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ABSTRACT 
The evolution of nonrotating supermassive stars (M > 5 x 104 M0) is examined in detail using the results 

of hydrodynamic calculations which include post-Newtonian approximations to general relativistic gravity, an 
equation of state which includes electron-positron pairs, and all relevant nuclear reactions. These calculations 
are followed through the period of quasi-static contraction, the general relativistic instability, and the eventual 
collapse to a black hole or disruption via a thermonuclear explosion. It is found that stars with mass M > 
105 M0 and initial metallicities Z < 0.005 do not explode. The objects with Z > 0.005 do explode because of 
the burning of hydrogen by the ^-limited CNO cycle. Explosion energies range from 2.0 x 1056 ergs for stars 
of mass M » 105 M© to 2.5 x 1057 ergs for M æ 106 M0. For those stars that do not explode the collapse to 
a black hole is found to be nonhomologous. 
Subject headings : stars : evolution — stars : interiors — stars : massive 

I. INTRODUCTION 
This is the first in a series of papers examining the evolution 

of stars close to instability where electron-positron pair cre- 
ation, post-Newtonian corrections to gravity, or other nor- 
mally negligible effects may have a profound influence on the 
evolution. This paper will treat the evolution of nonrotating 
supermassive stars. Subsequent papers in this series will 
address the evolution of rotating supermassive stars, non- 
rotating very massive stars, and post-Newtonian effects in pre- 
supernova stars (10 < M/M Q < 100). Very massive stars 
(VMOs) are defined here to be stars so massive that at some 
point in their evolution they collapse on an electron-positron 
pair instability. This corresponds to stars more massive than 
~ 100 Mq but less than 5 x 104 M0 (Bond, Arnett, and Carr 
1984; Woosley and Weaver 1982; Zeldovich and Novikov 
1971). Stars still more massive than this will first collapse on 
the general relativistic gravitational instability before igniting 
hydrogen burning (Holye and Fowler 1963; Feynman 1963; 
Chandrasekhar 1964; Iben 1963), and we hereafter follow 
Fowler and Hoyle (1964) and designate these objects as super- 
massive stars (SMOs). 

We specialize our discussion in this paper to the classic 
problem of the evolution of supermassive stars (Fowler 1964; 
Iben 1963): given that such an object has formed and has 
quasi-statically contracted to the point of dynamical instability 
because of the small effects of general relativity, is the nuclear 
energy liberated in the subsequent collapse enough to blow up 
the star? Concomitantly we would like to know the grid of 
initial masses and metallicities which results in explosions and 
the characteristics of the nucleosynthesis produced. The explo- 
sions themselves may be important for galaxy formation 
models such as those of Ostriker and Cowie (1981). This work 
is in the spirit of the pioneering survey carried out by Fricke 

1 Lick Observatory Bulletin, No. B1042. 

(1973, 1974) and Appenzeller and Fricke (1972). The problem 
warrants reinvestigation, however, because of our increased 
understanding of the nuclear physics of hot hydrogen burning 
(Wallace and Woosley 1981; Wiescher 1984) and the need to 
attack an essentially hydrodynamic problem with a numerical 
hydrodynamics computer code employing an exact equation of 
state which includes electron-positron pairs and all sources of 
neutrino (antineutrino) emission. 

II. GENERAL COMMENTS ON SUPERMASSIVE STARS 
The large amounts of energy emission from the giant radio 

sources, and later the discovery of the QSO (Schmidt 1963), 
stimulated the first interest in supermassive stars. If the quasi- 
stellar sources are at cosmological distances, their absolute 
luminosities are very large: 1044-1046 ergs s_1. Hoyle and 
Fowler (1963) proposed that supermassive n = 3 polytropes 
would account for the large energy budget of the giant radio 
sources. However, it was found that the post-Newtonian insta- 
bility would cause the supermassive star to become dynami- 
cally unstable during hydrogen burning (Iben 1963). This limits 
the lifetime of the star to the quasi-static contraction phase 
prior to hydrogen ignition which is, as we will discuss, only a 
few thousand years for stars of mass in the range of 105-106 

M0. It is known that the lifetime of the active phenomena 
associated with QSOs and giant radio sources can be of order 
108 yr. This follows from the special nature of the giant radio 
sources (Fowler 1965), which are known to maintain a beam of 
relativistic particles from the central object to the radio lobes 
for times of order 108 yr. This lifetime constraint led Salpeter 
(1964) to suggest that accretion on a supermassive blackhole 
was the central engine of the QSO phenomenon and there is 
growing evidence that this is indeed the correct picture 
(Blandford 1984). However, Stoner and Ptak (1984) have 
recently suggested that 106 M© supermassive stars may be the 
central engines of some Seyfert galaxies showing variability in 
their IUE spectra. 
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Even if supermassive black holes do provide the energy 
source for QSOs the evolutionary scenario leading to their 
origin remains to be determined. This problem has received 
scant attention because of the inherent uncertainties, yet the 
general picture is one of collapse and coalescence of massive 
clusters of stars near galactic centers. The work of Begelman 
and Rees (1978) provides a scenario for the evolution of a 
densely populated galactic core. Along one path of their evolu- 
tionary flow chart, a dense cluster of 1 M© main-sequence stars 
undergoes coalescence and disruptive collisions to form an 
amorphous massive gas cloud of mass between 105 and 108 

M© which then falls to the center to establish a brief phase of 
hydrostatic equilibrium. Such a supermassive star will suffer a 
post-Newtonian instability leading to one of several pos- 
sibilities: a nuclear explosion, bifurcation into a binary with 
copious gravitational radiation and collapse to a black hole; 
fragmentation into three or more objects with the possible 
ejection of one; or simply ordered collapse to a “seed” black 
hole on which further accretion of stellar material will build the 
central engine of an active galactic nucleus. As we shall see in 
the next section, the entropy per baryon in a supermassive star 
in hydrostatic equilibrium is of order 100 times that of a typical 
main-sequence star (Shapiro and Teukolsky 1983). This sug- 
gests that the formation process for such an object is highly 
dissipative, like that involved in a process of stellar collisions, 
disruption, and coalescence. Sanders (1970) has also discussed 
the coalescence of a large star cluster into a supermassive star. 

Considerable work has also gone into investigating rotating 
magnetized supermassive stars as the central engines in active 
galactic nuclei (Ozernoy and Usov 1971; Fowler 1966). These 
objects can avoid many of the lifetime constraints associated 
with nonrotating stars. Such spinars will not be considered in 
this paper. 

Another arena in which the possibility of supermassive 
objects arise is the early universe, specifically, as a constituent 
in a possible first generation of stars or Population III. There 
are several reasons for considering the existence of super- 
massive stars in such an early, low-metallicity environment. 
The first of these is that star formation in the absence of 
cooling agents such as metals and grains may be quite different 
than in standard star-formation processes, resulting in an 
initial mass function skewed toward higher masses (Silk 1977; 
but see also Palla, Salpeter, and Stabler 1983). Second there is 
nucleosynthetic evidence of an early generation of stars that 
provided a burst of nucleosynthesis consistent with an initial 
mass function peaked toward heavier stars (Truran and 
Cameron 1971). Finally the existence of isothermal fluctua- 
tions of order 106 M© suggests that very massive and super- 
massive star progenitor clouds may have had density 
enchancements in the nonlinear growth regime at decoupling 
(Dicke and Peebles 1968). 

Star formation theories suggest that a low-metallicity 
environment may be associated with low cooling rates in col- 
lapsing protostellar clouds which, in turn, may delay or 
suppress fragmentation in these clouds. Larson and Starrfield 
(1971) have argued that an upper mass limit on star formation 
processes comes when the Kelvin-Helmholtz time of the core 
of the cloud, or protostar, is less than the time for accretion of 
more material. With roughly solar abundances and at T « 20 
K for an initial cloud the upper mass limit is near 60 M©, but 
other authors have found increased upper limits of the mass 
spectrum, including Yoneyama (1972) (Mmax ^ 102-104 M©) 
and Tohlin (1980) (Mmax > 200 M©): All of these studies may 

arrive at erroneous conclusions because of an incorrect assess- 
ment of the cooling effect of molecular hydrogen (Lepp and 
Shull 1984). If this is the case, these same studies can be used to 
show that formation of VMO and SMO protostars in the 
conventional manner is unlikely. 

It has been pointed out that even should a star of M > 60 
M© form it would be unstable to nuclear-burning driven pul- 
sations (Ledoux 1941). This is the frequently cited reason why 
stars in the M > 100 M© range are not observed. However, 
later work (Talbot 1971), which includes nonlinear hydrody- 
namic effects, suggests that these pulsations may be damped to 
finite amplitudes. Pulsations of this nature were observed in 
our calculations although in fact no quantitative conclusions 
can be drawn because of the damping nature of the implicit 
hydrodynamics scheme employed. 

Despite these arguments against the formation of VMOs 
and SMOs in the conventionally accepted manner of star for- 
mation there is observational evidence which suggests that star 
formation was quantitatively and qualitatively different in the 
past. There is the observation that there are very few zero 
metallicity dwarf stars observed: the “G-dwarf problem.” 
Almost all stars of extreme age seem to have some heavy 
element enrichment. Models of galactic chemical evolution 
suggest a burst of initial metal enrichment (Truran and 
Cameron 1971). Evidence that massive stars are to be impli- 
cated in this enrichment process comes from the “oxygen 
anomaly:” the observation that the oxygen to iron ratio is ~3 
times the solar value for stars with low iron abundances; 
whereas stars with higher iron abundance show a lower oxygen 
to iron ratio. Since oxygen is preferentially synthesized over 
iron in higher mass stars the conclusion is that there must have 
been an early generation of massive stars. This argument says 
nothing about the upper mass limit of this Population III gen- 
eration, only that there was a higher proportion of massive 
stars. 

There is direct observational evidence, although still contro- 
versial, for the existence of a 500 M©-2200 M© object in the 
Doradus feature of the LMC (Cassinelli et al 1981). The evi- 
dence relies on speckle interferometry data, observations of 
variability, an observed wind, and, of course, the volume of 
ionized hydrogen. Some of the data are consistent with inter- 
pretation of the object as a tight association of normal massive 
O and B stars, although most of the data are not. We refer the 
reader to Bond, Arnett, and Carr (1984) for a complete dis- 
cussion of the VMO question. If this object is indeed a VMO 
then it calls into question the above picture of star formation. 
If there can be 2200 M© stars then perhaps there can be 105 

M© stars. 
There also exists indirect evidence for the past explosion of 

very massive objects. Notably supernova 1961 V (Branch and 
Greenstein 1971; Chevalier 1981; Branch 1984) that had 
roughly a type I supernova light curve, but an aberrant lumin- 
osity and spectrum that has been interpreted by Utroban 
(1984) as the explosion of a 2000 M© star. 

One way to address that question is to derive the expected 
characteristics of the evolution, collapse, explosion and nucleo- 
synthesis of supermassive stars, so as to put constraints on 
formation sites and the role they may or may not have played 
in galactic evolution. There have been many attempts to derive 
the structure and evolution of supermassive stars and most of 
them have addressed the central question of explosion-collapse 
stated at the outset of this introduction. In addition to the 
work of Hoyle and Fowler (1963) and Fowler (1964), there has 
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been a series of papers centering around the thermonuclear 
evolution of supermassive stars. Bisnovatyi-Kogan (1968) 
found that nuclear explosions were the end result of the evolu- 
tion of stars in the 6 x 104-1.5 x 105 M0 range. Fricke (1973, 
1974) and Apenzeller and Fricke (1972) performed a survey of 
supermassive star evolution using averaged polytropic con- 
figurations and hydrodynamic calculations, and taking 
account of the limit on the CNO burning rate imposed by the 
ß+ decay lifetimes of 140 and 150 (the ^-limited CNO rate; 
Fowler 1965) found that stars in the mass range 105-106 MG 
and initially zero metallicity collapsed to black holes. Stars of 
higher metallicity were found to explode. Norgaard and Fricke 
(1976) pointed out the important role of the /Mimit in limiting 
the range of exploding masses and metallicities of supermassive 
stars. 

Wallace and Woosley (1981) elucidated the nuclear physics 
of the rp-process: the rapid proton capture process that char- 
acterizes hydrogen burning at very high temperature (Tg > 1). 
They found that the energy generation rate in hot hydrogen 
burning could be 200 or 300 times larger than in the /Mimited 
CNO cycle. This led to speculation that zero metallicity 
105-106 M0 stars might be candidates for explosion and pri- 
mordial nuclesynthesis after all. Fricke and Ober (1980) report- 
ed just such a result using a hydrodynamics computer code 
and including the rp-process. 

Criticisms of previous work have revolved around complete- 
ness. Here we attempt to integrate a hydrodynamics calcu- 
lation with a detailed equation of state including 
electron-positron pairs, all nuclear reaction rates including the 
rp-process and neutrino loss processes. We have run a grid of 
initial masses and metallicities, starting each calculation as a 
low-density hydrostatic configuration and evolving it quasi- 
statically to the general relativistic instability point, where the 
subsequent dynamic evolution is studied in detail, including 
the nucleosynthesis. 

The evolution of supermassive stars is difficult to follow 
because these stars are always close to Fj « 4/3 and instability. 
The result is that second-order effects in normal stellar evolu- 
tion like turbulent pressure, small amounts of rotation, or 
general relativity become of paramount importance for stabil- 
ity in the radiation-dominated supermassive stars. 

III. STABILITY OF RADIATION DOMINATED STARS 
As the mass of a star increases, hydrostatic equilibrium 

demands increasing central temperature, and hence a larger 
share of the pressure support must be carried by radiation. For 
an index n = 3 polytrope the ratio of gas pressure Pg to the 
total pressure Ptot = Pr + Fgas can be shown to be (Fowler and 
Hoyle 1966) 

P 4 3 / A/ \1/2 

ß = -JL* — ( — ) * 102 for Mä106Mo,(1) 
^tot P \ M ) 

where p is the mean molecular weight. Clearly, for super- 
massive stars in the M = 105-106 M0 range, gas pressure is a 
minor perturbation on the total pressure of the star. For a star 
in which radiation pressure is a constant fraction of the total 
pressure (a good approximation wherever Pr P Pg) it can be 
shown that the pressure is, 

where NA is Avagadro’s number, k is Boltzmann’s constant, 
and a is the Stephan-Boltzmann radiation constant. In other 
words, the star is an index n = 3 polytrope. 

Where radiation pressure dominates and the polytropic 
index is near n = 3 the temperature gradient is very nearly 
equal to the adiabatic gradient. The star is thus nearly always 
unstable to convection in the presence of even a small amount 
of nuclear burning. There must, however, be a surface radiative 
zone, where radiation pressure dominates so that P ä ^öT4, 
and the opacity is by electron scattering, k ä c/m, with a the 
Thompson scattering cross section and m is the mass of the 
nucleon.The luminosity must then be nearly Eddington where, 
for solar abundances, 

LEd « 1.3 x lo38(j^r) ergs s 1 

(Shapiro and Teukolsky 1983). 
Since the bulk of the star is expected to be convective the 

entropy will be roughly constant. For stars in which the spe- 
cific entropy is nearly constant the adiabatic polytropic con- 
stant F is approximately equal to the local adiabatic index F x 
(Chandrasekhar 1939): 

F = n i = 
id In P\ 
\d In p)s ’ (4) 

This need not always hold true as, for example, in the case of a 
massive presupernova red supergiant, where steep entropy 
ledges exist. 

Following Wagoner (1969), Bond et al (1984), Carr, Bond, 
and Arnett (1981), and Bethe et al (1979) it is instructive to 
examine the entropy per baryon in supermassive stars. In 
general, the entropy per unit volume will be the sum of several 
components, 

S = Sy + SnucUons + Snuclei + Se, (5) 
where Sy is the photon entropy, Snucleons is that due to free 
neutrons and protons, SnucUi is that due to the ions, and Se is 
the electron entropy. The general nonrelativistic expression for 
the electron entropy per baryon se in units of Boltzmann’s 
constant k is 

c = Y —= Y e e Nk e 
5 F3/2(£) 
3 F1/2(£) 

(6) 

Here N is the number of baryons per unit value, Ye is the 
number of electrons per baryon, £ is the total electron degener- 
acy parameter (i.e., is the total electron Fermi energy, 
including both rest mass and kinetic energy), and the F’s are 
the standard nonrelativistic Fermi integrals defined in Chiu 
(1968). The degenerate limit, ^ 1, is not relevant to the non- 
degenerate supermassive stars. The nondegenerate limit of 
equation (7) is 

(7) 

where me is the mass of the electron, # = 2J + 1 = 2 for the 
electron, and ne = pNA Ye is the number of electrons per unit 
volume. This expression can be generalized for the ions and 
free nucleons to 

=[' 
-ß) 

ß ) a ßA _ 

1/3 
P = Kp‘ M3 (2) Si Ai 

29.205 + (8) 
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where Xt is the mass fraction of Maxwell-Boltzmann species /, 
Ai is the atomic mass in amu, p is the density in units of g 
cm-3, kT is the temperature in MeV, and g* is the spin degen- 
eracy factor at low enough temperature. 

For relativistic spin j particles the general expression for 
entropy per baryon is 

s = Y —^ = Y e e Nk e 
4 F3(0 

L3F2(£) -]• 
(9) 

where the notation is as in equation (7) and where the F’s are 
now the relativistic Fermi integrals (Chiu 1968). The degener- 
ate limit of this expression, ^ > 1, is again not of relevance for 
supermassive stars, but the nondegenerate limit will be of 
importance during the collapse phase of objects on their way 
into black holes and is given here as 

— « (1.667 x 108) , 
PNA p 

(10) 

where we have assumed kT ^ mec2 and the expression on the 
right is for kT in MeV and p in g cm-3. An identical expression 
holds for positrons in this limit (equal numbers of electrons 
and positrons). The expression for photons is similar, 

sv 
An1 //cT\3 J_ 
45 \hc) pNA 

(1.905 x 108) (kT)3 

P (11) 

where /cT is in MeV and p in g cm 3 in the expression on the 
right. 

For stars of mass M » 105-106 M© the total entropy per 
baryon is stot æ 1000, with sy making the dominant contribu- 
tion. This contrasts markedly with typical main-sequence stars 
like the Sun where stot æ 10-20 and where sy « 10-3, or with 
white dwarfs or the cores of massive highly evolved stars where 
the entropy comes mostly from the electron gas and stot » 1. 
Very massive stars, in the 1000-2000 M© range, have stot æ 100 
with similar entropy contributions from ions and photons (see 
Bond, Arnett, and Carr 1984). Just as the recognition of low 
entropy in supernova core collapse allows a simplified treat- 
ment of the equation of state (Bethe et al 1979), the very high 
entropies due to photons encountered in a supermassive star 
allow the effects on the equation of state and the stability of the 
star due to the ions to be calculated perturbatively (see Shapiro 
and Teukolsky 1983). 

The local adiabatic index in the limit of high entropy can be 
shown to be (Chandrasekhar 1939) 

rx (12) 

to first order in ß. In other words, radiation-dominated stars 
are nearly F = 4/3 and thus “ trembling on the verge of 
instability” as Fowler (1964) wrote. Stars with F = 4/3 have 
total energy zero, are in a state of neutral equilibrium, and 
have no natural length scale. This latter well-known property 
stems from the fact that in an index n = 3 polytropic configu- 
ration the expression for the mass has no dependence on 
central density. The mass is essentially the Jeans mass and will 
remain self-similar ip density distribution through homologous 
expansion or contraction. Goldreich and Weber (1980) showed 
that a homologously collapsing solution can be found for the 
equations of motion for a F = 4/3, n = 3 configuration, as long 

as the initial hydrostatic support pressure is reduced by no 
more than 3.2%. We will come back to this point later in 
examining the nonhomologous collapse of supermassive stars. 

Since the adiabatic index of supermassive stars is so close to 
F = 4/3, small effects which are usually negligible in normal 
stellar evolution must be included to determine the stability 
properties of supermassive stars. These small perturbations 
include small amounts of rotation, electron-positron pair for- 
mation, the dissociation of heavy nuclei, and general relativity. 
Of these, the electron-positron pair instability, rotation, and 
general relativity are most relevant for determining the behav- 
ior of supermassive stars. In this paper we shall be restricting 
ourselves to nonrotating stars only. The electron-positron 
instability takes place in a restricted range of temperature and 
density where the energy in the photon gas, which is providing 
the support pressure, is drained into the creation of the rest 
mass of pairs. This rest mass energy provides no pressure and 
results in an instability. For stars in the mass range M = 105- 
106 M©, the principal subject of this paper, the pair transition 
takes place well after the collapse of the star has set in because 
of general relativity. 

It is ironic that a star whose structure is determined nearly 
completely by Newtonian gravitation should be unstable 
because of general relativity, a truly minor perturbation on the 
gravitational force in the star (the Newtonian potential is </>/ 
c2 10 ~3). This instability in radiation dominated stars has its 
origin in the fact that F is nearly 4/3. It was first suggested by 
Chandrasekhar (1964) and Feynman (1963) and was first 
applied to stars by Hoyle and Fowler (1963) and Iben (1963). 
The usual treatment is to note that the condition for hydro- 
static equilibrium can be expressed as a variational principle: 
the total energy of the star is an extremum. The total energy is 
a function of the mass of the star, the entropy, and the central 
density (if a polytropic run of density is assumed). Extremizing 
the energy then determines the equilibrium mass for a given 
entropy and central density or, equivalently, the equilibrium 
energy for a given mass, central density, and entropy. If the star 
is started at low enough central density, the equilibrium energy 
will be nearly zero because of being close to 4/3 throughout 
the star. The star will quasi-statically contract, radiating away 
entropy and increasing the central density while the equi- 
librium energy decreases. However, general relativistic correc- 
tions to gravity will cause the equilibrium energy to have a 
minimum, so that beyond a critical density, pcrit, energy must 
be added to achieve hydrostatic equilibrium. The supermassive 
star, shining at the Eddington luminosity, quasi-statically radi- 
ates away its entropy and shrinks to the point where the 
central density reaches the critical density and instability sets 
in. Here the equilibrium energy is stationary, and hence the 
total energy of the system has a second derivative of zero, 
indicating instability. When the star reaches this point it 
becomes dynamically unstable and begins to collapse. Iben 
(1963) and Fowler (1964) pointed out that stars in the mass 
range 105-107 M© reach this instability point before the onset 
of nuclear reactions, so that the central question of the evolu- 
tion of supermassive stars becomes whether or not nuclear 
energy liberated through hydrogen burning can be added fast 
enough to maintain or exceed hydrostatic equilibrium and 
cause a thermonuclear explosion. 

The analysis of stability outlined above has been carried out 
by many authors, and here we simply summarize their results. 
We recommended the reviews by Shapiro and Teukolsky 
(1983), Fowler (1964), and Chandrasekhar (1964) as being the 
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most complete discussions of the general relativistic instability 
calculations discussed above. 

The critical central density for a radiation dominated, high 
entropy, index n — 3 polytrope is 

Peri, » 1-994 x 1O1800 (lif) g cm”3 ’ (13) 

where n is the mean molecular weight (0.5 for pure hydrogen) 
and M is the mass, for a mass of M = 5 x 105 M0, typical of 
those masses considered in the numerical calculations present- 
ed in this paper, the critical central density is pcrit æ 0.02 g 
cm-3. Since supermassive stars are nearly index n = 3 poly- 
tropes we can use the polytropic relations to express the 
stability/instability conditions in other ways. From Chandra- 
sekhar (1964), instability sets in when the radius of the star R is 
less than a critical radius Rcrit, 

R crit 
6.8 /2GM\ 
ß\c2)' (14) 

Another way to express the stability criterion is to give a criti- 
cal adiabatic index Fcrit, which the pressure averaged adiabatic 
index rx must exceed to ensure stability. The value of Fcrit is 
clearly 4/3 for a Newtonian star, but in the presence of a small 
general relativistic correction it becomes 

^crit*-+1.12 2GM\ 
Re2) (15) 

This expression is to be compared to F x in equation (13) to 
determine stability. Note that for a star of mass M = 5 x 105 

M0 composed of pure hydrogen at the instability radius, equa- 
tions (13) and (16) yield T1 » Fcrit » 1.3350. As we shall see in 
the next section, the numerical results reproduce the expected 
behavior of those parameters around the instability point quite 
well thus giving one faith that the instability we are studying is 
a physical, not numerical one. 

IV. NUMERICAL CALCULATIONS 
We have computed a number of supermassive star models, 

each starting from a hydrostatic configuration well outside its 
instability radius and evolved to the endpoint of its evolution: 
collapse or explosion. The initial masses and compositions of 
these models were selected from a grid of masses between 105 

M0 and 106 M0 and metallicities between Z = 0 and 
Z = 10“2 by mass fraction. The KEPLER stellar evolution, 
hydrodynamics code, as described in Weaver, Zimmerman, 
and Woosley (1978), has been employed in these calculations, 
with modification to include a post-Newtonian approximation 
to general relativistic gravity and the nuclear reactions of the 
rp-process. 

The KEPLER computer code is an implicit hydrodynamics 
code which integrates the conservation equations for mass, 
momentum, and energy and assumes spherical symmetry; in 
other words, no rotation or magnetic fields are considered 
unless these are introduced in a perturbative, one-dimensional 
manner. The Euler equation has been modified by a post- 
Newtonian gravitation approximation and in Lagrangian 
coordinates becomes 

dv , 2 dP_ __ Grêler ^TT ÔQ 
dt n' dmr r2 r dmr ’ (16) 

where v is the velocity, d/dt is the covariant derivative follow- 

ing the motion, mr is the mass interior to radius r, P the pres- 
sure, Q = 4/3rjvr4(d/dr)(v/r) with rjv the artificial viscosity 
described in Weaver, Zimmerman, and Woosley (1978) (see 
their eq. [3]) and Grel is a post-Newtonian gravitational coup- 
ling constant given by 

Grel = G( 1 +  2 + pc 
2GM 4nPr3\ 

mrc2 ) ’ (17) 

where G is the Newtonian gravitational coupling constant, p 
the density, and c the velocity of light. This characterization of 
the post-Newtonian approximation in terms of an amplified 
gravitational coupling constant goes back to discussions in 
Iben (1963) and Hoyle and Fowler (1963). It is merely a formal 
representation of the important first order post-Newtonian 
corrections to the Newtonian gravitational force. These correc- 
tions are included directly in equation (16), which is solved 
implicitly. Note that two correction terms include the pressure 
and, therefore, some p + P corrections for the energy density 
in radiation. The two post-Newtonian terms involving pres- 
sure are generally small compared to the 2GM/rc2 term, except 
near the center of the star where the pressure is maximal and 
the mass and radius are approaching zero. The energy equa- 
tion is the same as that in Weaver, Zimmerman, and Woosley 
(1978) repeated here for clarity, 

du 
dt = —4np -— (vr2) + 4tiQ -— dm, dm. 

ÔL 
dm + e , (18) 

where u is the internal energy per unit mass, L the luminosity 
through radius r, and € the local energy generation rate per 
unit mass. Nuclear energy generation and neutrino losses 
appear in e, while pdV work appears in the first term on the 
right in equation (18). The second term on the right represents 
heating due to viscous stress and is small in the present calcu- 
lations since shock waves never develop. 

Convection is included in the usual mixing length formula- 
tion but is implemented with a time-dependent treatment. The 
mixing of different compositions in a convective region is 
accomplished by explicitly solving the time-dependent diffu- 
sion equation. This assures that there are no gross inconsis- 
tencies when nuclear burning times are comparable to 
convective mixing times. Where the adiabatic index is close to 
F ä 4/3 and where radiation dominates the pressure, inertial 
terms associated with the acceleration and decleration of con- 
vective cells may be important in the dynamics of supermassive 
stars. Such effects have been neglected here (but see Arnett and 
Fuller 1985) since the models are convective from the onset of 
the calculations. 

The time scale associated with hydrodynamic processes in 
radiation-dominated stars is (Fowler and Yogi 1964) 

1 / M \7/4 

^ëÂ^2*2*^\wJ s- (19) 

In order to see a hydrostatic evolution phase, this time scale 
must be shorter than the modified Kelvin-Helmholtz or 
thermal time given by 

tkh ^Ed 
3 X 1016 

-1 
s , (20) 

where LEd is the Eddington luminosity and £min is the absolute 
value of the total energy of the star at the relativistic or 
electron-positron pair instability point (Shapiro and Teu- 
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kolsky 1983). The hydrodynamic time scale is indeed shorter 
than the modified Kelvin-Helmholtz time for radiation domi- 
nated stars of mass M < 108 M0, and thus it makes sense to 
treat such stars with a hydrodynamic stellar evolution code. In 
addition to these time scales we must ask what the thermal 
relaxation or radiative time scale is and compare this to the 
evolutionary time. For all the supermassive star models con- 
sidered here there was adequate time for thermal relaxation to 
take place. 

The opacity of the material in supermassive stars is predomi- 
nantly due to electron scattering. However, the temperatures in 
the core can become high enough that the Klein-Nishina cor- 
rection must be included for the scattering cross section 
(Weaver, Zimmerman, and Woosley 1978), 

ä <7X[1 + 0.027/c T - 4M(kT)2 x 10“5]"1, (21) 
where /cT is in keV and where crT is the Thompson scattering 
cross section. At high temperature the Klein-Nishina cross 
section is reduced over that of the Thompson cross section 
with the result that the local Eddington luminosity is 
increased. This may result in mass loss on a radiative time scale 
if the convective energy flux is not too much larger than the 
radiative energy flux, but this question was not pursued in this 
work. 

Hydrogen burning is, of course, the most important nuclear 
energy source for supermassive stars. At temperatures less than 
T « 5 x 108 K hydrogen burns on the standard ^-limited 
CNO cycle, where the rate of burning and energy generation is 
limited by the two positron decays: 140(e+v)14/V lifetime 102 s, 
and 150(c+v)15AT lifetime 176 s (see Fowler 1965) for an 
assumed density of 100 g cm _ 3. 

At temperatures greater than T æ 5 x 108 K Wallace and 
Woosley (1981) showed that leakage out of the ^-limited CNO 
cycle can be substantial because the lsO(a, y)19Ne reaction. 
Once out of the cycle, the flow consists of radiative proton 
captures and positron decays building up toward the iron 
peak: the rp-process. Wallace and Woosley (1981) showed that 
the rp-process can result in substantial increases in the hydro- 
gen burning rate, with energy generation rates 200 or 300 times 
faster than the ^-limited CNO cycle would give at the same 
temperature. The nucleosynthetic yields from material experi- 
encing hot hydrogen burning on the rp-process consists of 
substantial quantities of intermediate mass nuclei. This is in 
contrast to the nucleosynthesis associated with the ^-limited 
CNO cycle : essentially helium. 

The rp-process has been included in these evolution/ 
hydrodynamic calculations through a 10 isotope network 
(APPROX; Wallace and Woosley 1981) which suffices to 
mock-up the energy generation rate, and CNO cycle break-out 
characteristics of the rp-process. As we shall see, nonrotating 
supermassive stars do not explode on the rp-process, no matter 
what the initial metallicity, and thus nucleosynthesis due to the 
rp-process is not an important issue here. 

We have started the KEPLER evolution calculations with a 
supermassive star initial model in hydrostatic equilibrium well 
outside the instability radius. For instance, the M = 5 x 105 

M0 model was started with a central density of pc = 10~6 g 
cm-3. In this configuration the star is very nearly an index 
n = 3 polytrope, stable with respect to general relativity. The 
evolution of this star consists of quasi-static contraction to the 
instability point, where the central density is equal to the criti- 
cal density given in equation (14), pcrit % 0.02 g cm3, for 
M = 5 x 105 M0 and XH = 75%, XHe = 25%. 

The composition of each initial model was set during this 
quasi-static contraction phase before the onset of instability. 
Initial models with zero metallicity had XH = 15% and XHe = 
25%. Stars with larger initial metallicities had roughly the 
same proportions of hydrogen and helium and up to 1% 
“metals” by mass. The “metals” were introduced by changing 
the abundance of 14N. As soon as nuclear processing began, 
the relative proportions of carbon, nitrogen and oxygen were 
quickly brought to a redistributed equilibrium. 

As the instability point was approached the stellar models 
began to oscillate because of small amounts of nuclear burning 
and temperature-dependent changes in the opacity (see eq. 
[21]). These oscillations were abetted as the restoring forces of 
pressure or gravity became ineifective near the instability 
point. 

The suppermassive star models exhibited dynamic insta- 
bility due to general relativity at the critical central densities 
given by equation (13). For the M = 5 x 105 M0 star the 
instability takes place at the onset of hydrogen burning at a 
central temperature of 7^ = 5 x 107 K. Figure 1 shows the run 
of density, temperature, pressure, and radius as a function of 
Lagrangian mass coordinate for the M = 5 x 105 M0 star at 
the instability point. The luminosity of the star is dominated by 
photons here and is approximately Eddington, L » 1044 ergs 
s-1, while the radius is R æ 5 x 1014 cm, and the effective 
surface temperature is Teff « 4.8 x 104 K. These photospheric 
parameters are to be regarded as highly uncertain because 
mass loss has not been included in the calculation. There are 
145 mass zones in the star at this point. The subsequent evolu- 
tion of this star depends on the rate of rise of temperature and 
density and hence on the nuclear energy generation rate and 
on the rate at which infall kinetic energy builds up in this 
dynamically unstable phase. 

V. RESULTS AND ANALYSIS 
The quasi-static contraction to the general relativistic insta- 

bility point takes a few thousand years for the supermassive 
stars considered in this paper. The Kelvin-Helmholtz time is 

I nterior mass ( 105 M0 ) 
Fig. 1.—Run of temperature T (K), density p (g cm-3), radius R (1012 cm), 

and pressure P (1010 ergs cm-3) with interior mass coordinate for the 5 x 105 

Mq star of metallicity Z = 5xl0-3at the general relativistic instability point. 
At this point the run of the radius and the thermodynamic variables is very 
closely that for an index n = 3 polytrope. There are 145 mass zones in this 
calculation. 
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TABLE 1 
Results 

Initial 
Initial Mass Metallicity Cumulative Time for 
M/105 Mq Zinit Fate L > 1045 ergs s“la 

(1) (2) (3) (4) 
1   0 Stable ... 
5   0 Black hole 
5   2 x 10“3 Black hole 
5   5x 10“3 2.1 x 1056 ergs >3 x 107 s 

He: 0.249—>��0.282 
5   lx 10"2 2 x 1056 ergs >2.6 x 108 s 

He: 0.247->0.275 
2.5  0 Black hole 

10   0 Black hole 
10    6x 10“3 Black hole 
10     lx 10“2 2.5 x 1057 ergs > 108 s 

He: 0.25->0.42 
a The quantity L is the photon luminosity. 

short compared to normal stars because the adiabatic index is 
so close to 4/3. Once this dynamic instability occurs the battle 
between gravity and thermal pressure from nuclear energy is 
on. The outcome depends critically on whether hydrogen 
burning must wait on the 3 a-> 12C reaction to generate the 
requisite CNO contaminant. 

The results of the present series of calculation are sum- 
marized in Table 1. Column (1) gives the initial mass in units of 
105 M0. Column (2) gives the initial metallicity in nuclei 
heavier than helium by mass fraction. Column (3) gives the 
final fate of the star—either a black hole or an explosion. Cal- 
culations resulting in explosions have the explosion energy and 
the helium nucleosynthesis noted in the “Fate” column. Note 
that the 1 x 105 M0 star burns hydrogen stably and had not 
suffered a post-Newtonian instability when the calculation was 
terminated. This star will burn hydrogen in a stable manner for 
2 x 106 yr and will probably collapse on a pair or post- 
Newtonian instability at the onset of core carbon burning 
(Woosley and Weaver 1982) although the possibility of earlier 
collapse due to the post-Newtonian instability during helium 
burning will be investigated in Paper III of this series. The 
third column gives the cumulative time after the explosion for 
which the luminosity is greater than 1045 ergs s" L 

The lowest metallicity for which an explosion takes place is 
Z = 5 x 10- 3. Typical of the explosion results are those for the 
M = 5 x 105 Mq star with this critical metallicity. The con- 
figuration of the star at the instability point was given in the 
last section. At the instability point the star begins a rapid 
collapse wherein the central temperature and density quickly 
rise. Hydrogen burning at a very small rate has set in at the 
instability point since the central temperature at instability is 
just over the threshold value for hydrogen burning. As the 
temperature rises the nuclear energy generation rate increases 
dramatically. The central temperature and density of this 
model are plotted as a function of time in Figures 2 and 3, 
respectively, from the onset of collapse to well beyond the 
bounce. Figure 4 shows the total nuclear energy generation 
rate during this collapse and bounce. 

The bounce of this model occurs when the pressure due to 
energy liberated by hydrogen burning balances gravity and 
makes up for infall kinetic energy. The central density and 
temperature at bounce are pc = 3J6 g cm-3 and Tc = 2.6 
x 108 K, respectively. The temperature is too low to affect 

t(105s) 
Fig. 2.—The history of the central temperature in units of 108 K is plotted 

as a function of time, in units of 105 s, from the onset of instability. This is 
again for the 5 x 105 M© star with initial metallicity Z = 5 x 10~3. A snap- 
shot of this star at the instability point is shown in Fig. 1. Note that the central 
temperature reaches a maximum of Tc — 2.62 x 108 K at the “ bounce,” or 
turnaround, point where the collapse is halted and becomes an explosion. This 
central temperature is well below the threshold temperature for breakout of 
the CNO cycle and initiation of the rp-process. 

breakout of the ^-limited CNO cycle, with the result that the 
explosion occurs entirely on the ^-limited CNO cycle. The 
photon luminosity of the star at bounce is Ly ä 1.0 x 1045 ergs 
s~ ^ while the neutrino luminosity, Lv æ 1.0 x 1041 ergs s- \ is 
negligible. 

The internal energy, kinetic energy, and total energy 
(including gravitation) are given as a function of time through 
the collapse and bounce of this model in Figure 5. Note that 
for a Newtonian, radiation-dominated star the total internal 
and gravitational energy will be nearly equal and of opposite 
sign, so that the total energy will be nearly zero. At the insta- 
bility point of this model the total internal energy is 4.1 x 1057 

ergs while the total Newtonian gravitational energy is 
— 4.1 x 1057 ergs. Once the dynamical instability takes place 
the total energy quickly rises as nuclear energy is released. 

Fig. 3.—The history of the central density in units of g cm-3 as a function 
of time, in units of 105 s, from the onset of instability. This is for the same 
stellar model as in Figs. 1 and 2. The peak density at bounce is 3.2 g cm-3. 
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Fig. 4.—Nuclear energy generation rate (ergs s_1) is shown for the stellar 
model in the previous figures as a function of time (in units of 104 s) from the 
instability point. Nuclear energy generation is due entirely to hydrogen 
burning on the CNO cycle. The temperature during the collapse shown here is 
not high enough to trigger copious neutrino emission. The result is that the 
integrated thermal energy released by the hydrogen burning depicted here is 
~ 1056 ergs, which is eventually mostly converted to the kinetic energy of the 
explosion. 

Note in Figure 5 that an increasing fraction of the total energy 
is kinetic energy after the bounce. Eventually the internal 
energy falls below the kinetic energy, and by 15 days after 
bounce nearly all of the energy of the explosion, 2.1 x 1056 

ergs, is kinetic. 
Since the explosion is a result of hydrogen burning on the 

CNO cycle the nucleosynthetic product is 4He. The composi- 
tion of this star long after bounce is plotted as a function of 
Lagrangian mass coordinate in Figure 6. The yield of 4He by 
mass fraction of the star is somewhat less than that yielded in 
the explosion of the M = 106 M0 star. This is because of the 
deeper gravitational potential well of the more massive star 
requiring a larger amount of hydrogen burning to achieve 
bounce and disruption. 

The collapse, bounce, and expansion of our example star, 
and all the other models that gave explosions, were homolo- 
gous. This homology is simply a consequence of the adiabatic 
index being nearly 4/3 (and the polytropic index being n = 3). 
Such a configuration is scale invariant and is essentially right 
at the Jeans mass so that collapse or expansion will remain 
self-similar (Goldreich and Weber 1980). The final velocity for 
our example model is plotted in Figure 7 as a function of mass 
coordinate. Although it is not readily apparent from the figure, 
the velocity is very nearly proportional to the radius associated 

Fig. 5.—The kinetic energy, Eke, the internal energy, Eint, and the total 
energy Etot (all measured in ergs) are plotted as a function of time (in units of 
104 s) from the instability point for the same stellar model in the previous 
figures. Total energy, Etot, includes the gravitational energy which is a negative 
quantity and is not separately plotted. The minimum in the kinetic energy 
curve corresponds to the bounce. The initial increase in Etot is due to nuclear 
burning, and the slow decline in the total energy after the bounce is due to the 
escape of photon energy. The decline of the internal energy tracks the increase 
of kinetic energy after the bounce. At very late times after the bounce 
( ~ 5 x 105 s) the internal energy curve falls well below the kinetic energy curve. 
Almost all of the extra internal energy generated by nuclear burning is even- 
tually converted into the kinetic energy of expanding material. 

Fig. 6.—Final abundances (hydrogen and helium) resulting from the explo- 
sion of the 5 x 105 Mq star with metallicity Z = 5 x 10“3 are shown as a 
function of internal mass coordinate in the star. Expansion of the star follow- 
ing the explosion is homologous, so that the density distribution remains 
self-similar and individual mass zones retain the abundances fixed in the explo- 
sion. Therefore, the inner mass zones in this stellar model show more pro- 
cessing of hydrogen into helium, while the outer zones show little or none. 
Mixing of the expanding material might result from Rayleigh-Taylor insta- 
bilities or other multidimensional effects at later times, but this calculation 
cannot reproduce those phenomena. Nearly 1.8 x 104 M0 of 4He is synthe- 
sized in this explosion. 
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Interior mass (105 M@) 
Fig. 7.—For the same stellar model as the previous figure we have plotted 

the final velocity (~5 days after bounce) for each mass zone as a function of 
internal mass coordinate. Although it is not evident from this figure, the expan- 
sion is very nearly homologous with the ratio of velocity to radius roughly 
constant for each mass zone. The dashed tail of the velocity curve near the 
surface of the star corresponds to mass zones which carry very little mass and 
which have been accelerated by radiation pressure throughout the evolution- 
ary calculations of this model. Note that the bulk of stellar material, acceler- 
ated in the explosion, has a mean velocity of ~ 5000 km s ~ \ although the peak 
velocity is above 10,000 km s “ ^ 

with each mass zone (homology). The peak ejection velocity of 
the material in this explosion is ä 10,000-20,000 km s-1. 
No shock wave developed in the calculation. 

The light curve for this explosion is shown in Figure 8. The 
luminosity is roughly the constant Eddington luminosity 

t (108 s) 
Fig. 8.—Light curve for the explosion of the same stellar model as in the 

previous figures is shown here. The photon luminosity in units ergs s" ��is 
plotted as a function of time in units of 108 s from the bounce of the star. The 
luminosity starts out super-Eddington during the rapid expansion phase fol- 
lowing the bounce, but falls rapidly as the energy of the explosion is converted 
to kinetic energy of ejected material. At ~2 x 107 s after bounce a transpar- 
ency wave moves back through the material as hydrogen begins to recombine. 
This causes a rise in luminosity to a “plateau” of ~ 1 x 1045 ergs s-1 where it 
remains for two to five years. 

~ 1044 ergs s -1 through the quasi-static contraction phase. At 
later times the energy is, for the most part, siphoned into the 
kinetic energy of ejected material and the luminosity falls. 
Later still, the hydrogen begins to recombine, and a transpar- 
ency wave moves back through the ejected material. This 
translates into a substantial rise in luminosity to a few times 
1045 ergs s-1, where it remains for times of the order of two to 
five years, a phase that corresponds roughly to the “ plateau ” 
of an ordinary type II supernova (Woosley and Weaver 1982). 

We now turn our attention to the failed explosions: those 
models that quasi-statically contracted to the instability point, 
became dynamically unstable, began collapsing, and ignited 
hydrogen burning but never generated adequate nuclear 
energy to halt the collapse. Typical of these failed-bounce cal- 
culations is the model with mass M = 5 x 105 M0 and zero 
initial metallicity. At the instability point the central density is 
pc ä 0.02 g cm-3, and central temperature T^ä4.8x107K, 
the stellar radius is ~R æ 5 x 1014 cm with effective tem- 
perature Tef{ ~ 2.5 x 104 K. Dynamical collapse ensues at this 
point with the central temperature and density rising quickly 
thereafter. Hydrogen burning at an appreciable rate awaits the 
production of a trace of catalyst 12C from the 3 a reaction. 

By i = 104 s into the collapse the central temperature has 
risen to Tc = 1 x 109 K and the central density to pc = 1000 g 
cm-3. Under these conditions hydrogen is being burned very 
rapidly by the rp-process and, consequently, the energy gener- 
ation rate is several orders of magnitude larger than that from 
CNO burning at the same temperature and density. An explo- 
sion does not result for two reasons : infall kinetic energy and 
neutrino energy losses. 

An examination of the energy budget in this stellar model at 
the collapse conditions given above yields the result that the 
internal energy is Eint = 4.1 x 1058 ergs while the Newtonian 
gravitational energy, Egray = — 4.1 x 1058 ergs, is roughly 
equal and opposite. The infall kinetic energy, however, is 
Ekin = 2.1 x 1057 ergs. While the star was dynamically collaps- 
ing, waiting for the 3 a reaction to generate enough catalytic 
nuclei to burn hydrogen on the CNO cycle and by the rp- 
process, it built up a tremendous infall kinetic energy that 
cannot be matched by nuclear energy generation. 

As the temperature rises to near T = 109 K electron- 
positron pairs are copiously produced. As a result, the 
neutrino energy-loss rates are substantial. For instance, in our 
example model described above, when the central density is 
pc = 1000 g cm-3 and the central temperature is 7^ = 1.0 
x 109 K the neutrino luminosity is Lv = 1.2 x 1052 ergs s-1, 
whereas the photon luminosity is Ly = 1.2 x 1045 ergs s-1. 
The result is that all the extra thermal energy of the star, which 
is created by rapid hydrogen burning on the rp-process and by 
gravitational potential energy release in compressional 
heating, goes into neutrino energy losses. Wherever the tem- 
perature is high enough to burn hydrogen on the rp-process 
neutrino losses will become substantial. 

The copious loss of thermal energy to neutrinos has another 
deleterious effect. It can be shown that the adiabatic constant 
in equation (2) is related to the entropy per baryon by 

Koc s4/3 , (22) 

where we have used sy, the entropy per baryon from photons 
(eq. [11]) since radiation dominates the pressure and entropy. 
We have described two representative configurations in the 
M = 5 x 105 M0, Zinit = 0 calculation; one at the instability 
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! point where pc = 0.02 g cm-3 and 7^ = 4.8 x 107, and one at a 
^ point in the collapse after copious neutrino emission, pc = 
g 1000 g cm-3, 7^ = 1.0 x 109. If we call the set of conditions 
S during collapse point 1 and those at the instability radius point 
^ 2, then the ratio of the adiabatic constants is given from equa- 

tions (11) and (12) as 

=( £2 YY—V 
K2 [pj [tJ 

%0.1 , (23) 

where K1 and K2 are the adiabatic constants at point 1 and 2 
respectively. We see that neutrino losses have reduced the 
thermal energy to the extent that the adiabatic constant has 
been reduced by 90%. Neutrino losses are not the only source 
of thermal energy loss here. The creation of rest mass in 
electron-positron pairs from the radiation field has the same 
effect, since rest mass energy contributes nothing to pressure. 

Goldreich and Weber (1980) showed that for a F = 4/3, 
n = 3 Newtonian polytrope, a homologously collapsing solu- 
tion for the entire star can be found only as long as the adia- 
batic constant is reduced by no more than ~3%. If the 
adiabatic constant is reduced by more than this during col- 

lapse, then only a small “inner core” can collapse homolo- 
gously (Brown, Bethe, and Baym 1982). In our collapsing 
supermassive star models, the collapse from the instability 
point is nearly homologous until the onset of copious pair 
production and neutrino losses ; thereafter the collapse is non- 
homologous. Near the collapse point discussed above only the 
inner 10%-20% of the stellar mass is collapsing homolo- 
gously. 

In Figure 9 we have plotted the homology ratio, the ratio of 
velocity to radius, as a function of interior mass coordinate for 
two epochs in the collapse of the 5 x 105 M0 star with metal- 
licity Z = 0. The first epoch corresponds to a point early on in 
the collapse where the luminosity of the star is still dominated 
by photons and where ~80%-90% of the mass of the star is 
collapsing homologously. The second epoch corresponds to a 
later point in the collapse of this star where the luminosity is 
dominated by neutrinos and where only 10%-20% of the star 
is collapsing homologously. 

Although we cannot follow our collapses past the point 
where post-Newtonian gravity is adequate, we seen no way in 
which homology can be reestablished. This result is in contrast 
to other work on the collapse of supermassive stars, most 

Fig. 9.—The ratio of the velocity to the radius (the homology ratio) is plotted for each mass zone as a function of interior mass coordinate for each of two stages 
in the collapse of a 5 x 105 M0 star with initial metallicity Z = 0. Upper curve corresponds to the onset of collapse near the instability point. At this stage in the 
collapse the temperature is too low for substantial electron-positron pair formation and the neutrino luminosity is negligible compared to the photon luminosity. 
Homology corresponds to a roughly constant homology ratio so that the photon dominated stage is homologously collapsing (with deviations less than 10%) over 
80%-90% of the mass of the star. The lower curve corresponds to a later stage in the collapse of the same stellar model. Here the central temperatures are well above 
109 K, the rp-process is operating, and there is copious production of electron-positron pairs, with the result that the neutrino luminosity dominates the photon 
luminosity by many orders of magnitude. It can be seen that by this stage the homology ratio deviates significantly from a constant value over most of the star. Only 
the inner 10% of the star or less remains roughly homologous. 
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notably that of Shapiro and Teukolsky (1979). The latter calcu- 
lation is fully relativistic, and hence more accurate where infall 
velocities are high and gravity is strong, and it assumes an 
index n = 3 polytrope and derives a homologous collapse. It 
would be enlightening if they could use our nonhomologous 
model with its exact equation of state and nuclear physics as 
input to the fully relativistic collapse calculation. 

If homology is not reestablished, then the collapse of a 
supermassive star to a black hole is probably not so copious a 
source of long wavelength gravitational radiation as it was 
once thought to be (Thorne and Braginsky 1976; Thorne 1980; 
Shapiro and Teukolsky 1983). This follows from the fact that 
the power radiated in gravitational radiation is roughly pro- 
portional to the inverse fifth power of the collapse time scale : 
homology would send the most amount of stellar material 
through the event horizon in the shortest time. In contrast, the 
nonhomologous collapse found here would predict a much 
longer time scale for the nonhomologously collapsing material 
to flow into a trapped surface formed at the edge of the “ inner- 
core.” 

VI. CONCLUSION 
We have addressed here the classic problem of supermassive 

star evolution as posed by Hoyle and Fowler (1963), Iben 
(1963), and Fowler (1964): given that a nonrotating super- 
massive star has formed and quasi-statically contracted to its 
instability point, does the rapid nuclear burning that ensues 
following the general relativistic instability generate enough 
thermal energy to blow up the star? The answer is, of course, 
dependent on the initial mass and metallicity as Fricke (1973, 
1974) discussed. Fricke (1973) concluded that a supermassive 
star of initial zero metallicity did not explode, but this result 
was cast in doubt by the elucidation of the rp-process and the 
application of it to supermassive stars (Fricke and Ober 1980). 
We have included in a hydrodynamic calculation the rp- 
process and a detailed equation of state with a correct treat- 
ment of electron-positron pair creation and neutrino losses. 
Our conclusions are roughly the same as Fricke (1973): zero 
intial metallicity, nonrotating, supermassive stars do not 
explode. Fricke (1973) made a survey of SMO evolution as a 
function of mass and mass fraction of elements in carbon and 
nitrogen. His result for the minimum metallicity for an explo- 
sion is Z = 10-2. In our calculation the lowest metallicity for 
which there is an explosion is Z = 5 x 10“3. The explosion 
energies are in the range of 1056-1057 ergs in kinetic energy of 
ejected material for masses of 105-106 M0. These energies are 
large enough to account for some of the postulated energetics 
of QSO progenitors (Williams and Christiansen 1985). 

When the rp-process does operate it has 200 or 300 times the 

energy generation rate of the ^-limited CNO cycle but it oper- 
ates at such a high temperature that neutrino losses become 
dominant. Worse still, the infall kinetic energy built up as the 
star drops from the instability point until the 3 a reaction has 
made a sufficient amount of CNO for hydrogen burning 
cannot be made up in subsequent nuclear reactions. 

The high temperatures encountered in the collapse of super- 
massive stars translate into copious pair production and neu- 
trino losses, which consequently produce a nonhomologous 
collapse. Supermassive stars collapsing nonhomologously are 
not likely to be quite so efficient sources of long wavelength 
gravitational radiation which they were once postulated to be. 

The nucleosynthesis produced by a supermassive star 
exploding on the /Mimited CNO process is a large amount of 
4He. There have been many attempts to produce the cosmo- 
logical 4He in an early generation of massive stars. We refer the 
reader to the paper of Carr, Bond, and Arnett (1981) for a 
discussion of these attempts. It has been suggested that deute- 
rium may have been produced in supermassive stars (Woosley 
1977). We find negligible production of deuterium because of 
the fragile nature of this nucleus and the high temperatures 
associated with the explosion of supermassive objects. 

The helium mass fraction in both 5 x 105 M0 explosions 
rises by 3% and in the 106 M0 explosion it rises by 16%. 
There are trace amounts of 15N and 7Li produced. One should 
keep in mind, however, that were it not for a near solar concen- 
tration of heavy elements these stars would never have 
exploded in the first place. Thus nonrotating supermassive stars 
heavier than 105 M0 had no part in producing pre-Galactic 
helium. 

All of these conclusions are somewhat academic. Super- 
massive radiation dominated stars are very close to instability, 
and so tiny effects, like general relativity here, can have a pro- 
found effect on the stability and evolution of these stars. Fore- 
most among the effects other than general relativity which can 
influence the evolution of these stars is a small amount of 
rotation. Rotation could provide a “ spring ” whereby the infall 
kinetic energy in the zero metallicity nonrotating, collapsing 
models is stored in rotation, the collapse is held up long 
enough for the 3 a reaction to allow the rp-process to take over 
and generate enough thermal energy to affect an explosion. We 
shall return to this problem in a subsequent paper. 
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