
expression for 4U,/dt as a function of p, T is required for use in equation (B82). In the
main text we have made extensive use of equations (19) and (20} for the neutrino loss
due to pair apnihilation,

The differential dQx in equation (B82) is the energy released by nuclear reactions
during the time interval under consideration. Following the conventions of nuclcar
physics, it is taken positive for exoergic reactions and negative for endoergic reactions.
In terms of nuclear energy treated as an internal energy (Uy) one has

dOn = —dUx, (Ba3)
with
Un = Nom®+ NuMnct = NuMpc?, (Ba4)

where My and M, = My -+ Zm, are nuclear and atomic masses, respectively. We
neglect atomic binding energies and assume that the stellar material remains completely
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ionized so that N, changes only in nuclear reactions through beta-emission or capture.
If the nuclear reactions have reached an equilibrium at which the reaction rates are
fast enough to follow quasi-static changes, then Uy is known as an explicit function of

p, T, and it is possible to define On = —Un(p, T) and appropriate partial and total
derivatives, e.g.,
d0n _ 30x , 80n dp
- 2s B8S)
ar ~ o oy of e

Choosing the temperature as an independent variable, one then has the time scale
for a contraction induced by neutrine loss given by

si=fai= [ dQ/d(;r;:;def/dT IT = (50 +AQx) <’ﬁz"1/71> ®s6)

If the nuclear reactions have not reached equilibrium then dQx/d¢ = e(p, T) must be
known as an explicit function of p, T as in equation (90), Part V, and then

d0/dT ~ 1
a0, dl—don i *L =20 <dU,/d:— dQN/dt>'

In the case dU,/dt is greater than dQy/d! and in particular if the latter quantity is nega-
tive and provided 2Q/d? is greater than zero, then contraction resuits. In the case that
dQy/8T is positive and greater than dU,/ds and provided dQ/dT is greater than zero,
then expansion results. In the case discussed in the main text where pair formation led
to circumstances in which dQ/dT was negative it was found that dQx/d¢ was sufficiently
greater than dU,/d: to insure quasi-static contraction.

Cases of frequent interest are those of free expansion (rise) or free contraction (fall).
In these cases the pressure gradient is zero and gravitational potential energy exchanges
only with the kinetic energy of bulk motion, and all internal energies In a given mass
element must balance to zero. The time scalc becomes that of free fall (dp > 0) or free
expansion (dp < 0) given by HFB? (1964) as

Al = B87)

di= ‘_ _13381Q .
B (gaGp)'2l ¥ S e ®85)
_ 1 _d_p‘ __ 446 .d_E|
—(247"GP)1/2 - p172

In this expression p o 2 has been employed, and in addition it has been assumed that
7 =0 at r = «, This is, of course, not always the case, but it is frequently a good
enough representation of the boundary condition on the motion to make equation (B88)
a uscful cxpression for order of magmtude estitnates.

Substitution of equation (B88) in (B82) gives the equation of the implosion or explo-
sion path. For example, in implosion induced by neutrino loss with no nuclear-energy
release, equations (B80), (B82), and (B88) give

4
whence
d1lnp - 3 - 3 ®90)
dInT 3p  dU./d! 3 du./dt

1—- 1

11aT* (24Gp)'7  ° 11aT4 (24xGp )

For du,/dt = T° HFB? (1964) show that p < T7® at high temperatures. Similarly in an
explosion induced by positive nuclear-energy release with no neutrino loss and under
the circumstances of equation (B80) one finds after free expansion is attained
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dlnp 3 Bo1)
dinT {— 3p dQx /di
11aT* (247Gp )2
The minus sign occurs in the denominator since df = —dp/p (247Gp)!/? in expansion.

In the case (B90) p will rise more rapidly than the third power of the temperature,
while in the case (B91) p will initially decrease (explosion) as the temperature reaches a
maximum and begins to decrease and will eventually follow in reversc a 77 path if
dQw/dt approaches zero as indeed will be the case at low p, 7. This behavior has been
tlustrated in Figure 3. At temperatures below pair formation, but still in massive stars
so that 8~ 0, one can replace L by £ in equations (B89), (B90), and (B91). The p, 7-
behavior described here is illustrated schematically in Figure 3 for M = 30 Mo.

g) The Adiabatic Coefficients

If the energy differential dQ of equation (B76) is set equal to zero and the total deriva-
tives of the various thermodynamic variables #, p, T are associated in pairs, then it is
possible to derive the so-called adiabatic coefficients for stellar material consisting of
radiation, nuclei, ionization electrons and pair electrons, and positrons. In this section
the ordinary non-degenerate expressions for these coefficients will be presented without
enumeration of the tedious algebraic manipulations involved. The forms presented are
those which reduce straightforwardly in the limit of no pairs to the expressions given
by Chandrasekhar (1939). We ate picayune only in not replacing ¢, by (y — 1)~%. More-
over, nuclear contributions are neglected under the assumption Z > 1. In this case we
can ignore the distinction betwecn g and ¢. and between x and x,.

In the ordinary non-degenerate approximation ¢=~ 1,2 <x <3, 3 <6 <3 and
N2 = N 4N this last relation being equation (18) of the main text. Changes in
Ny = Z/AM, are permitted only through nuclear transformations involving the beta-
interactions and are included in 4Qy rather than the dQ of present interest. Under these
circumstances the partial derivatives of In N, needed in equation (B785) are simply cal-
culated using either of the identical equations (10) or (B17) and (18) or (B19) with the

result 5o N !
nNe 4,9 nl'-l,.,_ 2 R
a1n p S ma A2, ND (mo2)
d In N, 3 In N,
~ X2 2 2
T T =\ T ~M{3+dInK;/d InT) ~N\2(x+3), ND (®o3)
where

A = 2Ny/N, = 2m/n,
~ (14 no/ant) P = (1 + N@/aN2)1h,

The adiabatic coefficients for electrons and positrons as defined by Chandrasekhar (1939)
follow

I=dlnp/dlnp
~B(1—=M%)+

(B94)

[4—38+BN* (x4 2)]°
Be,+12(1-8)+ B8N (2 +32)°

ND

. (4—38)1 8 ‘ B
~ﬂ+.36,+12(1—3)'\'%+g+0(5’) No pairs, A =0 ND
=3 co=3, B=1 NDNR @)
(4—B8(3—x—2)]* . . B
12—8[12— ¢, — (x4 2)?) Pall‘SdDmmant, AM=1 ND
z% C-:x=3,z=0. NDER
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(It is obvious from p « T4and p = T that the approximation I'y =~ § %4 5]so holds under
extreme non-degenerate, extreme relativistic [ENDER] cu'cumsta.nces This will be true
for the other adiabatic cocflicients below.)

Tw=(1—dInT/dInp)?
~1+04=38+8N o+ 2)]+8%¢(1—N2)+3(1—8)(4+8)
—\[128(1—8)—B8(7T—~68)(x+3) —B8*(x+35)?] ND

4—38
B*c,+3( 1—-8)(4+8)

~44+0(8) Nopairs, =0  ND _

R’%‘ 5”==;%, ﬂ =1 NDNR
4—-8(3—x—13) . )
~ 4 ND
1+12—7ﬁ(3_x“5)+ﬁ2(3—x—z)’ Pairs dominant, A, N
~3 x=3, z=0. NDER

Ii=14+4dWnT/d1np

4—38+8M(x+2z)
Be+12(1—-8)+ BN (x+3)"

438 4_|_£.
Be,+12(1—8) 38" 24

=14+ ND

=1+

+0(8%) No pairs, \1=0 ND

~3 c,=%, 8=1 NDNR @m
4—-B8(3—x—2) . '
1—I_l?_—,(f}[u_cu_ (x+2)2) Pairs dominant, A ND
z% cD=x=3,z=0_ NDER

As functions of increasing temperature the adiabatic coefficients decrease monatoni-
cally from 3 to % if pair formation is ignored. In massive stars when pair electrons and
positrons become comparable in number to ionization electrons around kT = m.c*/3,
3= 3,x =196, 6 = 2.29, the adiabatic coefficients dip below %. For example, in Table
3, T, =132, Ty = 1. 29, and T = 1.30 under these conditions When a stellar core with
M = 20 Mo reaches Tg 2, For polytropes dQ/dT" becomes negative under these cir-
cumstances. Questions concerning stability immediately arise, but in the cases considered
in the main text nuclear-energy generation through oxygen burning prevents cata-
strophic collapse (Part V). Ultimately the adiabatic coefficient I'; becomes greater than
% and approaches this value asymptotically at high temperatures.

#) The Quantities 8, p and the Density-Temperature Relotion

The ratio of gas pressure to total pressure comes straightforwardly from equations
(B33) and (B43) in a form independent of polytropic structure as follows:

_bo__ b
3 p Pﬂ'+'Pr
1802 (— )n+1 (cosh mp+— sinh n:p) Ky(nz) B98)
= - n+1 R
1—}-13402( nz (cosh mo‘l-zsinh n;a) K,(nz)
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The various approgimations under consideration in this paper become

180 (cosh ¢+1 sinh go) Ki(z)
B = ND

14+— 180 (cosh (,o-l——smh qa) R.(2)

zno‘l'::i’;I;W/Sk=p(Z-|fif/-l_Alj./;;‘3/35R NDNR
15402 ( _nzﬂ_‘_lKg(ﬂz) 180 (2) 590)
- END
1+11§4OE ( _,,Z"Hzizmz) 180
180[7 (4)]
180 2 (4)] =74 =0.6364. ENDER

The final extreme non-degenerate, extreme relativistic approximation for pairs domi-
nant differs markedly from the customary approximation without pairs. In this latter
case for massive stars 8 is approximately zero independent of temperature. It will now
be clear from the exact equation (B98) that 8 approaches an extreme relativistic limit
between 0 and {5 which depends on the ratio of pair particles Lo jonization electrons
in this limit. We will find in what follows for quasi-static equilibrium that p « (T/ug)?,
with pg fixed in the limit so that both #, = pZ/AM, and 2n, are proportional to T2,

At this point it is necessary to give the appropriate generalization of the polytropic
density-temperature relation {(eq. [31] of the main text), taking into account the small
deviations from Boyle’s Law found above for elevated temperature. It is only necessary
to introduce the quantity ¢ to arcive at the result

p=7o ”2‘1 : 74 (B100)
In terms of
e B O (- T B (Y, o
equation (B100) becomes
L kT (B102)

=:__:'14; n e . o
P45 ™ \GonB

M3 = 720 hc) ( ) 335.2 (ﬂjﬁ)ﬁ (B103)

The numerical cocthicient is 30.9 for no(n = 0). The reason that the generalization can
be made so simply lies in the fact that the polytropic structure equations in p = p(r)
are derived from the equation of hydrostatic equilibrium, dp/dr = — pGM, /7%, the mass
conservation law, dM,/dr = 4xpr?, and the equation of state p = xp™™/* independent
of any gas law relating T to p and p. A gas law T = T'(p, p) merely serves to give
T = T(y) from the polytropic equations for p{r) and p(r).

Again it is emphasized that M. in equations (B100)-(B103) is the effective stellar mass

Forn =3
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approximately equal to the mass of the central homogeneous region or core and taken
throughout this paper to be given by M, = 3M. Equations (B100) and (B102) hold
everywhere throughout a polytrope of index » = 3 as a function of time but only at the
center for a polytrope with # 3 3. To avoid a cumbersome notation, subscripts denoting
the central region have not been included in equations (B100) or (B102) and will not
be included in the equations to follow. Jn this section (h) the equations presenied hold as
Sfumctions of the time everywhere throughout a polytrope of index 3 but only al the cenier of
polyiropes with n > 3. Equations (B98) and (B99) previously given and (B114) below
are exceptions to this point.

The density-temperature relation can be made an explicit one by inclusion in equation
(B102) of the expression (B98) for 8 and a conespond'mg one for the mean molecular

weight . This is 1 \ LT
T grL

- (B104)
FE VM, nM T 45 n ﬁcpﬁ

(It 1s hoped that the nse of the » for particle density and the subscript # for polytropic
index coupled with » as a running index in summations will not lead to overwhelming
confusion.) Solving for g and using cquations (B40), (B42), and (B98) leads to the

result 180 " "
[ E(_) (coshn¢+£sinh mp) Kg(nz)]
K4 B105)
n 180 (— )ﬂ+l -

9 E (cosh n¢+-—smh mp)K (ng)

For » = 3 it will be noted that
Mo\t
,,]31/4 -4.28 (_M_) A (B106)

The various approximations under consideration in this paper become

8/4
[ 180 (cosh o+ sinh ¢) K,(z)]
gt il Z ND
g t
cosh ¢+Zsmh ¢>) K.(2)

[ 1802 (= ) - Kg(nz)]a/‘ [ 180 2(2)]3/4 ®107)

= /A — ~ /A END
1802( ) Ra(nz) 180
(1L/4)~ 1
PO St S A = /4
(7/4) Mn 1.2209,1/1, ENDER
For a polytrope of index » = 3 this last relation becomes
1/2
2“‘ 5.22 (MY’ #n=3 ENDER (B108)
and i
= 5.48 (f) ‘ — 3 ENDER 109)

In order finally to establish the p, T-relation the following quantity will be needed:

HB 180 (= )+t . —1A
7 —ﬂnlf‘[l-l- pr 2 py (cosh ne+ - sinh nqa)K,(nz)] ; ®B110)
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with these various approximations

Eé,u R NDNR

q

= 1/4[1+——(coshqo+—smh ¢2)K(Z) - ND

(Bt11)
)n+l

= A 2 S I Ry | [ 14+ Ra() ] END

4 \1/4
z(l_l) nah= 0777 pa'/A, ENDER
For a polytrope of index n = 3
172 14
b8 408 (y—‘i) 180 .(5)| m=3 END
q M.
(B112)
1R
~3.32 (Me n=3 ENDER
and
1
uf = 4.28 Mo n=3 NDNR
(B113)
1/2
pB =~ 3.48 GII@ n=23 ENDER

It will be apparent from equation (B98) that
180 ( —)ntt " -1
1—-8= [1+ E por (cosh ﬂ¢+2 sinh mp) Kz(ﬂ-Z)] . (B114)

This combined with equation (B110) leads back full circle to Eddington’s quartic equa-
tion now generalized for deviations from Boyle’s Law as follows:

(Eqé)‘= 7 (1—28)

:: (n+1)’(hc) (JIT) (1-8) (B115)
e Gn) P
Thus B Mo\
7=4'28<—E> (1—=8)v4, =23 (B116)

which is the exact equation corresponding to the first form of equation (B112) and re-
duces to the second form in the ENDER limit when 8 =~ 4. In massive stars the cus-
tomary procedure, ignoring pair formation, has been to set 8 = 0 in equation (B116).
This is still a satisfactory approximation at low temperatures, but equation (B112) is
the correct limit at high temperatures. At low temperatures in massive stars u = A/
(Z 4+ 1), g = 1, and equation (B116) indicates that 8 is small and given by
Z+1 /Mo\'?
B ~4.28 AL (ﬁ) , n=3 NDNR ®un
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while at high temperature 8 = 1%, ¢ = 1.050, and equations (B112) and (B113) indicate

Ma\*

u=~5.48 n=3 ENDER (Bus)

In this section, relations have only been given for conditions at the center for polyiropes with
n 7 3. The variation of u8 throughout a massive polytrope is given for the non-relativ-
istic, non-degenerate (8 ~ 0) approximation in equation (48) in Part IIL

The substitution of equation (B110) into eguation (B102) leads to the density-tem-
perature relation

__4x? T)
P =T1gg Mum"

— yatl 3n
[1+1SOE( ni (Coshmp-l-%sinh ma) K:(ﬂz)]
1 (4 )ap? rMN\2
T 47)'/4[ 3G ] M, z o
180 — \n+1i . _ 3/4
x[1+ f‘* E( ni (cosh m,a-l-%smh n(p)fu(nZ)]

1 [(n+1)a 3/‘(

L2
“any AL 3G ) o/ (1= @)we.

M

For a polytrope of index 2 = 3

_ 1 (4a 3/4( 3)MT3
P4y iA\3G M.

1808 (= ) n 2 i
)([1—|— r E o (coshnp—l—zsmh ﬂqa) Kg(nz)] n=3

— 3 MO !
=1.298 X 10 (Ma

x[1+0 %

s (Mo
~1.298 X 10 (M'

c

(Br2o)

(' — )n+1

n 3/4
(cosh ma+Z- sinh ngp) Kg(%ﬂ)] gmem—2 =3

1/2

" Ty gmem™?. n=3 NDNR

Al the cenler of a polytrope of index # = 0 the numerical coefficient is 0.715 X 10,
The various approximations of interest give

sz;)m[(”"-l)“ "G (8«!) NDNR
bl T )
x|
3B121)

=ty ] () 1R S e | e

34
40 (cosh ¢+% sinh 40) Kz(z)] ND
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For a polytrope of index #n = 3 for which R; = 6.897 and M3 = 2.018

:.G.M__eR.a.(eﬂ_ ~o.sss6ar. (£2) - (42) (X
R, =0.855GM. 0T D—I.36><10 . ).

aM, \gRT/, Yo cm
Ma) (12241)1/4 1,840 (C"Sh ¢’+% sinh sc) Ka(z)];m n=3 ND
(M3>m loma 1/4 = a)] " n=3 END
%E(BTS:OQ 59) (1=§) Wi~ & S(F’Tijog (m)m n=3 NDNR ®129
NS‘gérz().,mg Mo 1/» 0 ]—mcm n=3 END
(M )1/2 44” m n =3 ENDER
”4'5(273:09 (M%,)m cm. n =3 ENDER

For a polytrope of index 7 = 0 the numerical coeflicients are 1.88 X 10° and 1.46 X 10°
for the END and ENDER approximations, respectively. In this case Ry = /6 =
2.4495 while M, = 24/6 = 4.8990.

The mean density can be expressed in terms of the central density in exactly the
same way as 1s the case witheut pair formation, as follows;

M, 3M,

Pc=%ﬂ_Ra R 3 Po
=1.845X 10"2%p, n=23
or
po=254.18p,. n=23 @125

Equation (B125) can be used in connection with ¢quations (B119)-(B122), evaluated
at the center io yield explicit expressions for p.. M, and R, are tabulated accurately in
Table 4 of Chandrasekhar (1939).

Important quantities in nuclear astrophysics are the number, #, of nucleons and elec-
trons per cm? in a column extendmg from the center of a star to its surface. One finds

Hnualeons = Melelecirons = k_[ fpd,
u

=1.36 -

MMRS n=3 B126)
= 9.0 X 1037(T9)02(1 - Bo)_]""l2 cm? n=23 NDNR
= 1.50 X 10%8(7Ty)2 em™3 . n=3 ENDER

Note that cquation (B118) must be used for g, = uin the ENDER approximation. The
corresponding numerical coeflicients for # = 0 are 8.1 X 10%7 cm™2 and 1.35 X 1038
cm? for the NDNR and ENDER approximations, respectively.
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1) Discussion

It is now possible to diagnose at least in part some of the effects of pair formation in
stars, Equation (B99) shows the remarkable cantrast between the extreme non-degenerate
solutions for very massive stars and the ordinary non-degenerate solutions. In the latter
case at low temperatures it will be noted that (B99, NDNR) gives 8 in terms of the
density as well as the temperature. But the density at a given temperature in a specified
polytropic structure in turn depends upon # and also on p as indicated by equation
(B102). The solution of the problem is given by Eddington’s quartic equation (B115).
If pair formation is ignored, this equation gives a value for 8 in the central regions of a
star which is independent of p, T and depends only on the cffective stellar mass (~ core
mass), the polytropic index, and the mean molecular weight u. Values elsewhere in the
star can be easily found in terms of the polytropic structure equations. When u changes
due to ionization or nuclear reactions new values for 8 can be computed.

Pair formation makes u a variable over and beyond the changes from ionization or
nuclear transmutations. The solution of the problem in the non-degenerate approxima-
tion is the guartic equation in (#8)? discussed in detail in Part I1I. As can be antici-
pated on physical grounds z decreases with temperature and 8 increases with tempera-
ture from the values given by Eddington’s quartic equation. This js illustrated in Iigure
4 for M. = 20 M o where the resulting decrease in pf is also illustrated as an example
of the general behavior.

On the other hand, in massive stars where pairs can greatly outnumber the ionization
electrons at elevated temperatures, the solutions are actually much simpler in nature,
as indicated by the various equations labeled “ENT)” and “ENDER’" above. The ratio
of gas 10 total pressure is low in value at low temperature in massive stars being propor-
tional to (Mo/M.)'” from equation (B117) but rises to a limiting value ¢ at high
temperature. The mean molecular weight is initially p = A/(Z + 1) but tends to a low
limiting value proportional to (Mo/M.)'? at high temperatures. The product uf ot
more exactly p8/q also is proportional to (M o/M.)', but the coefficient only decreases
by at most the factor ()4 = 0.78 in the run from low temperature to high.

At this point it must be emphasized that the END and ENDER limits given in the
various equations of this appendix apply only to massive stars (M. > 10 M o) and with
good accuracy only to very massive stars (M, > 100 M o). The rangces of limited and high
accuracy just indicated have been determined by comparing numerical computations
using the ordinary non-degenerate approximation with the extreme non-degenerate
values. Consider the stellar mass for which 8 is just 5 at low temperature. From equa-
tion (B116) this mass is

2
AL PP CA ) SV
I A
(B127)
=6.8_MC) P':Q; 6=_7_

In a star of this mass, pair formation causes an increase in 8 with temperature and in
fact the limiting value is approximately 0.75, not % = 0.6364. For effective masses
M,/Mo = 1,10, 20, 103, 10%, and 10* non-degenerate numerical calculations using equa-
tions (40), (32), (37), (34), and (35) of Part III with » = 3 have been made by Mr.
Henry Abarbanel, and are given in Table Bl for A/Z = 2. Values are tabulated for
Ty =0, 198, and = corresponding to z = =, 3, and 0. Values for a more complete set
of temperatures have been given for M, = 20 Mo in Table 3 and Figure 4. These cal-
culations use the non-degenerate rather than the extreme non-degenerate approximations
so that g = 1 rather than 1.0503.

Comparison with non-relativistic and extreme relativistic, extreme non-degenerate
approximations are indicated in Table B1. The trends discussed in this section will be
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apparent. For example, for M, = Mo the ratio 8 remains substantially constant at
0.959 while for M. = 10 Mo the range is 0.55 < 8 < 0.72. The temperatures and stellar
masses at which the NDNR (T = 0) and ENDER (T = @ ) limits are useful will also
become clear from perusal of Table B1. As noted previously the tabulated calculations
assume ¢ = 1 (NDER).

The considerations of this section have neglected general relativity. It has been found
(Tben 1963) that massive stellar or polytropic systems in hydrostatic equilibrium are not
bound when appropriate modifications for general relativity are made to the relation
equating the pressure gradient to the gravitational force per em?. This result and others
make it necessary to use the results of this section for M > 10® M 5 with some care. This
matter has been discussed in part at least by HFB? (1964).

TABLE B1

THE RUN OF VARIOUS QUANT[TIES WITH TEMPERATURE IN STARS WITH
M/Mo = 1-100[n =3, A/(Z + 1) = 2]

vy (M M| (M oy MW (M e/ MO)A(3 ./ M )V3

M. /Mo T B n 8 /T o Y %8 Yoo/ Tel

L....] 0 1.9183 2.000 0.9593 14.28 1.9185 2.000 0.9593 14.28

1....] 1.98 1.9181 2.000 .9591 14.31 1.9181 2.000 0.9591 14.31

| © 1.9133 1.904 .9393 14.42 1,9135 1.004 0.9503 14.42
10....] O 1.1044 2.000 .5522 0.7498 3.492 6.324 1.746 2.371
10, ...| 1.98 1.0850 1.861 .S830 0.7909 3.431 5.884 1.843 2.501
10.. .. @ 0.9843 1.373 L7169 1.05901 3,112 4.341 2.267 3.349
2....| 0 0.8342 2.000 L4171 0.4350 3.731 8.944 1.865 1.945
20....| 1.98 0. 8094 1.672 L4841 0.4761 3.620 7.477 2.165 2.129
20.... ™ 0.7156 1,047 L6834 0.6891 3.200 4,682 3.036 3.082
1¢®....| 0O 0.4035 2.000 .2018 0.1537 4.035 20.0 2,018 1.337
100....| 1.98 0.3799 1.020 .3724 0.1842 3.799 10.20 3.724 1.842
102, .. - 0.3269 | 0.499 L6350 0.2891 3.269 4.99 6.530 2891
10....] O 0.1327 2.000 . 0664 0 0432 4.196 63.24 2.10 1.366
10%....| 1.98 0.1216 0.3562 .3414 0.0562 3.845 11.26 10.79 1.777
108.. .. @ 0.1039 0.1593 L6520 0.0898 3 285 5.04 20.60 2.845
104....7 0 0.0425 2 000 0212 0.0131 4.25 200 2.12 1.31
10¢....| 1.98 0.0385 0.1138 L3383 0.0177 3.85 11.38 33.83 1.77
104.. .. ® 0.0320 | ©.0506 | 0.6502 0.0284 | 3.29 5.06 65.02 2.84
Compare equations. .. .............. (B112) and (B113) (B118) (B117)  (B120) and (B122)

k) Condstions for Non-degeneracy
The non-degenerate approximations used throughout this paper require that
exp (3w — ) 2 1 (B128)

in the integrands which appear in equations (B1), (B27), and (B44) for the case of nega-
tive electrons. Clearly equation (B128) is satisfied if

H}'

=__ (B129)
kT’

¢< zw

and the question remaining concerns what value of the total energy W = wm.c? to em-
ploy in equation (B129). We adopt the customary stipulation that o is to be taken at
the maximum value of one of the integrands in equations (B1), (B27), or (B44) and
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choosc the pressure integrand for electrons in equation (B27) for the calculations to
follow. This integrand has a maximwn value when

3w [exp (3w — ¢) + 1] = z(w® — 1) exp (3w — @) . (B130)
If cquations (B128) and (B129) arc fulfilled this reduces to

z( —i = 3. (B131)
w

In the extreme relativistic case o > 1

z w 3 (B132)
W=~ 3.
kT
In the non-relativistic casc e < 1 in w = 1 + eso that
2 B 3 (B133)
€= —— 2
ET T

where E is the kinctic energy. It will be apparent that these relations are at least approxi-
mately equivalent to using 2z« = g+ x, where x is the mean kinclic cnergy of the elec-
trons so that equation (B129) becomes

_meHLEY W)

e< z+4zx= W =T (B134)

or in terms of the chemical potential
& < W5, ®B135)

which we will take as thc condition for non-dcgeneracy. Equation (B134) is a gencraliza-
tion of (B14) and equation (B135) generalizes (B15).
In the non-rclativistic case from equation (B21)

2"7°=sinh<,oz%exp e< %expz, NDNR (®i3e)
1
so that with equations (B17) and (B9)

m TN/

27 2 <1.53X10®T32¢m~*., NDNR ®13n
x

no< myexp g =2

The maximum density at which stellar matter can be considered Lo be non-relativistically
non-degenerate is then, with u, = 4/2,

0= pMing < 2.54 X 10° u, T332 gm cm—2. NDNR (B1i3s)
In the exireme relativistic case

3
7o< 204 sinh 3 = 4;%(%) < 3.38X 10872 cm—3*, NDER @139

The maximum density at which stellar matter can be considered to be relativistically
non-degenerate is then, with p, = 4/Z,

p < 5.60 X 105 p,T¢® gm cm ™3, NDER @140
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D) Poilential Energy and Tatal Energy of 6 Masswe Polytrope
The potential energy of a polytrope of index #, mass M., and radius R; is

Q= —Sint‘Q_ B141)
Combined with (B123), this yields
3(n+1) M, (qiRT)
= - ————_— 2
“ 5 - n Rn Mﬂ “6 o
~ — [ 10815(1—1_-: 1) A %’f %)3/2 a AGIAT, NDNR
~ — 0,62a4G3 M 21T, n=3 NDNR
M.\
~ ~6.9% 10 (F) (Ts), erg n—3 NDNR ®up
o)
1/4 2 3/2
~ - 1297n (D) %";—n"- @!lf) QVAGIAT, ENDER
=~ — 0.80a\4G3AM 32T, n=3 ENDER
M. N\2
= — 8.8X 10% (M—“c) (Ts),erg. n=3 ENDER
®

For n = 0 the corresponding numerical coefficients are —8.6 X 10%® and —10.9 X 1048
in the NDNR and ENDER approximations, respectively.

For n = 5, R, is infinite and (B141) yiclds an indeterminate result. However, if we
use

= —3[pdV = —12x {pridr, (B143)
it can be shown that

322
z-—6.0><10‘9(M") (Ts),erg n=5 NDNR
Mo
('BIM)
32
z~7.5><104«(jj;) (Ts)aerg. n =5 ENDER

The NDNR approximation holds at low temperatures for massive stars where g8 = 0,
while the ENDER approximation applies to massive stars at high temperatures where

~ 7

= 7.

In both of the extreme cases described by expression (B142) the internal heat energy
of the polytrope is closely equal to |Q| and the total energy is closely equal to zero. How-
ever, in the NDNR case it is useful to determine the total energy E or binding energy
Ep from

= — Ep~ —3[p,dV = —67[Bpr'dr. NDNR ®145)

Combined with equation (48) of the main text, this yields

~ 57 W [T(2 T/uB =04
E~_Tponn1/-/o‘ (Z>(m ridr . NDNR ®i146)

To/,ﬂ'oﬁa
In the notation used by Eddington (1930) this equation can be reduced to
3 M.RT, Fn
~ — (5n4+1y/4,,12
E T -/; u Yegid g, NDNR @147
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where 2 = (p/p,)’* 15 known for each polytrope as a function of the dimensionless
radial variable 2. For a polytrope of index » = 3, the integral equals 2M 2/R; so

- _ 3 M MR,
R, &
z—O.SSw M,=2.02, R;=6.90, n=3 (B148)
M
x4146><1050‘[ (T*‘)" crg . n=3 NDNR
Mo w
Thus
E RT, _ _ (T0)s o

M.t AP " ———erggm—‘ n=3 NDNR ®149

For a polytrope of index # = 0 the numerical coefficients are —1.87 X (0% and —1.04 X
10~* in equations (B148) and (B149), respectively.

m) Summary of Approximations
In this appendix the following approximations have been treated:

ND: Retain only the first term (# = 1) in summations such as expression (B4).
END: Set ¢ = 0, cosh np = 1, sinh np = 0, exp(% np) = 1 and retain all terms
in summations. Retain only first terms for a further approximation.
NR: Use expression (B9) for Ky(nz) or set Ka(nz) = 0 in comparison with terms
of order u.nity.
ER: Set Ky(nz) = 1. (The term ER applies only to electrons and positrons.)
NDNR: Use Ki(nz) = 0 to elimmate terms in ¢ where possible.
NDER: Set Ky(z) = 1 in first term approximations to surnmations.
ENDER: Evaluate the various summations with ¢ = 0, Ky(n2) = 1 in terms of Rie-
mann Zeta-Functions.

APPENDIX C

NUCLEAR-REACTION RATES

a) Average Cross-Sections

The reaction rates of the nuclear processes of interest in the main body of this paper
are the subject of this appendix. The reaction and energy generation rate for processes
such as reaction (86) in Part V involving one or morc heavy nuclei (4, + 4, > 24) can
be estimated by generahzma the expressions given by B*FH (1957, p. 560) under case
(ii). (The reader 1s referred to this article for further explanation of the notation em-
ployed in what now follows.) The density of excited states or levels in the heavy com-
pound nuclei form :d in the type of interactions under consideration is great enough that
the cross-section at any energy can be calculated as an average over contributions from
the many resonances lying in an apprapriate energy interval. Tt is not necessary that the
resonances overlap, i.e., the widths I' may still be narrow compared to the level spacings
D, In applications in physics the average over many narrow resonances is often of sig-
nificance as, for example, when the energy spread in particle beams exceeds level separa-
tions. In stellar applications the average cross-sections are important when the width
of the Maxwell-Boltzmann distribution, 27 = 0.0862 Ty McV, exceeds the level spac-
ing D.

The averaging of cross-sections is done automatically in calculations with the “opti-
cal” model of nuclear reactions since in this model a complex potential well is employed
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to describe the gross structure of the nucleus without regard to the detailed spectrum of
individual excited states. The potential is taken to be complex so that both scattering
and absorption occur.

Let the initial nuclei in a reaction be designated by indices 0 and 1 and the final nuclei
by 2 and 3 (and 4, 5, . . . , if necessary). Thus the charges and atomic masses involved
are Zo, 2y, 23, Z3, and A,, Ay, As, As. Let the initial process or channel be designated
when necessary by the index 1 and the final process or channel by the index 2. Thus the
partial width (% X transition probability) for the initial channcl involving particles 0
and 1 is designated by Ty and that for the final channel involving particles 2 and 3 is
designated by T.. However, we will not find it necessary to append a subscript for the
center of mass energy E, the reduced mass number, 4 = 4.4,/{Aq+ A1), or the ra-
tionalized De Broglie wavelength, X = \/2x = 4.57/(EA)' fermi, for the initial chan-
nel. In what follows there is little occasion to refer to competing channels other than 1
and 2 except in the expression for the total width, T' = Ty 4+ T, 4 . . ., which must be
summed over all open channels. Let the compound nucleus formed by the interacting
particles have spin and parity Jx. Then the average cross-section through compound
nucleus formation is

(<D “dE>)

= 272X (wl\Ts/ DT )s~ €y
=7m2{( 42/ ME)(wI[a/ DT )y~
= (4.12/ AE)(wThTy/ DT )~ barns( 10-2* cm?),

where M = AM, is the reduced mass in grams, M, = 1.660 X 10724 gm is the atomic
mass unit, and where w = (27 4 1)/{(27, + 1)(2J, 4+ 1) is the statistical factor applying
to the formation of the state with spin J from the interaction of the initial nuclei with
spin J¢ and J;. The integral which appears is to be taken over 2 single state or Breit-
Wigner resonance of the J= type and then a “local” averaging performed which intro-
duces the mean level spacing D. In the final expressions D and the widths are taken to
be smoothly varying functions of the energy, and the sign for averaging has therefore
been omitted on the right-hand sides of the equations. Es is the energy in MeV (10° ¢V).

a‘.

b) Reaclion Rates Summed over Resonances with Measured Properties
The reaction rate per second per pair of interacting particles under non-degenerate
stellar conditions at temperature T is given in general by
( 8 / T ) 1 /2
Ml /2 ( k T) 3/2

BRI\ f [ E ENL/EN o |
() S (B () 1 (B

In the case that individual resonances due to states of the compound nucleus are
narrow (I' < k7" and provided width and spin measurements are available on cach
resonance, then it is convenient to replace equation (C2) by a summation over all reso-
nances ¢ for all J* as follows:

Cop) =Z(cp), = (2Tﬁ2)3ﬂ2 (UP1P2)’- exp( —E,/kT), (C3)

(ov) = [ oE exp(~E/*T)dE

(C2)
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or

log{op) = —12.59—3% log ATg—i-logZ (wTil'a/T), exp( — E,/kT)  (c4)
for {ov) in cm? sec™ and widths in MeV. We have used
[ oEiE = (x*#2/M)(@IiTy/T),. ©s)

The contribution of a single resonance to equation (C3) is obvious, and equation (Ca)
for a single resonance becomes

log (ov), = —12.59 — § log ATy 4 log (wI'\I's/T"), — 5.04 E,/T, (C6)

for widths and E, in MeV.

Nuclear oompllatlons such as Ajzenberg-Selove and Lauritsen (1959) and Endt and
van der Leun (1962) give fairly complete tables of empirical values for E., T, 7, and
[(2] + I)T‘lPQ/ I'], for a significant numbecr of reactions, In using these tables it is con-
venient in practice to make use of the fact that the resonances of importance in the stellar
situation at temperature 7" are those which lie near the effective thermal energy given by

= [raZ\ZokT(M /21243 = 0,122 (Z2Z 2 AT *)"V? MeV (o)
and within the effective range of thermal energy given by
A = 4(EkT/3)"2 = 0,237 (Z2ZP2AT )6 MeV . (C8)

Below this energy range the I'y are small because Coulomb barrier penetration is low
while above this energy range the exponential exp (— E./kT) serves as a culoff factor.
Thus it is possible to make satisfactory approgimate estimates using

2\38/2
) ew(—Bam) T (U1

where the subscript on the summation sign indicates that only those resonances with
E. = E, are to be included. Numerically equation (C9) yields

log {ov) ~ — 12.50 — 3 log AT + log £,(wINTy/T), — 0.615 (Z2Z2 4/ Ty, (c10)

{ov) =

(€C9)

where the widths are in MeV.
Reaction rates per gm per sec are related to the (¢v) by

r=03 Mn'0<”> reactions gm—"! sec™! )
or
log r =47.56 4+log payxy/ A1 A+ loglan). (C12)

Equation (C11) must be multiplied by % on the right if 0 and 1 are identical and log 1
reduced by 0.30 in equation (C12). The lifetime 70(1) of particles 1 to interaction with
particles O and the lifetimes 7,(0) of particles O to interaction with particles 1 with pro-
duction of 2 and 3 are given in sec by

xoto(1)/ Mo = 2m1(0)/ My = [p{avd]? (C13)
or
log 7¢(1) + log 20/ 44 = log 71(0) + log x1/ 4, = —23.78 — log p — log {ov) . (C14)
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In the case of identical particles, fwo are destroyed in each reaction, and the factor of
1 applicable to equation (C11) does #oi apply to (C13). In (g}, sum over all outgoing
reaction channels, I'; . ., ., if total lifetimes are required.

¢) Pholonuclear Reactions as the Reverse of Caplire Reactions

It is frequently of interest to calculate the reaction rate for a nuclear process in re-
verse. In the notation employed here the reaction rate for particles 2 and 3 to form 0
and 1 is sought. At low temperatures where 7 is in general small compared to the
energy release O in an exoergic reaction, the reverse rate is small compared to the direct
reaction rate. However, at high temperatures (kT ~ () the reaction rates can be com-
parable and neither can be neglected. In addition, at high temperatures, the interacting
nuclei 0, 1, 2, or 3 will be present in part in excited states and the interaction of the excit-
ed nuclei may be guite different than the interaction of the nuclei in the ground state.

These considerations are of particular importance in connection with photonuclear
reactions which are the reverse of capture radiation reactions. In reaction notation the
two reactions can be represented by

(Zo, Ao) + (Z1, A)) = (Zo+ 2y, Ao+ 4D + v, (C15)

where the capture reaction reads from left to right and the photonuclear reaction from
right to left. We will confine our attention to these reversible reactions in what follows,
although the generalization to other cases can be made quite straightforwardly. In addi-
tion, excited states will be considered to occur only in the nucleus produced with or
interacting with the gamma-ray. Designate this nucleus as particle 2 such that
Zy=24+ 2\ As = Ao+ A1, and Mo 4 My = M, + Q/c?, where Q is the energy re-
leased in the capture reaction or the energy threshoid in the photonuclear reaction. For
an excited state at E,* the energy release is Q — Ey* or (0 — Ey*)s in MeV. Thermo-
dynamics gives the decay rate or reciprocal mean lifetime for the photonuclear reaction
on the nucleus when in this state by

1 2,4+ (2N +1) [META
77(2*)=( ]()(?er,;?«(Jrﬂ)Jr : 27rkﬁ2) (ov)* exp— (Q—E,*) /kT 10

or
log 74(2*) = log 2J2* + 1}/(2Js+ 1)(@N1+ 1) — 33.77 — log {ov)* — $ log AT,

©17)
4+ 5.04 (Q — E:*)/Ts,

where (s7*) is the reaction rate for the production of the excited state of 2 from the
interaction of O and 1. This equation does not imply equilibrium. Equilibrium holds
when this decay rate is equal to the production rate. If the appropriate form of equation
(C3) is substituted into equation (C16), then

1 _ 1 (27 +1)IyL*
77(2*)_212*4—12,[ AT ]reXP—(Q“i‘Er—Ee“)/kT, (C18)

where I'.* is the radiation transition probability from the state E, to the lower state
E,* in nucleus 2. Summing over all T',,* including the ground state yields the total radia-
tion width TI",, for the state at E,.

It will be clear that the calculation of the photonuclear reaction rate for nuclei 2,
mcludmg all excited states, can be made only if the distribution among these excited
states is known and that this distribution can only be calculated simply if equilibrium
is assumed. Equilibrium between the excited states below E, is a fair approximation if
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photoexcitation of this state occurs at all. The relative probability of excitation to Eg*
Is given by

* _ ¥* *
p(By = I Dep(BHED) ML oo

TZ (20 + Dexp( —E*/#T) . 25,41 &

The approximate form assumes that 2 occurs mainly in its ground state which is suff-
ciently accurate for our purposes. The total decay rate or reciprocal mean lifetime is
then given by

1__  P(E*) exp(—Q/kT) (2J+1)I‘J‘, ~
17(2)_2*17(2*)~ 2J.+1 E [ _] exp( —E,/kT), (cz0)

where we have used Z,T'y* = T',. In the spirit of the approximation represented by
equation (C9) this equation becomes

1 _exp— (Q+E,) /T (27 + )T,
(2) 2T+ 1 E[ AT J 2
or
log 75(2) = = 21.18+log(2/s+1) —log X[ (2/+ DIT,/T),
(€C22)

+ 504QG/T0 -I— 0615 (21220244 /Te)l/s ]

where the widths and Qg are in MeV.,

Photonuclear reaction cross-sections measured in the laboratory only determine the
excitation rate for the ground state and not for the excited states. Equations (C20),
(C21), and (C22) show that when the photonuclear reactions are important all states
must be considered since the factor exp (— E;*/ kT) which occurs in equation (C19)
has been cancelled by the factor exp (+ E;*/%#T) in equation {C18). These equations
require that I'y be the total radiation rate to all lower states in nucleus 2. This rate can
be determined experimentally from the over-all cross-section for the capture of particle
1 by particle 0.

Equation (C22) is employed extensively in Parts V and VI, It is valid only when
{ov) can be expressed by equation (C3). The generalization to other cases does not yield
as simple an expression as equation (C22) but these cases can be worked out using
(C17) and (C19) as required.

d) Conlinuum Cross-Sections

At sufficiently high excitation, compound nuclei exhibit overlapping resonances aris-
ing as decay widths become comparable to or greater than level separations. Continuum
cross-sections arc the result in which the energy dependence is dominated mainly by
optical model and barrier penetration factors. In treating the continuum it is sufficiently
accurate to ignore the intrinsic spins of the interacting particles and to consider only
the relative orbital angular momentum of the initial particles here to be designated by
! in units . Equation (C1?) is replaced by

F=2dy i=01,23,
and
&y = 2a2X2(21 + 1)(IyTy/DI)y, (€23)

where D; is now the mean separation between all states which can be formed by the
same partial wave, The parities are given by I = (—)".
Before continuing it is necessary to note the modifications required in equation (C23)
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when identical particles are involved. In general the statistical weight factors for per-
mitted interactions are doubled when identical particles interact (Mott and Massey
1949). However, certain spin and orbital momentum combinations are not permitted by
symmetry considerations. Certain modifications arise even though we assume spin inde-
pendence for the permitted interactions as above. For identical bosons with zero spin,
such as O 4 O", all odd-/ interactions are forbidden, so f = 0, 2, 4, . . ., and the sla-
tistical weight factorsare 2,0, 10,0, 18, . . . , ratherthan 1,3,5,7,9, . . . . For identica]
fermions with spin 7, the even-l orbital angular momenta combine with the total spin
0 while the odd-! orbital angular momenta combine with total spin 1. The statistical
weight factorsare §, 3, 3, %%, §, . .., for/ = 0,1,2, 3, 4 . For identical bosons with
spin 1 it is found that the statistical welght factors ave & £ 4, 25‘1, 1E 88 ., forl=0,1,
2,3,4,....It will be noted in all cases that the statistical weight factors fluctuate
around the normal values given by 27 4 1 and that if a sum is taken over many J-valucs
there is little deviation from the normal sum, This will be important in what follows,

Return now to a consideration of the term (I,T5/DTY); in equation {C23). In a few
cases of interest the incident partial width I is larger than the other partial widths so
that I'y ~ T and equation (C23) becomes

71 = 2228220 + 1)(Fy/D),. Ii~T 24

Under these circumstances the barrier penetration factor for the incident particles does
not appear and the &, varies relatively slowly with energy. An exception is endoergic
reactions where Iy may vary rapidly because of penetration factors. Such exceptions
can be treated by the methods now to be discussed merely by application of the equa-
tions derived to the interaction between the final nuclel rather than to the initial nuclei
and will therefore not be discussed further.

In most cases of interest T'; is small because the stellar thermal interaction involves
energies well below the Coulomb and centrifugal barrier heights, Thus Ty < T' and T}
or rather the ratio (T1/D); must be evaluated as a function of energy. The ratio (Ty/T),
gives the relative probability that the compound system breaks up into nuclei 2 and 3
and will be treated as a slowly varying function of energy. For a dominant outgoing
channe] (T'y/T"); ~ 1. The exceptional case for endoergic reactions has been noted above.
It is to be emphasized that (T/T"); may depend on /.

The optical model (Vogt 1962) yields the following expression for (1%/D); for use in
expression (C23) for average cross-sections:

(D> ( 1 +gﬁ+m] : [%Jz ©29)

where 7 is the barrier fransmission factor and is related to the barrier penetration factor
P, (to be discussed later) by
P,
(L+X2/X2)2
A

o —Xj P;  Low energy X> X%, (€26)

T;=

~1 High energy A <%,, FPi=1,

and where A is a small level-shiit which we neglect. The quantity, X, = #/2M Vc,)”2
is the wavelength (X %7) which results when the kinetic energy of the initial nuclei is
set equal to the magnitude V, of their mutual interaction potential. Experiments show
rather surprisingly that ¥V, = 40 MeV in all interactions which have been studied so far
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so that X, = 0.7/4'2 fermis, with 4 the reduced mass in alomic mass units. The ap-
proximate forms at low and high kinetic energy in equation (C26) are quite straightfor-
ward if it is recalled that P; approaches unity at energies in excess of the barrier height.
B*FH (1957, p. 561) failed to include A~ in X,. Tch! Tch!

The factor 8; results in the optical mode! from averaging over the many compound
nucleus resonances but not over the “giant’ or “shape’ resonances resulting from the
interaction potential assumed in the model. Thus contributions from the shape reso-
nances still remain and 3; is given by

1 W.Duw
ﬁ‘_Zﬂz’y (Ep—E) +W,2/4° (c27)
where » = 1, 2,3, .. ., is a radial quantum number indicating the first, second, third,

etc., shape resonauce for orbital angular momentum !, E,, is the resonance energy,
W./2 is the imaginary part of the interaction potential and Dy, is the energy separation
between the v and v 4 1 resonances. Dy, is much larger than Dy, the separation between
compound nucleus resonances. For an oscillator potential

Ep=—-Votto(r+i=1, (c28)
so that
Dy =E; ,pu— E;, =2 hw=21/MRX, = 4 (V.B2/2MRN"? | (€29

where » is the fundamental oscillator angular frequency which can be expressed in
terms of the depth V, and cutoff radius R of the well. For the cases of interest in this
paper D, ~ 6-20 MeV.

The factor f; oscillates about unity between maxima at E = Ej, and minima at
E = E;, +- Dy,/2. Neglecting contributions from other than the nearest level or levels
one finds for D;, > W,

B (max) ~ 2 Dy, /=W, < 3 (€30
and
Bi(min) =~ 2 W,/=xDy, > 0.2. €3n

The numerical values are obtained with the use of the empirical values, W, ~ 5 MeV
and Dy, < 20 MeV. Thus the deviations of 8, from unity are not very great and for a
“black-body” model 8; can be found by averaging over an energy interval of the order
of D;, to obtain

3, ~ 1 f‘"m W,D,dE
YDy Jow (En—E)+Wi/4 (€az)

=~ 1.  Black-body model

Furthermore at high energics W, tends to increase and both 8;(max) and 8{min) ap-
proach closer to unity. For this reason §; has been set equal to unity in the calculations
made in the maim body of this paper. This substitution has not becn made except in
high-energy expressions in this appendix.

The above considerations yicld

E) NL( X )
(D Bk 4 X Ps z Low energy
(€33)
1

High energy

2’
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and oT
- Fz]
= X2 __x= g2
gy =mX (2!—1—1)[(1_'_1,)25 =]
Xu I‘]
~aR(2UF I 4T PR Low energy  (C34)
i
Ty .
zwx’(ﬂ—l—l)(-r— . High energy
1

e) The Peneiration Factor at Low Energy and the Reaction Radius

For the combined Coulomb and centrifugal penetration factor at low e¢nergy
(E < Eqz+ Ep) we use a slight modification of the expression involving the modified
Bessel function Kay(x) given by B2FH (1957, p. 560), namely,

_ ﬁ'(123/12)1/2 _ ﬂlzg __ 212
PUB) = () | ~ BB T(EE
(€35)
_(Ec\ _1(gg>m __4F U+
~(F) e -3(F) —mt st
where
Egr = centrifugal barrier height divided by (I 4 1) .
36)
= t/IMR? = 209/ AR MeV (R; in fermis)
E¢ = Coulomb barrier height ,
€37

= Z,Zo/R = 1.44 2,7,/R; MeV ,
% = HEg/Ep)'® = 0.525 (AZ1Z,RH)2 . (C38)

Note that E, = (xEgkT/2Eg"%)¥? from (C7), (C36), and (C37). Numerically, for Fsin
MeV and R, in fermis

log Py = } log 1.44 2,7/R,Es — 0.430 Z,Z 4 A\REt — 0.053 Es(AR 3/ 207 0)1
(C39)

+ 0457 (AZ.ZR)2 — 3.31 11 + 1)/(AZ1Z RN .

In concluding this section some discussion of numerical values for R is in order. Ex-
periments involving the interaction of pairs of heavy ions such as C2 4 C2, C2 4 O,
O® 4 O and experiments involving the interaction of protons and alpha-particles with
nuclei beyond Si?® indicate that the numerical coefiicient in the R = R, (47?4 A4,/%)
law {s probably greater than the value R, = 1.44 fermis used by B2FH (1937). Elastic
scattering experiments, analyzed using the Blair (19534) quarter point formalism by
Bromley et al. (1960) lead to R, = 1.54 fermis when appropriate corrcctions are made
in the analysis, The important point is that the observed deviations from the Rutherford
scattering law show which partial waves interact through the nuclear potential and
which do not. From what has been said before it will be clear that this is exactly the
information needed. Furthermore, electron scattering experiments (Hahn, Ravenhall,
and Hofstadter 1956) show that nuclei have proton distributions which extend to
(1.07 Ag/% 4- 1.2) fermis. The addition of one-half the range of nuclear forces brings
this to (1.07 Au12 + 1.9) fermis. It is this range which marks the breakdown of the pure
Coulomb and centrifugal potentials due to the onset of the nuclear potential, and it is

© American Astronomical Society » Provided by the NASA Astrophysics Data System



S....0%..201r

1%€LnnTE

MASSIVE STARS AND SUPERNOVAE 309

this radius which should be used in such equations as {C35) to {C39). Over the interval
27 < Ay < 125 (A/* ~ 4) this cxpression for the range is matched most closely by
R, A% with R, = 1,54 fermis, Tuttle (1952) has determined effective radii, in much
the same way, using electron scattering data for the interaction of p, d, ¢, 7, and « with
light nuclei. These radii exhibit fluctuations with characteristic minima at A, = 4#,
n=1 2 3,4, 5 ....However, on the average R, = 1.54 (47 + A,"?) also fits
Tuttle’s curves quite well and we have used this prescription in the calculations in the
main body of this paper.

The factor (AR,%/Z,7 )2 appears in certain equations to follow. With the value for
R; adopted here it becomes

(AR Z\Z o)Vt~ 212(1 54)32 ~ 2.7 A~A ~Z, < Ay~ 27,
and (Cd0)
~ 4 (1.54)*2~ 7.6 A~LTA ~1Adg~Zi~2,.

Thus this quantity varies by only a factor of less than 3 over the full range of intercst
In interacting nuclei.

1) Continuum Cross-Section for Compound Nucleus Formation

There are circumstances when it is of interest to compute the total interaction cross-
section through compound nucleus formation. This is equivalent to summing I's over
all possible final pairs of nuclei including re-emission of the initial nuclei. The sum is
just T', and so the average continuum cross-section ,;(C) for compound nuclcus forma-
tion through partial wave / is just

71(C) = 27X 214+ 1)(In/ D).

_ 4T3
_Tx2(2z+1)[7(1+ﬂ2]1

(C41)
~xk¥( 214 1)(%1’,8) Low energy
=gXR¥(2/+1), High energy

Total cross-sections for compound nucleus formation or for any particular final proc-
ess are obtained by summing over all partial waves, ¢(C) = £&,{(C) and & = Zg;. The
result for & (C) at high energies is well known. At such energies, X < R, and the particle
trajectories are essentially classical with each partial wave confined to a cylindrical
region having radii between /X and ( 4 1)X. It is generally assumed that 8; = 1 if the
radius R overlaps /X and 8; = 0 if it docs not. If the interacting nuclei come into contact
complete absorption occurs; if the trajectory falls outside the range of the nuclear inter-
action there is no ahsorption, Then if the maximum / for interaction is L = R/X one finds

L
F(C) =D xKH 21+ 1) =X L+1)t=x (R+X)1. (c42)
0

The same result is obtained if the summation s replaced by an integral over ! from
—3 to L +- 3. This is just the result to be expected in the optical analogy for the absorp-
tion of light of wavelength X by a “black” target of radius R. If 8; =« 1 for ! < L then
it is possible to write formally

Go=wR+ X)?*{Br. (C43)
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It will also be clear that the following relation holds formally
5‘=T(R+K)2<ﬁ% , (C44)
4

where in equations (C43) and (C44) the indicated averages must be taken in an appro-
priate way over 0 < I < L. The factors #(R + X)? give the dimensions and rough order
of magnitude of #. The averages (8); or (8T/T); can only be calculated from experi-
mental data. For dominant rcactions at high enough energies (8T/T); = 1 foralll < L.
Equations (C42)-(C44) are well established for neutron interactions above several MeV,

£) Tolul Conlinuum Cross-Sections for All Partial Waves
i Charged Particle Inleractions

We propose now a prescription in the case of charged particle interactions for carry-
Ing out the summation over 7 at low encrgics where @, is extremely energy dependent
through the penctration factor Py. It will be clear from equation (C35) that P can be
expressed in {erms of Py, the penetration factor for I = 0, by the approximate relation

independent of energy

P, [ 41(141) ]

1 _=ter ) (C45)
F x A4

where x, defined in equation (C38), is a parameter measuring the relative strengths of

the Coulomb and centrifugal potentials. If equation (C4S5) is substituted into the low-

energy case in (C34) and the first summation in equation (C23) is replaced by an inte-
gration from ! = —3 to L -} 3 one finds

Y 4 7 Ty ) 1 4(L+3(L+3)
a—ﬂU( n P0)<B~I‘— Ltexpz—exp———~x—] (C46)

~r a0 (FeR) BT

forL2<i?t= % or E< 3 (EcER)V?~3 MeV

Ko T
)G
T X o ﬁ T ;Slc

for L2>lﬁ=§> 1orEe>E >Y(EqEg) 2~} MeV.

(C47)

(C48)

For 2 < 4, only the 2 = 0 partial wave is effective and equation (C48) can be used with
x replaced by 4. Similar expressions can be written for #(C) with T'»/T replaced by unity.
In the conditions for approximations (C47) and (C48) we have used the rclation
L = RY/X* = E/Egp and have noted that (EcEx)? = 2.7 (Z.Zo/ AR is of the
order of § MeV independent of charge, mass, and radius for all interactions with
R; = R,(A"?* 4+ AY%) and R, ~ 1.2 to 1.6 fermis, It will be clear in these approxima-
tions that a critical partial wave, I. = 2!, is involved. For [ < I,, Py~ P,. When the
interaction energy is less than ~% MeV as in equation (C47), then L < /., or R < I.X
and the target area is more than covered by the partial waves 0 < 7 < /.. This implies
that P;~ P, for all intcracting partial waves and so the full “optical” area 7(R 4 X)?
appears in expression (C47) for . However, when the interaction energy is greater
than ~% MeV, then the wavelength is such that /X < R and only partial waves with
! < I; have Py~ P, and contribute significantly to #, the formal result being given m
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fair approximation by equation (C48). In equation (C48) note that x replaces 4 in &,
from equation {(C34) and an average over appropriate /-values replaces (8 I'z/1")o.

Basic to the calculation just made is the validity of approximation (C45). It holds
strictly only for zero energy of intcraction, and even then the numerical coefficient in
the exponent is in general somewhat less than 4. Furthermore, as the energy of inter-
aclion increases all of the P, for I > 0 increase more rapidly than 2, and this can be
simulated by a decrease in the numerical coefficient with energy. However, in equation
(C48) we see that /4 replaces unity when equation (C34) is summed over /, and so the
only error involved is that the numerator of equation (C48) ought to be somewhat
smaller or & somewhat larger. But in going from equation (C46) to equation (C48) we
replace the term in the square brackcts, which is less than unity, by unily so some
compensation is thereby achieved. In view of other uncertainties such as the sensitivity
of P, to the cxact choice of radius R it will be clear that cquations (C47) and (C48) are
adequate approximations for practical usc. The important point is that they follow from
the same basic assumption which underlies equation (C42), namely the optical analogy
for charged particle processes at high energies or for neutrons at intermediatc cnergics.

In regard to & and {(C) for reactions involving identical particles it suffices Lo note
that the various modifications noted previously tend to compensate. For example, in
the case of identical bosons with zero spin, only one-half of the possible interactions
occur, namely, those with even [, but the statistical weight factor for each interaction
is doubled. Exact compensation occurs only for large values of x, but m the case
O¥ 4 O, for example, ¥ = 33 which is adcquately large since then I, ~ 3.

The effective interaction energy for charged particle reactions in stellar interiors is
given by E, = 0.122 (Z2Z@AT )3 MeV, Thus even for protons (Zy =1, 4 =~ 1)
teracting at 7'y > 1 with nuclei with Zy > 8 it is true that E, > 3 MeV. In this paper,
wherc we arc concerned with interactions with Z1Zy > 14 and T3 > 2, it will be clear
that equation (C48) is the appropriate approximation to cmploy.

k) Reaciion Rales and Mean Lifeiimes

Among the results so far obtained, equations (C48) and the low-energy version of
(C34) have the major applications in this paper and the stellar reaction rates corre-
sponding to them will now be derived. When equation (C35) is substituted into the low-
energy version of equation (C34), the result can be written

&;=flexp(—27rn), (C49)
where
E
Qry= #‘;m = 0.9802,Z, A12By—/? = 31.2 82,74 A/ Ey—1/2 (€50)
and

L 4%, I
‘S‘““szJrl)( x 1P 2”)(6 F)z

(C51)
2wkt Iy 1_52)1/2 . 4B 4lI+1)
M (214’1)(6 I‘)z(vo e’q’[zx 3Epx x ]
Numerically, for S; in MeV-barns, Es in MeV, and R, in fermis,
log S; = —0.30 + log (21 4 1)(8 To/T), + L log Z,Zo/ AR,
(C52)

+ 0457 (AZZR)M — 331U + 1)/(AZ1ZoR)Y2 — 0.053 Ey(ARZ/ ZiZo) P .
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When equation (C49) is substituted in equation (C2), the result is
4/3 16 e2h27.7 5/6 T
ey = (1) S £+ (B )
M Ty

(3RV )P (kT )3
(C53)
41{14-1)
X oxp| 20— r = HUE D],

where f, = f(E.) is the electron shiclding factor at E, discussed by Salpeter (1954) and
is usually only slightly in excess of unity in massive stars and where

f—s(E,,/kT)[ L]“=3 _@5_)2/3[_1__1__*2*-_]1,3

" 3(EgEg) 2ER ) LBT U 3(EER)
w sz IM 2RE w 1/a
= (C54)
3[’”‘2‘2" (sz (azlzuhz ) *

B\ 1/2 1/3
=4.248 (zlﬂz0 —) [1+0 0105 (2”;’) Tg]
140

1/3
=4.248(21220211)‘ﬂ[%+0.0105 (2”;’) ] .
'] 1440

In power law expressions for {o; v) the exponent of the temperature is (r — 2)/3. Numer-
ically expression (C33) becomes

] i, r (Z12.0)5/8
(510) ~6.5 X 10-5f,( 20+ 1)(;3 T i
{C35)
B 1102 B D FNPR
Xexp[Zx p ]cm sec
or
log (art) = —14.19 + log f,(2L + 1)(8 To/Th+ § log 2,2, — 4 log A ~ L log Ry
4 0457 (AZZR, )2 — 331 (I 4+ 1)/ (AZ1ZoR)V — % log Ty (©56)
— 1.845 (Z2Z 32 A/T )V [1 + 0.0105 (AR} Z,Z )12 To)/t .
Equation (C48) can be written
3=251=EEXP(“ZTH)y (e57)
where
S =38 =~ [8,di
_xxk® /. Ty &)“2 ) 4E ) €s8)
~uw Pr/o\y,) P ( ¥ T 3Enz/)
Numerically, for S in MeV-barns, E; in MeV and R; in fermis
log 8§ =~ —1.82 + log {8 I'/I); + ¥ log (Z.2,/ A) s

+ 0457 (AZZoRy Y — 0.053 Eq (AR Z.Zo)" .
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When equation (C48) is substituted in expression (C2), the result is
6/8 2/3 "Z Z 4/3
<m>_z<a,z>)~(M) B QreZaZo) 7 (82> ep(2—1)
1

(3 v,
(C60)
VA 4/8
~ 85X 10-18f, <ﬁ FF l% exp(2x— r)cm? sec™!
or
log {av) = —15.07 4 log f, (B I/T)1+ § log Z1Z, — 2 log A .
4 0457 (AZ1ZoR)V — 2 log Ty — 1.845 (Z3Z2 A/T)/3 (c61)

X [14- 0.010S (AR,*/Z1Z )12 Ty/3,

In the case of endoergic reactions having a threshold at E, and for which T rapidly
approaches a constant valuc above threshold, equations (C33), (C35), and (C60) should
be multiplied by the factor

i ” e =dx, Multiplicative factor for (C53), (C53), and (C60),

/2

where X = Z(Eg -_— Eo)/A4

The equations presented above, such as (C36) and (C61), are most useful when
I'y < T but are, of course, formally correct even for I't ~ T'. However, in this latter case
the I' in terms like (8 T'2/1"); 0r (8 I'y/T'); is energy- or temperature-dependent. Actually
I'y will approach T at some energy in a specific case and above that energy the cross-
section will “saturate” and no longer rise with energy thereafter. In fact 7; « 7A\? & E-!
and & « 7R? = E° It does not seem possible to derive useful analytic expressions, and
numecrical integration of (C2) using empirical cross-section data is required. Some indi-
cation of the circumstances under which T, may approximate I' is given by comparing
the effective thermal mteraction energy E, with the Coulomb barrier height E.. The

ratio is Py
E, c 2
EC 2u.71Z0) (h )(kT)

_ AR;)
0.083 (ZIZO (C62)

= 0.2T%7 .

Thus only for temperatures in excess of several billion degrees are the interaction ener-
gies comparable to barrier heights. However, in the case where capture radiation is the
only reaction possible for protons, it will be found that I'y ~ T, at energies considerably
below the Coulomb barrier height and the (p, v) cross-section then saturates. Care must
be used in employing equations (C36) or (C61) in this case.

Nole added in proof. Since the above was written, we have succeeded in deriving a
useful analytical expression for (Ew} when I'y ~ T, This expression is

)/} 12 /T
g = g3/2 = _— * ~
(gv) =nm¥x 2MkT*) ) D>z exp( —E¢*/RT) for I'y~T (Cév)

or
Jog (ov) = —14.25 + logx — 3 log A — log Ts* + log (T'4/D),
+ 3 log T's — 5.04 E*/Ty.

(Ce61%)
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We have numbered these expressions as useful modifications of (C60) and (C61) when
I’y ~ T, In these expressions E,* is the effective thermal energy at which the I'y for s-wave
(! = 0) incident particles is just equal to I'/2 or in the two-channel case at which I'y =I'.
T* is the temperature corresponding to E.* as given by equation (C7). It will be clear
that E,* and 7™ must be calculated from an analysis of empirical data for T, I's, and
P=Ty+Ts+....

It is also appropriate to emphasize at this point that the entire discussion in this ap-
pendix concerns reactions which proceed through compound nucleus formation. Direct
and exchange reaction processes have been ignored entirely. Many direct or exchange
reactions are endoergic with large negative Q-values. For example, 0" + O — 0%
0'7 — 11.5 MeV involves the exchange of a neutron without important Coulomb effects
but the threshold energy exceeds that available in relevant stellar situations. The reac-
tion O 4+ 0¥ — C* 4 Ne® — 2.4 MeV does not have such a high threshold energy
but involves the exchange of an alpha-particle with concomitant barrier effects. In gen-
eral the interesting steilar reactions are exoergic such as O% 4 O* — Si2® 4 a + 9.6
MeV. Clearly such a reaction requires considerable amalgamation of the two interacting
O% nuclei and thus must proceed primarily through compound nucleus formation.

1) Conltnuum Reaction Rates and Lifetimes
The reaction rate per gm per sec corresponding {0 equation (C60) is

X1Xo

TE P,

_ . T1¥e
{(av)=3.63X10 p—*——AlAuﬁrv)

(C63)

~ s F1Xg < 1_‘2 (Z2:Z,5)47 _ . _1 —t
3.1 10 p—AlAufD BI‘ ASATR exp(2x — 7)reactions gm~! sec

ar

10g r~ 3249 + lOg' pxlxg/Ale + ]nga<ﬂ PQ/F>[ + % lOg Z]_Zo - % lOg A
+ 0457 (AZ\ZR)\* — 2 log Ty — 1.845 (Z2Z2 A/ T2 (C64)
X [1 + 0.0105 (AR3/ZZ )2 T/t .

For the interaction of identical particles multiply the right-hand side of expression
(C63) by % and subtract 0.30 from the right-hand side of expression (C64). In the first
part of expression (C63) # has been replaced by ¢ since the expression is a general one.
The lifetime for particles O to interaction with particles 1 for all outgoing reactions
channels is
11(0) = My/ptr Z; (ov) = 1.660 X 1072* 4,/px; =, (o1} (C65)
or
log n(0) = —8.71 — log pmy/ Ay — log f.{f0r — &log Z\Zy + S log A

~ 0457 (AZZoR )V + 2 log To+ 1845 (Z2Z2A/ T s0)
X [1 4+ 0.0105 (AR3/ZiZ )\ T3

Herc we have assumed that I'y < T' so that Iy = T for all . When I'y ~ T use equation
(C60’) in equation (C65) with I'y replaced by ZT%.

If equation (C60) applies to a capture radiation reaction (T's = I',) then the reverse
photonuclear reaction rale can be determined and the lifetime of nucleus 2 to photodis-
integration with the production of 0 and 1 becomes

1 /METVA, .
77(2)_(21&,) (59exp~Q/ kT (<67
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oY
log r,(2) = —33.77 — § log AT, — log (5v) + 5.04 Qs/ Ty = —18.70
— log f(8 T4/TY — L log ZiZy — 3 log A — 0.457 (AZ\Z,R)? ~ 5 log Ty (C69)
+ 1.845 (Z2Z 2 A/To)V3 [1 - 0.0105 (AR/Z\Zo)2 T3 + 5.04 Qy/Ts .

Equation (C67) is not general in that statistical factors do not occur as would be neces-
sary if & were replaced by .

1) Energy Generation

The energy generation through a nuclear reaction is given by
e=7rQ=1.602X10"%r0s

Ty %o {C69)
A14,
where () is the energy released per reaction and is usually expressed as Qs in MeV. At
this point define 0.06 Lo
L;Z(-— Qs erg gm~, €70)

=(0.581X 10%p

Qe{ov) erg gm—! sec?,

g=Q/MZA:=

where g is the energy released in ergs for each gram of interacting nuclei consumed and
T A, is the sum of the masses of the interacting nuclei in atomic mass units M. Then
for two non-identical interacting nuclei the energy generation rate is

q xo(.A1+Ao)_ q xl(A1+AO)

= = =1 -1 (€71)
c 1'1(0) Ao To(l) Al ¢T8 fm ST
and for any number » of interacting identical particles
n
7% erg gm—!sec}, (C€72)

AT G=1)

where in equation (C72) we drop identifying subscripts and 7(x = 1) is the “instantane-
ous” mean lifetime for x = 1, Expression (C72) is particularly convenient when burning
occurs in a one-component medium as in the case of pure hydrogen burning, pure helium
burning, pure carbon burning, pure oxygen burning, etc. For the helium burning, n = 3;
for the others, n = 2,

In pure helium burning with 3He*— C" alone, use the energy release g and the life-
time of He* appropriate to this process, When C%(a, ¥)0% is in equilibrium with
3Het— C2 30 that effectively 4He*-— O, use ¢ for the over-all process and
7= () 15.(He?) = () r2(Heb). In both cases n = 3 if r35,(He?) for x, = 1 is used.

In pure hydrogen burning by the pp-chain the energy generation rate depends on
whether one or two pp-reactions are required in 4H'— He?, If two are required, as is
the case when the chain is completed by 2He® — He! + 2H, then twice the lifetime of
H! to the pp-reaction must be used in equation (C72). If only one is required, as js the
case when the chain is completed by He;éa, v)Be'(e~, v)Li'(p, a)He?, then the appropri-
ate lifetime is just that of H! to the pp-reaction. In both cases n = 2.

For the CNO bi-cycle equation (C71) can be used for the energy generation in any
one of the interactions of the CNO isotopes with hydrogen, but for the over-all energy
generation, (C72) may be used if 7 is the lifetime of hydrogen at a specified CNO con-
centration by mass and ¢ is taken as 5.98 X 10'% erg gm—" from 4H' — He*. At equilibri-
um 7 is approximately equal to m(H') for N*(p, v)O", since this is the slowest reaction
in the main CN cycle.
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k) Average Energy Generalion or Loss in a Siay

Equation (C69) gives the stellar energy generation for a given nuclear reaction at
specified composition, density, and temperature. In what follows it will be assumed that
no change in composition occurs over the reaction region in a star, This is the case in
convective cores. Thus the average energy generation in a star can be calculated if the
fixed composition is known and if the run of density and temperature throughout the
star is known. We seek

L

€ =H=% edM =%f€pr2d1’, €73

where M js the stellar mass and L is the contribution to the stellar luminosity arising
from the reaction of interest.
Express the energy generation per gram in terms of powers of the density and tem-

perature thus:
—1 ]
=@
€ o 0

where the subscript , designates central conditions. It will be clear that the power %
applies to the dependence of energy generation per cm? on density.

In a polytrope of index # it is sufficiently accurate to neglect the dependence of ug
on T for massive stars (see Appendix B) and so

£ = (TT—) . {C75)
Po o

_ ll u 21 3 ’ _ gijf“+‘ R
L ~41re,pof(pu> (To) ridy = 47ré°paf<To ridyr . (C76)

In the notation of Chandrasekhar (1939) with » = «£ and T/7T, = 6 this becomes

Thus

L = 4xe,p o[ 9mt22d g (€77
where 41 /RT i
o)
= . (C78)
¢ [ 4r \puB/e

The run of the dimensionless temperature & with the dimensionless radius ¢ proceeds
according to

(:)=exp(—'%2 [1+(%~7‘—2)E‘+...]zexp(—%2 .t 1l (©19

The approximate form for smal! £ is sufficient for calculating L, the main contribution
to which comes from the high-temperature, high-density central regions where the
nuclear processes are most prolific. Thus

27x/2)1
L= 4-n-Eap,,a’fexp (—%ﬂ f‘*) FUE =~ 4d7e,p.al —EE‘%. (C80)

The stellar mass is given by
M = 4x [pr? dr = dxp,a®f0" £ dE (C81)

but cannot be determined accurately enough by use of the approximation in expression
(C79). Fortunately, Chandrasekhar (1939) expresses the mass in terms of tabulated
constants of integration M, as follows:

M = 4xp.aiM,, (C82)
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so that
(27w/2)U2

e, —— L (C83)
M. (nu+ s)**

€
Thus a mass M & /e, is cficctively providing the energy generation at the central operating
conditions, For a polytrope of index # = 3 it is known that M, =~ 2, so numerically

ST N n=3 ca

(3u+4s)¥?’

Similar expressions can be derived for energy losses. For pair annihilation neutrino losses
where # = 0, s = 9 the average cnergy loss is about 12 per cent of that at the center.
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Note added 1n proof: Since the discussion of the numerical value for G on p. 210 was
written, it has generally come to be believed that the difference hetween the muon cou-
pling constant and the polar-vector beta-decay coupling constant is to be understood in
termns of the hypothesis of Feynman and Gell-Mann (19385) and of Cabibbo (1963). It
is thus preferable to use the muon coupling constant as the universal one for all leptons
including electrons. In this case the correct G for ¢t + ¢~ —>» +- » is the muon coupling
constant which is 1.5 per cent greater than the polar-vector beta-decay coupling constant
used in this paper. Nwmerical coefficients in all equations involving G2, such as equa-
tions (3), {(6), (19), (20), etc., should be increased by 3.0 per cent. This change should
not be made in Appendix A, where the polar-vector beta-decay coupling constant still
applies.
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