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1 Tartu Observatory, 61602 Tõravere, Estonia; e-mail: nugis@aai.ee
2 Astronomical Institute, University of Utrecht, Princetonplein 5, 3584CC, Utrecht, The Netherlands;

e-mail: lamers@astro.uu.nl
3 SRON Laboratory for Space Research, Utrecht, The Netherlands

Received 28 November 2001 / Accepted 9 April 2002

Abstract. Observed, clumping-corrected mass-loss rates of Galactic Wolf–Rayet (WR) stars are compared with
predictions of the optically thick radiation driven wind models. We did not develop models for the whole wind, but
we studied the conditions at the sonic point that would explain the observed high mass-loss rates of WR-stars. We
find that optically thick wind models can explain the observed values of the mass-loss rates only if two conditions
are satisfied:
(a) The sonic point (where vflow = vsound) lies deep in the wind where the temperature is either near 160 000 K,
or in the range of 40 000 to 70 000 K.
(b) The flux-mean opacity must increase outward from the sonic point.
With these conditions a simple approximate formula for the mass-loss rates of WR-stars can be derived.
The first condition implies that the sonic point is at an optical depth between about 3 and 30. Such large optical
depths require a slowly increasing velocity law in the supersonic region, with a velocity-law index of β ' 5 for
WR-stars, compared to β ' 1 for O-stars. The OPAL-opacity tables for the chemical composition of the WR-stars
show that the opacity indeed increases outward at the temperature range near 1.6 × 105 K, and between about
4×107 and 7×104 K, as required for the optically thick wind models. The opacity at the sonic points of the models
is very similar to the OPAL-opacity at the sonic point temperature and density. The radius of the sonic point
is about half as large as the inner boundaries of the “standard” models for early type WR-winds. Observational
evidence, derived from line profile variations and from the light-curves of WR-stars in eclipsing binary systems,
support the derived large values of β and the small values of the sonic point radius. The models presented here
show that the high mass-loss rates of WR-stars might be the result of optically thick radiation driven winds. The
presence of two very distinct temperature regimes for the sonic point implies a bifurcation in the wind models of
WR-stars.
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1. Introduction

Wolf-Rayet stars (WR-stars) are believed to be the
evolved hot massive stars which almost have reached the
end of their nuclear burning phase. Mass loss is a domi-
nant feature of massive star evolution deeply influencing
all stellar properties. The cause of the high mass loss from
WR-stars has remained unveiled up to the present time.

It is often assumed that the winds of WR-stars are
due to radiation pressure, i.e. the transfer of momentum
from the radiation to the gas by means of absorption or
scattering of photons, in analogy to the radiation driven
winds of O-stars. This suggestion is based on the fact that
both the luminosities of the WR-stars and the terminal
wind velocities are in the same range as the luminosities
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and wind velocities of the O-stars. However, the mass-loss
rates of the WR-stars are about a factor ten higher than
those of O-stars of the same luminosity. This implies that
the transfer of momentum from the radiation to the gas
must be about ten times more efficient than in the winds of
O-stars. This high efficiency is needed both in the subsonic
region deep in the wind, where the mass-loss rate is set,
and in the supersonic region where the wind is accelerated
to its high terminal velocity. The purpose of the present
study is to find out whether optically thick wind models
can provide sufficient radiative driving in the inner wind
regions of WR-stars, i.e. whether the WR-winds are indeed
radiatively driven.

Clumping-corrected mass-loss rates (Ṁ) of WR-stars
of different subtypes lie in the range of 0.2 to 10 ×
10−5 M� yr−1 and terminal velocities (v∞) lie in the range
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700 to 6000 km s−1 (Nugis et al. 1998; Hamann et al. 2000;
Nugis & Lamers 2000). The luminosities of WR-stars are
nearly of the same magnitude as O-stars but their masses
are on the average 3 times lower (Maeder & Meynet 1987;
Nugis & Lamers 2000). The momentum transfer efficiency
η of WR-stars, i.e. the ratio between the wind momentum
loss and radiative momentum loss (η = Ṁv∞/(L/c)), lies
in the range of 1 < η < 20. This high value of η requires
a very efficient momentum transfer with multiple scat-
terings (Owocki & Gayley 1999). Lucy & Abbott (1993)
showed that if the actual η is around 10 then the multi-
scattering in ionization-stratified WR-winds can provide
the necessary driving force. According to Schmutz (1997)
and Gayley et al. (1995) it is indeed possible to have suf-
ficient radiative force for models with η ≈ 10 to support
the acceleration of the outer wind, but the mechanism
that provides the driving in the inner wind regions, where
v < vesc is still missing.

Owocki & Gayley (1999) suggested that possibly a
“two-stage” driving process might be needed, by which
strong stellar pulsations actually initiate the mass loss,
with radiative forces taking over to drive the extended ac-
celeration and high terminal speeds. Cassinelli (1991) has
suggested earlier that the high mass-loss rates of WR-stars
may require a fast magnetic rotator model. In this paper
we investigate whether there is indeed a need for an al-
ternative mechanism to initiate the winds of WR-stars, or
whether radiation pressure in the optically thick transonic
layers is sufficiently efficient to get the wind started.

Line-driven wind models are quite successful in ex-
plaining the observed properties of mass loss from OB-
stars. Unfortunately, a straightforward application of
these models to WR-stars is not justified. The main ac-
celeration in the WR-winds takes place at large values
of frequency-averaged optical depths, i.e. below the pho-
tosphere, where radiation forces due to true continuum
absorption are important. In the line driven wind mod-
els of O-stars these can be ignored. The first attempts
to apply “optically thick wind” to WR-stars have been
made by Kato & Iben (1992) and by Pistinner & Eichler
(1995). An optically thick wind is usually regarded as a
steady state wind in which the acceleration of matter is
due to continuum absorption, occuring below the photo-
sphere (Kato & Iben 1992). In the present paper we define
an “optically thick wind” as a steady state radiatively
driven wind with the sonic point located at large opti-
cal depth (τ � 1). In our definition the opacity below
the photosphere is not necessarily dominated by contin-
uum absorption. All opacity sources must be taken into
account: line absorption, continuum absorption and elec-
tron scattering. Recent recalculations of Rosseland mean
opacities (Iglesias & Rogers 1993, 1996) have revealed in-
creased opacities in the outer stellar layers as compared
to older calculations and this is basically due to a more
correct inclusion of metal bound-bound transitions. The
full self-consistent solution of optically thick winds re-
quires the computation of a model for the whole star which
takes into account both the nuclear burning core and the

radiatively expanding envelope. This is a complicated
task that requires the knowledge of accurate opacities
and physics in the dynamical, i.e. expanding envelope. At
present, this knowledge is not available. Therefore we un-
dertake a simpler task: we investigate whether optically
thick wind models of WR-stars can explain the observed
mass-loss rates and we derive the specific properties of
WR-stars at low expansion velocities below the sonic point.
To achieve this, we take the following steps:
(a) We adopt the relations between the luminosity and the
mass of the WR-stars as predicted by the evolutionary cal-
culations. This is justified because it is well known that
the basic properties of stellar cores of WR-stars are not
depending on the ways and processes how the mass is re-
moved from outer layers (Maeder & Meynet 1987; Langer
1989; Maeder 1991).
(b) We derive the equations that describe the structure of
the optically thick part of the wind. These are the coupled
equations of mass continuity, radiative transfer, energy
conservation and momentum conservation. The temper-
ature structure follows from the energy equation and the
velocity structure follows from the momentum equation.
The opacities due to lines and continuum play a crucial
role in determining both the temperature structure, via
the heating and cooling terms and the optical depth, and
the velocity structure because the radiative force depends
on the flux-mean opacity.
(c) Since we do not know the opacities with sufficient ac-
curacy to construct a full optically thick wind model, we
will express the temperature and velocity structure as a
function of the optical depth. The optical depth depends
on the structure of the atmosphere in both the subsonic
and the supersonic region. For the supersonic region we
will use the empirically determined velocity and density
structure for the calculation of the optical depth.
(d) The mass-loss rate of any stellar wind model is set by
the condition that the solution of the momentum equation
should smoothly pass through its critical point, which is
usually the sonic point (e.g. Lamers & Cassinelli 1999).
We investigate the conditions at the sonic point in the op-
tically thick wind to see if they can explain the observed
high mass-loss rates of the WR-stars.
(e) We will show that the observed mass-loss rates can
be explained by radiation pressure in an optically thick
wind, but only if the velocity law in the supersonic part of
the wind is much softer (slower acceleration) than gener-
ally adopted. This requirement comes from the fact that
the optical depth at the sonic point must already be very
much larger than unity.
(f) We then compare the opacities that are needed to ex-
plain the high mass-loss rates of the WR-stars by means
of optically thick radiation driven winds with new OPAL
opacities.

The structure of the paper is as follows. In Sect. 2
we describe the physical processes and the mathemati-
cal equations of the optically thick radiation driven wind
models. In Sect. 3 we describe the method that was used
to calculate the optically thick wind models and in Sect. 4
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we give some simple estimates based on general momen-
tum and energy considerations of optically thick winds.
In Sect. 5 we present the results of a few series of test
models for the optically thick wind of the star WR139
(WN5). We will draw some important conclusions about
the properties and the conditions of optically thick wind
models. In Sects. 6 and 7 we apply the optically thick
wind models to explain the observed mass-loss rates of a
set of characteristic WN and WC stars. In Sect. 6 we first
discuss the characteristic properties of these stars, such
as the adopted radius of the sonic point. The models for
these stars are presented in Sect. 7. In Sect. 8 we make
new models with the opacity gradient at the sonic point
derived from the OPAL-opacities for the abundances of
WR-stars and we discuss the existence of a bifurcation in
the wind models of WR-stars. The results are discussed in
Sect. 9 and the conclusions are in Sect. 10.

2. Optically thick wind models

In this section we will derive the equations that describe
the flow of the radiation and gas in the optically thick part
of the wind. The wind has to be accelerated from subsonic
velocities deep down in the atmosphere to supersonic ve-
locities in the wind. This implies that the wind must pass
smoothly through the sonic point where the flowspeed is
equal to the local sound speed. We first describe the gen-
eral equations for radiation driven winds. We then apply
these to the sonic point. The requirement of a smooth
transonic flow sets specific conditions to the values and
gradients of several parameters, including the mass-loss
rate. We will derive these conditions.

2.1. General equations for radiation driven winds

We assume that the winds of WR-stars can be described
by a steady, spherically–symmetric flow. The fluid flow
equations for radiatively driven winds are:

d
dr

(ρvr2) = 0, (1)

v
dv
dr

+
1
ρ

dPg

dr
= −GM

r2
+ frad, (2)

v
dUg

dr
+ Pgv

d
dr

(
1
ρ

)
= 4π

∫ ∞
0

4πχν(Jν − Sν)dν. (3)

These equations express conservation of respectively mass,
momentum and energy of the gas. The symbols are the
mass density ρ, the gas pressure Pg, the velocity v, the
(angle–) mean intensity of radiation Jν , the mass extinc-
tion (absortion + scattering) coefficient χν , the radiative
source function Sν , the internal energy Ug of the gas per
unit mass, the stellar mass M and the force frad produced
by radiation pressure. The mass-loss rate of the star is

Ṁ = 4πρvr2. (4)

The gas pressure Pg depends on temperature T and den-
sity ρ as

Pg =
(γ + 1)
µmu

ρkT, (5)

where γ is the mean number of free electrons per atom,
µmu is the mean atomic weight and mu is the atomic mass
unit. The internal energy Ug is related to Pg by the rule

Ug =
3
2
Pg

ρ
· (6)

The isothermal sound speed is given by

v2
s = dPg/dρ = (γ + 1)kT/(µmu) . (7)

2.1.1. The momentum equation

Using the formulae (1), (5) and (7) we can transform the
momentum Eq. (2) into the form(
v − v2

s

v

)
dv
dr

=
2v2

s

r
− GM

r2
− v2

s

T

dT
dr

+ frad. (8)

The radiation pressure force is

frad =
4π
c

∫ ∞
0

χνHνdν =
χL(r)
4πr2c

, (9)

where Hν is the first moment of the radiation intensity
(the Eddington flux), L(r) is the radiative luminosity in
the frame comoving with the wind and χ is the flux-mean
opacity (the flux-mean extinction (absorption + scatter-
ing) coefficient per unit mass).

2.1.2. The energy equation

The integrated overall energy conservation equation for
both the gas and the radiation is

L(r) + Ladv(r) + Ṁ

{
v2

2
− GM

r
+
Pg

ρ
+ Ug

}
= Ė, (10)

where Ė is the energy-loss constant (the total energy
transported out per unit time across any spherical sur-
face). The first term is the luminosity L(r) in the comov-
ing frame. The second term is the radiative energy that
is carried out (advected) by the gas flow in the comoving
frame. Cassinelli & Castor (1973) have shown that the
advective luminosity Ladv is

Ladv = 16π2r2 v

c
(J +K). (11)

This term is independent of ρ because the radiation den-
sity is independent of ρ. At large distance from the star
the moments of the radiation approach J = K = H =
L(r =∞)/(16π2r2) and so

Ladv(∞) =
2v∞L(∞)

c
· (12)

The sum of L(r) and Ladv is the luminosity in
the stationary frame (see Cassinelli & Castor 1973;
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Pistinner & Eichler 1995). The third term in Eq. (10) is
the total gas energy (kinetic, thermal and potential) that
is advected by the flow.

The energy-loss constant Ė can be found from general
considerations. The energy rate Lcore generated by the
nuclear fusion must be equal to the luminosity at infinity
plus the energy lost by accelerating the wind and lifting
it out of the potential well (cf. Heger & Langer 1996):

Lcore ' L(∞)
(

1 +
2v∞
c

)
+ Ṁ

(
v2
∞
2

+
GM

Rhc

)
, (13)

where Rhc is the radius of the hydrostatic core. We see
from Eqs. (10) and (12) that

L(∞)
(

1 +
2v∞
c

)
+ Ṁ

v2
∞
2
≈ Ė. (14)

From these two equations we obtain an expression for the
energy loss constant

Ė = Lcore − Ṁ
GM

Rhc
· (15)

2.2. The optically thick part of the wind

The momentum Eq. (8) and the energy Eq. (10) together
describe the radiation driven wind. The solution of these
equations requires knowledge about the opacity and the
temperature structure. For the optically thick part of the
wind we can make some simplifying approximations, be-
cause the transfer of radiation can be described by dif-
fusion. In the case of radiative diffusion the temperature
gradient is

dT
dr

=
−3χRρL(r)
64πr2σT 3

, (16)

and the radiation-pressure force is

frad =
χRL(r)
4πr2c

, (17)

where χR is the Rosseland mean opacity. In the optically
thick part of the wind the mean intensity of the radiation
is J = σT 4/π and K = J/3 (Cassinelli & Castor 1973)
and so the advective luminosity (Eq. (11)) is

Ladv = 16π2r2 v

c

4σT 4

3π
· (18)

Defining the constants c1 = 64πσ/(3c) = 1.267 × 10−13

and a1 = k(γ + 1)/(µmu) = 8.314× 107(γ + 1)/µ in cgs-
units, where γ is the mean number of free electrons per
ion, we can write the energy equation in the optically thick
part of the wind as

L(r) = Ė − c1r2vT 4 − Ṁ
(
v2

2
− GM

r
+

5a1T

2

)
· (19)

This is the form of the energy equation that we will use
to find the radiative luminosity L(r) in the comoving
frame that is needed for the calculation of the radiative
force frad.

The diffusion approximation becomes valid at large op-
tical depths (i.e., many photon mean-free-paths below the
surface) where T � Teff (Mihalas 1978, p. 49). For an
estimate, let us adopt that if the photon mean-free-path
is more than 10 times smaller than the sonic point ra-
dius then the diffusion approximation is valid. The photon
mean-free-path (lν) is defined as 1/(ρχ). Using the sonic
point parameters from the paper (see Table 7), we find
that in the case of the WN6 star WR136 lν ≈ 2.38×109 cm
(lν/Rs ≈ 0.0074) and in the case of the WN5 star WR 139
lν ≈ 1.82 × 109 cm (lν/Rs ≈ 0.013). Thus, the diffusion
approximation is valid for the regions near the sonic points
of WR-star winds. Note that this is not the case for the
winds of O-stars, which generally have lν/Rs > 0.1.

2.3. The conditions at the sonic point

The momentum Eq. (8) has the characteristic form of an
equation with a critical point. The left hand side shows
that when v = vs, the velocity gradient dv/dr becomes
infinite (positive or negative), unless the right hand side
is zero at this sonic point. So the right hand side must van-
ish exactly at the critical point. The smooth passage of the
flow through the sonic point also requires that the deriva-
tives of the temperature and velocity are equal on both
sides of the sonic point. These conditions are expressed
by the de l’Hopital rule which describes the relations for
the radial velocity gradients at the critical point (see e.g.
Lamers & Cassinelli 1999, p. 421).

The momentum Eq. (8) can be written as

f1 = f2
dv
dr

(20)

with

f1 =
2a1T

r
− GM

r2
− a1

dT
dr

+
χL(r)
4πcr2

(21)

and

f2 = v − a1T

v
· (22)

The conditions at the sonic point, Rs, where the flow ve-
locity is

vs ≡ v(Rs) =
√
a1Ts (23)

with Ts ≡ T (Rs) are

f1(Rs) = 0 and f2(Rs) = 0. (24)

The first condition implies that

χsLs = 4πcR2
s

(
−2a1Ts

Rs
+
GM

R2
s

+ a1

(
dT
dr

)
s

)
, (25)

where the subscript s denotes the values at the sonic
point. The velocity gradient at the sonic point is given
by de l’Hopital’s rule(

dv
dr

)
s

=
(

df1

dr

)
s

/

(
df2

dr

)
s

· (26)
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Since f2 increases from negative below the sonic point to
positive above the sonic point, the gradient df1/dr should
be positive at the sonic point. In physical terms this means
that either energy or momentum must be added to the
wind as it passes through the sonic point (cf. Lamers &
Cassinelli 1999, p. 100).

The requirement that the velocity gradient should be
continuous through the sonic point (i.e. the regularity con-
dition) implies that

(
d2v

dr2

)
s

=

(
d2f1
dr2 − dv

dr
d2f2
dr2 − df2

dr
d2v
dr2

)
s(

df2
dr

)
s

(27)

with the derivatives df1/dr, df2/dr, d2f1/dr2 and
d2f2/dr2 following from the definitions of f1 and f2.

We point out that the CAK-type line forces (actually
the line force amplification due to Doppler shifts – Castor
et al. 1975) can be neglected near the sonic point of WR-
star winds. The CAK-type line force is usually expressed
in relation to the radiation force by electron scattering as
follows

fL =
σref

e M(t)L
4πcr2

, (28)

where σref
e is the reference value for the electron scattering

opacity (σref
e = 0.325 cm2 g−1, Lamers & Cassinelli 1999,

p. 217). The force multiplier can be expressed as

M(t) = kt−αC, (29)

where k and α are the force multiplier parameters, C is a
correction term which is very close to unity and t is the
dimensionless optical depth parameter defined as

t =
σref

e vthρ

dv/dr
, (30)

where vth is the mean thermal velocity of protons. Our
optically thick wind models show that dv/dr ≈ vs/Rs near
the sonic point. The value of t at the sonic point can be
found from the relationship

t =
σref

e

√
(2µ/(γ + 1))Ṁ
4πvsRs

· (31)

This shows that near the sonic point of the WN6 star
WR136 t ≈ 140 (Rs ≈ 4.6 R�) and near the sonic
point of WN5 star WR139 t ≈ 52 (Rs ≈ 2.0 R�). With
such large values of t and with the expected values of α
(≈0.5) and k (≈0.6–0.7), the force multiplier is indeed
very small, M(t) < 0.05 to 0.08. This implies that the
CAK-type line force due to Doppler shifts is negligible
compared to electron scattering and other radiation forces
near the sonic points of WR-stars. One might counterar-
gue that the velocity gradient near the sonic point might
be of order dv/dr ≈ v∞/Rs, as in optically thin (in the
continuum) CAK-type O-star wind models, rather than
dv/dr ≈ vs/Rs. If that were the case, the values of t near
the sonic points of WR-stars would be smaller than given

above (t ≈ 3 for WR136 and t ≈ 1 for WR139), but
the force multiplier is still very small 0.3 < M(t) < 0.6
compared to t ≈ 10−2 and M(t) > 101 for O-stars. In
this estimate we neglected continuum absorption within
the Sobolev length. This implies that the true CAK-forces
near the sonic points of WR-star winds are even smaller
than estimated above. So, we can safely conclude that near
the sonic points of WR-star winds the CAK-type forces
are not important, but they become the dominate driving
force starting from some distance above the sonic point.
The influence of these forces is not ignored in our mod-
els – they are taken into account indirectly by using the
momentum equation in the supersonic part of the wind by
assuming that the winds are radiatively driven.

2.4. The temperature structure

The conditions at the sonic point, described above, contain
the derivatives of the temperature T (r), which depends
on the velocity v(r) structure. In this section we describe
these two functions. From the analytical solution of the
spherically extended atmosphere in radiative equilibrium
in the generalized Eddington approximation derived by
Lucy (1971) we find that

T 4(r) ≈ 3
4
Teff

4(Rs)
(
τ ′ +

4
3
W (r)

)
. (32)

In this expression Teff(Rs) ≡ (L/(4πσR2
s ))0.25 where Rs

is the radius of the sonic point of the wind, W (r) is the
coefficient of geometrical dilution, and the effective optical
depth τ ′ is defined by

τ ′ =
∫ ∞
r

χρ
R2

s

r2
dr, (33)

where χ is the flux-mean extinction coefficient. We point
out that Heger & Langer (1996) and Lucy & Abbott
(1993) used a slightly different version of the original Lucy
(1971) formula. They used the photospheric radius (Rph

where τ ′(Rph) = 2/3) as a reference level, whereas below
the photospheric radius the geometrical dilution was ne-
glected. Test computations have shown that our results
(described below) would have been qualitatively the same
if we had adopted this same reference level Rph instead
of the value of Rs that we adopted. The important argu-
ment against the use of Rph as reference level is the large
difference between Rph and Rs for WR-stars. Therefore
the effects of geometrical dilution should not be neglected
in the region below Rph, where J/K is not constant. Our
approach is almost in line with the arguments of the opti-
cally thick wind modeling study of the 1.4 M� stars driven
by super-Eddington luminosities by Quinn & Paczyński
(1985). They stated (p. 635 in their paper) that “Models
of radiatively driven winds with a critical point at a large
optical depth have very diffuse photospheres with the den-
sity scale height approximately equal to the local radius.
Therefore, the variation of radiation energy density with
radius is due not only to diffusion through opaque matter,
but also to geometrical dilution”.
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We adopt the temperature structure of a spherically
symmetric stationary wind in radiative equilibrium, given
by Eq. (32) with the effective optical depth given by
Eq. (33). This approximation is not valid at distances
larger than r ∼ R(τ ≈ 2/3), because it assumes that
J ≈ B. For example Eq. (32) predicts that at large dis-
tance from the star, where τ ′ becomes very small, the
temperature will go to zero. In reality the observations
and empirical wind models show that the temperatures of
WR-winds approach a constant finite value of order 104 K
at distances of a few tens of stellar radii. This is due to the
radiative heating by photoionization. Nugis et al. (1998)
have determined the asymptotic temperatures Tasymp of
WR-winds as a function of WR-subtypes. We adopt these
values. So the temperature structure of our models is de-
scribed by Eq. (32) if T (r) ≥ Tasymp and T (r) = Tasymp

where Eq. (32) would predict a smaller value. We should
point out that the choice of Tasymp plays only a minor role
in our modeling, as most of the important physical effects
occur in the optically thick part of the wind.

The temperature at the sonic point is

T 4
s =

3
4
Teff

4(Rs)
(
τ ′s + 2/3

)
, (34)

with an effective optical depth τ ′s at the sonic point

τ ′s =
∫ ∞
Rs

χρ
R2

s

r2
dr. (35)

Notice that Ts depends on the effective optical depth at
the sonic point and hence on the run of χρ at all layers
above Rs. Therefore we can only find the solution of the
momentum and energy equations at the sonic point if we
know the functions χ(r) and ρ(r) at r > Rs.

For determining the distribution of the flux-mean
opacity in the wind, we use the approach of Lucy & Abbott
(1993) who derived χ(r) from the demand of the momen-
tum conservation in the wind for an adopted velocity law.
This requirement follows from Eqs. (8) and (16):

χ=
4πcr2

L(r)

{(
v − a1T

v

)
dv
dr
− 2a1T

r
+
GM

r2
+a1

dT
dr

}
· (36)

So for a given v(r), T (r) and L(r) the function χ(r) is
known. Note that χ and v are related so that χ increases
with the increase of v. The term consisting of dT/dr is very
small and is found by using the diffusion approximation for
r ≤ 1.01Rs and by differentiating the temperature formula
for r > 1.01Rs.

The value of L(r) is very close to Lcore throughout
the optically thick and optically thin part of the wind.
This is because the other terms in the energy Eq. (19),
i.e. Ladv and the flow of potential, kinetic energy and en-
thalpy, are all very small compared to Lcore for WR-stars.
So in principle we could have used L(r) = Lcore for the
calculation of χ(r) with Eq. (36). In the computations we
took the other terms into account properly for the calcu-
lation of L(r). For the value of Ladv in the calculation of
L(r) we used the following scheme: for the optically thick

part we calculated Ladv from Eq. (18) and for the opti-
cally thin part we used Ladv(r) ' 2v(r)L(r)/c, which is
valid if J ' H ' K (see Eq. (12)). In any case, the exact
value of Ladv makes a difference of less than 1 percent in
the calculation of χ(r).

2.5. The velocity structure

The density in the supersonic part of the wind, which is
needed for the calculation of χ and T (r), can be expressed
in terms of the mass-loss rate and the velocity law. The
velocity law in the supersonic part of the wind is approx-
imately a β-law:

v(r) ' v∞

(
1− Rs

r

)β
(37)

with the value of v∞ taken from the observations and the
value of β still to be determined. However, near the sonic
point the velocity must deviate from this β-law, because
it would imply that v(Rs) = 0, which contradicts the def-
inition of the sonic point. Therefore we adopt a velocity
law in the region of r ≥ Rs of the type

v(r) =

{
w1

(
Rs

r

)
+ w2

(
Rs

r

)2

+ w3

(
Rs

r

)3
}

+v∞

(
1− Rs

r

)β
, (38)

with w1 + w2 + w3 = vs. The β-law is only valid for r >
Rs. This expression for v(r) is practical for our purpose
because (i) the first three terms are small and quickly
vanish for r > Rs and (ii) the critial point conditions
of Eqs. (26) and (27) directly describe the values of w1

and w2 with w3 adjustable to give v(Rs) = vs.
We stress that the second part of the expression for

v(r), i.e. the β-law, only enters into our analysis for the
calculation of the velocity and density structure in the su-
personic part of the wind. For the analysis of the sonic
point conditions only the first part is important. This is
equivalent to the statement that the β-law does not start
exactly at Rs but at some slightly larger distance where
the power-law part slowly merges with the β-law. (In prin-
ciple we could have chosen a more elaborate expression
for the velocity law that ensures a smooth transition from
the subsonic to the supersonic part, than the one adopted
here, but that would not have improved the analysis of
the sonic point conditions.)

2.6. The opacity gradient near the sonic point

If the velocity law and the temperature structure are
known, as described above, then the product χ(r)L(r)
can be found from Eq. (36). The solution of the critical
point equations, which will give the mass-loss rate, re-
quires knowledge of the gradients of the optical depth and
of the radiative luminosity near the sonic point. In nor-
mal modeling of a stellar wind one would assume that
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χ = f(ρ, T ) is known and then solve the structure of
the wind and find the mass-loss rate. However, as argued
in the introduction, the flux-mean opacity in the atmo-
spheres of WR-stars is not known. Therefore, the pur-
pose of our paper is just the opposite: we try to find what
the conditions for χ are that could explain the observed
mass-loss rates in terms of optically thick radiation driven
winds. A consequence of this approach is that we do not
know χ(r), nor its gradient near the sonic point. Instead,
we derive it from the requirement that the model must
produce the observed mass-loss rate.

If the gradient of L(r) is known we can derive the gradi-
ent of χ(r) from the derivative of Eq. (36) and vice versa.
Therefore we adopt two methods to estimate these gra-
dients: variants A and B. In the first one we make an
assumption about L(r) and find the gradient of χ(r). In
variant B we make an assumption about the variation of
χ(r) and find the gradient of L(r). In our modeling we
will use both variants and show that the results are quite
similar. We describe these two variants in more detail in
the next section.

3. The method for calculating optically thick wind
models for WR-stars

We describe the method for solving the equations and for
determining the mass-loss rates for optically thick winds
of WR-stars. The essence of the analysis is to find under
what conditions the optically thick wind models produce
the observed mass-loss rates. We will do this for a grid of
models of different values of M∗, L∗ = Lcore, Rs and Rhc.

The adopted scheme consists of choosing the effec-
tive optical depth τ ′s at the sonic point. We then make
a first estimate of one particular parameter at the sonic
point. This parameter is either the radiative luminosity Ls

(Variant A) or the opacity χs (Variant B). We then cal-
culate a self-consistent value of Ṁ and of v, T , χ, L and
their first and second order derivatives at the sonic point,
from the above described equations. Knowing these values
at the sonic point, we can check if the value of the veloc-
ity gradient that is derived from the momentum equation
is identical to the one that is needed to satisfy the en-
ergy equation. So basically we check that the momentum
equation and the energy equation are both satisfied in the
transonic region. If this is not the case, we modify our
choice of Ls or χs. We developed a numerical method that
converges very rapidly and gives the self-consistent models
within typically about some tens of iterations.

Up to this point we have only considered the condi-
tions at or near the sonic point. The next step is to find
the value of the velocity law exponent β that is needed to
produce the chosen value of τ ′s. This is obtained by inte-
grating the optical depth over the whole wind for different
values of β until the pre-adopted value of τ ′s is found. The
resulting model then gives, for any particular choice of the
stellar parameters M∗, L∗, Rs, Rhc and wind parameter
v∞, and for any pre-chosen value of τ ′s (which is basically
the same as choosing the gas temperature at the sonic

point) the resulting value of Ṁ as well as the temperature
and velocity structure of the supersonic part of the wind.
The calculated mass-loss rate can then be compared with
the observed values.

In the previous section we described two methods for
dealing with the opacity: Variants A and B. We discuss
the calculation of the models in these two variants sep-
arately. In this section we describe the computations for
fixed values of Rs. These models are named A0 and B0. In
Sect. 8 we will describe the models with a variable value
of Rs.

3.1. Variant A0

In this variant we assume that L(r) is constant in the
wind. The variation of the opacity χ(r) then follows from
the condition that the wind is radiatively driven.

First we adopt the values of Rs and Rhc (the range
of these parameters for WR-stars will be justified later in
Sect. 6.2) and we adopt a value of the effective optical
depth τ ′s at this sonic point. We then make a first guess
of Ls, which is only slightly smaller than L∗, that sets the
value of Teff(Rs). This gives the gas temperature at the
sonic point Ts (Eq. (34)) as well as the sound speed and
the flow velocity, vs. The mass-loss rate Ṁ then follows
from formula (19).

The initial guess values of other terms at the sonic
point are found by the scheme:
(i) χs and (dT/dr)s are both found from the combination
of Eqs. (16) and (25).
(ii) (dv/dr)s is found from the derivative of the energy
equation (10) with the derivative of Ladv (Eq. (18)).
(iii) (d2T/dr2)s and (dχ/dr)s are found from the com-
bination of Eqs. (16) for the temperature gradient and
de l’Hopital’s rule (26) for the momentum equation.
(iv) (d2v/dr2)s is found from the second derivative of the
energy Eq. (10).
(v) (d2χ/dr2)s and (d3T/dr3)s are found by combining the
regularity condition (Eq. (27)) with the second derivative
of the temperature Eq. (16).
(vi) We now have all the required values and gradients
at the sonic point and we can test if the momentum and
energy equations are both satisfied. To do this we calcu-
late dv/dr at a point slightly below the sonic point, e.g.
at r = 0.99Rs, from the momentum equation by using
Taylor expansions for finding T , χ and v (L is constant).
In this calculation we use the values of these physical terms
and their first and second derivatives at the sonic point.
(d2v/dr2)s. We then compare this with the value of dv/dr
at that same point, that is required by the energy equa-
tion, i.e. by differentiating Eq. (10). If these two values
of dv/dr are not the same, our initial guess of the con-
stant value of L(r) was incorrect. We then choose another
value of L(r) and repeat the process untill convergence is
reached.
(vii) In the last step we calculate the value of β in the su-
personic part of the wind that gives the adopted value of
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τ ′s (Eq. (35)). We find ρ(r) from the mass continuity equa-
tion with the velocity law of Eq. (38), with w1 and w2 de-
rived from (dv/dr)s and (d2v/dr2)s and w3 = vs−w1−w2.
The opacity χ(r) in the supersonic part of the wind, which
is needed for the calculation of τ ′(r), is derived from the
momentum Eq. (36). The temperature structure in the
supersonic part is calculated with Eq. (32) with τ ′(r) as
input. So in practice we calculate both τ ′(r) and T (r)
by stepwise integration of the Eq. (33), which results
in T (r) through Eq. (32), which gives χ(r) at the next
step through Eq. (36).

We want to point out that only in the final step for
the determination of β we need a numerical integration.
All other steps use straightforward calculations of single
values at the critical point. These calculations are exact,
insofar as the approximations used to derive the formulae
are correct. Therefore the calculations are very fast and
the iteration converges rapidly.

3.2. Variant B0

In this variant we assume that the opacity can be ex-
pressed as χ(r) = aρ/Tα, with a to be determined by the
conditions at the sonic point, and α is an adopted con-
stant. For instance, Kramers’ opacity law has α = 3.5. We
will adopt several values in the range of 3.0 < α < 5.0.

The process of calculating self-consistent optically
thick radiation driven wind models is very similar to that
used in Variant A0. We again start with stellar parameters
M∗, L∗, Rhc and Rs and we adopt τ ′s. As in Variant A0,
we make a first guess of Ls < L∗. However in Variant B0
L(r) is distance dependent, contrary to the situation in
Variant A0. The choice of Ls sets the values of Ts, vs and
Ṁ , as described in Variant A0. The steps for solving the
equations at the sonic point are:
(i) χs and (dT/dr)s are both found from the combination
of Eqs. (16) and (25). The value of χs then determines the
value of a for the adopted opacity dependence.
(ii) (dv/dr)s, (dL(r)/dr)s and (d2T/dr2)s are found from
the application of the de l’Hopital’s rule (Eq. (26)) com-
bined with the derivatives of the temperature Eq. (16)
and the energy Eq. (19). The value of (dχ/dr)s, which is
needed in these solutions, is derived from the definition of
χ = aρ/Tα together with (dT/dr)s and (dv/dr)s.
(iii) (d2v/dr2)s is found from the regularity condition
(Eq. (27)) with (d3T/dr3)s from the second derivative
of the temperature Eq. (16) and (d2χ/dr2)s from the
adopted expression for χ.
(iv) (dL(r)/dr)s is found from the energy Eq. (19).
(v) We then check if the energy equation and the momen-
tum equation are both satisfied around the sonic point. To
do this we calculate dv/dr at a point slightly below the
sonic point, at r = 0.99Rs, from the momentum equation
by using for the needed terms T , v and L (with χ(r) be-
ing known) the Taylor expansion formula which uses the
values of these physical terms and their first and second
derivatives at the sonic point. We then compare this with

the value of dv/dr at that same point, that is required by
the energy equation, i.e. by differentiating Eq. (10). If this
is not the case, our initial guess of L(r) was incorrect. We
then choose another value of L(r) and repeat the process
until convergence is reached.
(vi) When the model has converged, we derive the pa-
rameter β of the supersonic velocity law that produces
the adopted value of τ ′s. This is done in a similar way as
in Variant A0, i.e. with stepwise integration of Eq. (33)
for τ ′(r), with the adopted expression for χ(r).

4. Some simple estimates

In this section we describe some simple estimates, based on
general momentum and energy considerations of optically
thick radiation driven winds.

4.1. The opacity at the sonic point

We can obtain a simple estimate of the opacity at the sonic
point of an optically thick wind from the sonic point con-
dition that the righthand side of the momentum equation
should vanish, so f1(Rs) = 0 with f1 defined by Eq. (21).
The temperature derivative in an optically thick wind is
given by Eq. (16). These equations predict that

χsL(Rs)
4πc

=
GM∗ − 2v2

sRs

1 + (a1Ṁ)/(c1R2
sT

3
s vs)

, (39)

where we have used the mass continuity equation for the
substitution of ρ. The second term of the numerator is
much smaller than the first term, because the sound ve-
locity at the sonic point (typically about 30 km s−1) is
much smaller than the escape velocity (typically about
2000 km s−1). For reasonable values of Ṁ (between 10−5

and 10−4 M� yr−1) and sonic point temperatures of order
105 K (see below), the second term in the denominator is
much smaller than unity. This is equivalent to the state-
ment that the two dominant terms in the right hand side
of the momentum equation are the gravity and the radia-
tion pressure, with the gas pressure terms being negligible.
So Eq. (39) reduces to

χs '
4πcGM∗

L∗
· (40)

Using the mass-luminosity relation of H-poor WR-stars,
Eq. (53), we find an estimate of the required opacity for
radiation driven optically thick winds of 0.3 < χs <
0.9 cm2 g−1. These are reasonable values for hot star
winds.

4.2. The opacity gradient at the sonic point

We can derive an important condition for the opacity gra-
dient at the sonic point of radiation driven winds. From
de l’Hopital’s rule at the sonic point (Eq. (26)), combined
with the sonic point condition that f1 = 0 and f2 = 0,
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it is easy to show that the velocity gradient at the sonic
point, (dv/dr)s, can only be positive if(

dχ
dr

)
s

+
χs

Ls

(
dL
dr

)
s

+
4πca1

Ls

(
2Ts −R2

s

(
d2T

dr2

)
s

)
> 0.(41)

The last term is due to the effect of the gradient of the gas
pressure. In a radiation driven wind the force produced
by the gas pressure is by definition negligible compared
to the force produced by the radiation pressure. So we
can neglect that term. Equation (41) thus shows that in
a radiation driven wind with constant L(r) the gradient
(dχ/dr)s must be positive to allow a transonic flow. In the
case of optically thick radiation driven winds dL(r)/dr ≤
0 (cf. with Quinn & Paczyński 1985) and so (dχ/dr)s must
certainly be positive.

We conclude that a stellar wind can only be driven by
radiation pressure if dχ/dr > 0 at the sonic point! This
implies that optically thick stellar winds must have their
sonic point in the density and temperature regime where
the opacity increases as a function of distance. This occurs
for instance in the region of the iron opacity peak around
log T ' 5.2.

This condition for the gradient of the opacity of radia-
tion driven winds is a special case of the general condition
that a wind can only be accelerated through the sonic
point if either energy or momentum is added at the sonic
point (cf. Lamers & Cassinelli 1999, p. 100).

4.3. Mass-loss rates of optically thick winds

The energy equation near the sonic point (Eq. (19)) can
be written as

GMṀ

Rs
' Ladv −

{
Ė − L(Rs)

}
· (42)

The test models and the optically thick wind models of the
studied stars (described below in Sect. 5.1 and Table 1)
reveal that L(Rs) is very close to Ė and the absolute value
of L(Rs)− Ė is much smaller than Ladv(Rs). This means
that we can estimate the mass-loss rate by equating the
advection term with the potential energy term:

GMṀ

Rs
= Ladv(Rs) (43)

and after some substitutions we find

Ṁ ' c1R
3
sT

4
s vs

GM
=
c1a

1/2
1 R3

sT
4.5
s

GM
· (44)

Approximately the same formula can be derived quite gen-
erally from the following simple considerations. Let us
start with the formulae for Ts and τ ′s (Eqs. (34) and (35)).
Using Eq. (4) we can express τ ′s in the form

τ ′s =
∫ ∞
Rs

χṀR2
s

4πvr4
dr. (45)

The ratio χ/v is changing very little in the inner part of the
wind (this is the specific property of optically thick winds

of WR-stars!) and the ratio χ/v at infinity is only about
two times smaller than at the sonic point. This property
and the steep drop of the integral kernel in Eq. (45) with
increasing r, due to the factor v−1r−4, implies that we can
estimate τ ′s as

τ ′s ≈
cmχs

vs

Ṁ

4πRs
, (46)

where cm is a multiplier of the order of unity. The temper-
ature at the sonic point can be expressed approximately as

T 4
s ≈

0.75Ls

4πσR2
s

τ ′s, (47)

because τ ′s � 2/3 for WR-winds. Using Eqs. (47) and (46)
and χs from Eq. (40), we obtain

Ṁ ' a
1/2
1 c1R

3
sT

4.5
s

GM

0.75
cm
· (48)

Note that this formula differs from the Eq. (44) only by
the constant 0.75/cm which is very close to unity.

Therefore we can conclude that formula (44) is a very
good approximation formula for deriving the mass-loss
rates of WR-stars.

4.4. The minimum mass-loss rate for optically thick
winds

We can find the minimum estimated mass-loss rate for
the particular WR-star by using the formula (44) with the
minimim estimate of the temperature at the sonic point
derived from formula Eq. (34) by adopting τs = 0. This
gives a minimum value of the mass-loss rate of

Ṁmin '
a

1/2
1 c1

(8π)9/8

R
3/4
s L

9/8
∗

GMσ9/8
· (49)

Applying this equation to a typical hydrogen-free WNE-
star with M∗ ' 10 M�, Rs ' 2 R� and with the
luminosity given by the M − L law (Eq. (53): L∗ =
1.85×105 L�), we find a minimum mass-loss rate of about
0.2× 10−6 M� yr−1.

4.5. The maximum mass-loss rate

An absolute upper limit for the mass-loss rate of radiation
driven winds is set by the condition that all the energy
generated in the nucleus is used to drive the wind. This
gives

Ṁ < L/(v∞2/2 +GM/Rhc). (50)

For a typical hydrogen-free WNE-star with M∗ ' 10 M�,
v∞ = 2000 km s−1 and with the luminosity given by the
M − L law (Eq. (53): L∗ = 1.85 × 105 L�) and the hy-
drostatic core radius given by the evolutionary models
(Eq. (54): Rhc ' 0.86 R�) we derive an upper limit of
2.7× 10−4 M� yr−1.
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A more realistic upper limit can be found from the for-
mula Eq. (43) by using for Ladv(Rs) the advective lumi-
nosity at infinity which ought to be higher than Ladv(Rs).
In the case of thin winds we know that near the star
Ladv ≈ v/cL(r), which is much lower than Ladv(∞) =
2v∞L(∞)/c. In the case of thick winds we know that
Ladv(∞) ≥ Ladv(Rs). So the upper limit for the mass-
loss rate of optically thick winds can be obtained from the
formula

Ṁmax '
2L(∞)v∞Rs

cGM
· (51)

For a typical WNE-star with the parameters given above
we find that Ṁmax = 1.6× 10−5 M� yr−1. The observed
mass-loss rates of WNE stars are indeed in between the
minimum and maximum values derived here.

5. Test models of optically thick radiation driven
winds

In this section we describe some of the results of the op-
tically thick radiation driven winds of some test models.
We discuss the properties of the models and investigate
the dependence of the resulting mass-loss rates on the in-
put parameters. We do this for the models calculated in
Variant A0 (constant L(r)) and variant B0 (power-law de-
pendence of χ). These tests are useful for describing and
understanding the models, and for comparing the results
for different parameters.

For the stellar parameters of the test model we have
chosen the values of a characteristic WN 5 star: WR139.
This star is a member of a well studied binary system and
its distance and stellar parameters are well determined
(Nugis et al. 1998; Nugis & Lamers 2000). The adopted
parameters are discussed below in Sect. 6 and listed in
Table 4. The luminosity is 1.62 × 105 L�, the observed
mass-loss rate is 0.92 × 10−5 M� yr−1 and the terminal
velocity of the wind is 1785 km s−1. The adopted radius of
the sonic point is Rs = 2Revol = 1.648 R�. This is much
smaller than the empirically determined “core”-radius of
the star, Rc ' 6 R�, derived from the empirical wind
models with an adopted β = 1 law by Hamann & Schwarz
(1992). The reason for this smaller choice will be justified
below in Sect. 6. Note that for the final set of optically
thick wind models (Variants A1 and B1) we will deter-
mine the sonic point radius from the demand that dχ/dr
is equal to the OPAL value for the particular density, tem-
perature and chemical composition.

5.1. Test models with a fixed mass-loss rate

Here we describe the results of a set of models that were
calculated with a fixed, pre-specified mass-loss rate. For
these models Rs is fixed and the effective optical depth at
the sonic point is a parameter that has to be solved. The
results of the test models are listed in Table 1. The first
part gives the results of Variant B0, i.e. for a power-law
opacity of the type χ(r) = aρ/Tn, for various values of n.

The last line gives the results for Variant A0, i.e. with
a fixed value of L(r). We discuss some properties of the
models.

The value of the optical depth χs at the sonic point is
similar for all models. This was already predicted in the
previous section where we showed that the gravity force
and the radiative force should cancel each other at the
sonic point (Eqs. (39) and (40)). All models show that
the temperature at the sonic point is about 1.8× 105 K.
The value of τ ′s needed to reach this temperature is
about 20. The high sonic temperature is needed because
the mass-loss rate is basically determined by the energy
conservation at the sonic point. The velocity gradient im-
plies a gain in potential and kinetic energy that has to
be provided under the constraint of constant total energy.
For the pre-chosen mass-loss rate this can only be achieved
at high temperature, and hence at high effective optical
depth. The optical depth of order 20 at the sonic point,
with the given mass-loss rate and terminal velocity, re-
quires a high column density above the sonic point, which
implies a high value of the velocity law exponent β of
about 5 in the supersonic part of the wind for most mod-
els. The models with high values of n ≥ 4 require a larger
value of β because the opacity drops steeply outwards and
so the density ρ ∼ (r2v)−1 has to drop slowly outwards,
implying a high value of β. In fact there is an upper limit
for the opacity exponent n in our models. If n ≥ 4.7 the
opacity decreases so rapidly outwards that the required
value of τ ′s ' 20 cannot be reached by any β-type veloc-
ity law. The slowest velocity law with β → ∞ still has a
density decrease of ρ ∼ r−2 and so the maximum column
density above the sonic point is Ṁ/4πRsvs. We also found
that there is a lower limit for the exponent n of the opac-
ity law that can produce optically thick radiation driven
wind models. If n < 3 then the opacity does not increase
through the sonic point, so the wind cannot be acceler-
ated through the sonic point. We conclude that optically
thick radiation driven winds for WR-stars with an opacity
of the type χ ∼ ρ/Tn near the sonic point can only exist
for a small range of n of approximately 3 < n < 5.

The data in Table 1 show that the radiative luminosity
in the comoving frame is very close to the total luminos-
ity L∗. The difference is less than about a factor 10−2.
This justifies our assumption that in the calculation of
the radiative acceleration (Eq. (17)) we can substitute L∗
for L(r). Note that in models with variant B0 the value
of L(Rs), that is calculated from the energy Eq. (19) is
larger than the value of Ė, but less than L∗. In the case of
Variant A0, which has a constant L(r), the comoving lu-
minosity is slightly smaller than Ė but again the difference
is very small.

It is interesting to compare the advected luminos-
ity with the difference between Ė and L(Rs). We see
that in all these models the advective luminosity is much
larger than this difference. So at the critical point, the en-
ergy balance (Eq. (19)) is practically reduced to Ladv =
GMṀ/Rs. (This property was already used to derive an
estimate for mass-loss rate in Eq. (44).)
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Table 1. Test models for WR139 for fixed mass-loss rate.

n τ ′s Ts

(
dχ
dr

)
s

vs
Rs
vs

(
dv
dr

)
s

Ė−L(Rs)

Ė

Ladv(Rs)

Ė
χs β

105K 10−14 cm g−1 km s−1 10−4 10−4 cm2 g−1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

3.01 21.2 1.809 2.34 34.75 1.01 −0.233 101 0.756 5.09

3.10 20.7 1.799 3.72 34.65 1.18 −2.829 98.6 0.756 5.00

3.30 19.8 1.781 6.97 34.48 1.54 −7.128 94.3 0.756 4.95

3.50 19.2 1.768 10.45 34.35 1.88 −10.21 91.25 0.755 5.03

4.00 18.2 1.746 20.20 34.14 2.68 −15.23 86.25 0.755 5.85

4.50 17.6 1.732 31.36 34.00 3.44 −18.30 83.21 0.755 10.0

4.70 17.5 1.727 36.19 33.96 3.74 −19.20 82.25 0.755 80.0

– 22.6 1.837 1.45 35.02 0.805 +7.013 108.5 0.757 5.92

The upper part of the table is for Variant B0, the last line forVariant A0.

Table 2. Test models for WR139 with variable mass-loss rate.

τ ′s Ṁ Ts β
10−5 M� yr−1 105 K

2.0 0.098 1.074 2.89
3.0 0.140 1.163 3.32
5.0 0.228 1.296 3.87

10.0 0.462 1.516 4.56
20.0 0.960 1.784 5.05
30.0 1.477 1.964 5.25
50.0 2.531 2.214 5.38

Models with χ ∼ ρ/T 3.5.

5.2. Test models with different mass-loss rates

For this set of test models we have solved the full set of
equations described above, for calculating the mass-loss
rate of optically thick radiation driven wind models. In
these calculations the mass-loss rate is determined basi-
cally from the predicted velocity gradient near the sonic
point which is required by the sonic point conditions. The
velocity gradient implies a potential and kinetic energy
gain that has to be provided under the constraint of con-
stant total energy. Table 2 gives the results for Variant B0,
i.e. with an opacity-law of the form χ = aρ/Tn for n = 3.5
and with fixed Rs = 2Revol. In this case we have adopted a
pre-chosen set of values for τ ′s and we derive the mass-loss
rate. We see that both the mass-loss rate and the temper-
ature at the sonic point increase with increasing effective
optical depth. This is in agreement with the predictions
described in the approximate formulae Eqs. (46) and (47).
For higher optical depth the velocity laws in the supersonic
part of the wind have to become “softer”, i.e. higher val-
ues of β, to have a sufficient column density. We see that
the observed mass-loss rate of Ṁ = 0.92× 10−5 M� yr−1

requires an effective optical depth at the sonic point of
about 20, in agreement with the results of Table 1.

Figure 1 shows the mass-loss rates and the values of β
for a series of test models for WR139, for different values

Fig. 1. The results of models B0, i.e. for χ ∼ ρ/Tn, for the
star WR139 (WN5). The temperature Ts at the sonic point
(upper), the mass-loss rate (middle) and the value of β (lower)
are plotted as a function of the effective optical depth τ ′s at the
sonic point. The curves are for n = 3.01, 3.30, 3.50, 4.0 and 4.5.
In all plots the lowest curve is for n = 3.01 and the highest one
is for n = 4.50. Notice that the results are insensitive to the
value of n, except the value of β for n > 3.5. The dotted line
is for model A0, i.e. for L(r)=constant in the transonic region.
The results for models A0 and B0 are very similar.

of n. We see that the mass-loss rate scales almost linearly
with the adopted value of τ ′s as it is expected according
to the approximate formula (46). The mass-loss rates are
not very sensitive to the values of n.
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5.3. The influence of the sonic radius

In this section we study the influence of the sonic radius on
the mass-loss rates of WR-stars. We also investigate the
influence of the choices for determining χ(r) (Variants A0
or B0) on the mass-loss rates, predicted for the models.
Table 3 gives the results for a series of test models for
WR139, for various values of the ratio Rs/Revol and for
different values of τ ′s. We give the results for both variants
(A0 and B0). The values of the sonic point temperature Ts

are slightly different for Variants A0 and B0. However, this
difference is so small, less than a factor 10−3, that we only
listed the values of Ts for variant A0. We see that the re-
sults of the two variants are quite similar. The difference in
the mass-loss rates and in β is less than about 25 percent,
with mass-loss rates of Variant B0 being slightly higher
than those of Variant A0. The values of β of Variant B0 are
slightly smaller than those of Variant A0. This is because
Variant B0 has higher mass-loss rates, so a slightly steeper
velocity law is needed to produce the same value of τ ′s.
The mass-loss rates increase with increasing adopted lo-
cation of the sonic point. In the range of 1 < Rs/Revol < 4
the mass-loss rate for a fixed value of τ ′s increases almost
linearly with Rs. This is in accord with the prediction of
the approximate formula (46).

5.4. Conclusions from the tests

We conclude from these tests that the mass-loss rates pre-
dicted by optically thick radiation driven wind models
show the following properties:

1. The high mass-loss rates of the star WR139 requires
a high temperature at the sonic point of order 105 K,
depending on the adopted radius of the sonic point.
This high temperature then implies a considerable ef-
fective optical depth, τ ′s ' 20. The large optical depth
requires a slow velocity law in the supersonic part of
the wind with β ≈ 5. In the discussion, Sect. 9, we
will show that there is indeed observational evidence
for such a high value of β.

2. The mass-loss rate of the WR139 models (or more gen-
erally of models with fixed L, M , v∞ and chemical
composition) scales almost linearly with the adopted
value of the sonic radius, with the optical depth and
with the square root of the sonic point temperature, i.e.
Ṁ ∼ Rsτ

′
sT

1/2
s . The temperature at the sonic point

scales as Ts ∼ R
−1/2
s τ ′1/4s . Combining these two rela-

tions we find that

Ṁ ∼ T 4.5
s R3

s . (52)

This is in accord with the prediction of Eq. (44). We
can conclude that optically thick wind models (A0
and B0) for a particular WR-star lead to the same
mass-loss rate for different combinations of parame-
ters Ts and Rs that satisfy the formula (52). This con-
clusion means that for a particular star we can get the
estimate of Rs by demanding that Ts must be such

Table 3. Test models for WR139 with variable sonic point
radius.

Rs Rhc τ ′s Ts Ṁ
1

Ṁ
1

β β

Revol Revol K

A0 A0 B0 A0 B0

1.0 1.0 2.0 152 000 0.049 0.058 3.22 2.81

1.0 1.0 3.0 164 500 0.070 0.083 3.72 3.23

1.0 1.0 5.0 183 400 0.114 0.136 4.35 3.77

1.0 1.0 10.0 214 700 0.232 0.276 5.12 4.45

1.0 1.0 20.0 252 900 0.485 0.576 5.67 4.94

1.0 1.0 30.0 278 700 0.750 0.891 5.88 5.14

1.0 1.0 50.0 314 900 1.301 1.543 6.05 5.28

2.0 1.0 2.0 107 400 0.082 0.098 3.32 2.89

2.0 1.0 3.0 116 300 0.118 0.140 3.84 3.32

2.0 1.0 5.0 129 600 0.192 0.228 4.49 3.87

2.0 1.0 10.0 151 700 0.389 0.462 5.28 4.56

2.0 1.0 20.0 178 500 0.809 0.960 5.85 5.05

2.0 1.0 30.0 196 500 1.247 1.477 6.06 5.25

2.0 1.0 50.0 221 700 2.143 2.531 6.23 5.38

4.0 2.0 2.0 76 000 0.138 0.165 3.40 2.94

4.0 2.0 3.0 82 300 0.198 0.235 3.93 3.37

4.0 2.0 5.0 91 700 0.323 0.384 4.59 3.93

4.0 2.0 10.0 107 300 0.654 0.778 5.40 4.61

4.0 2.0 20.0 126 300 1.365 1.620 5.97 5.08

4.0 2.0 30.0 139 100 2.108 2.499 6.19 5.26

4.0 2.0 50.0 157 000 3.635 4.298 6.35 5.37

4.0 1.0 2.0 75 900 0.138 0.164 3.40 2.94

4.0 1.0 3.0 82 200 0.198 0.235 3.93 3.37

4.0 1.0 5.0 91 600 0.321 0.382 4.59 3.93

4.0 1.0 10.0 107 100 0.649 0.770 5.40 4.61

4.0 1.0 20.0 125 900 1.343 1.589 5.97 5.09

4.0 1.0 30.0 138 300 2.055 2.425 6.19 5.27

4.0 1.0 50.0 155 500 3.481 4.086 6.36 5.39

1 Ṁ is in units of 10−5M� yr−1.

that the OPAL opacity gradient from OPAL Tables is
positive. We will show below in Sect. 8 that this occurs
at Ts ≥ 156 000 K or 37 000 < Ts < 71 000 K.

3. The models with the two variants A0 and B0 for the
opacity give about the same mass-loss rates and the
same values of β with a difference less than about
25 percent. This gives confidence in the results that
we will obtain below for the modeling of the individ-
ual WR-stars.

4. The results are insensitive to the choice of the param-
eter Rhc, as can bee seen by comparing the models
of Rs/Revol = 4 with Rhc/Revol = 2.0 or 1.0 (and
confirmed with other test calculations). So a possible
uncertainty in the value of the parameter Rhc has only
a minor effect on the resulting model.

6. Parameters of typical WR-stars

Up to this point we have considered the properties of
optically thick radiation driven wind models and their
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Table 4. Parameters of WR-stars used for modeling the optically thick winds.

Star Sp. Type logL MWR Revol Y Z Ṁ(obs) v∞
Ṁv∞
L/c

(L�) (M�) (R�) (10−5) (km s−1) η
(M� yr−1)

2 WN 2b 5.27 10.0 0.863 0.983 0.0172 0.40 3100 3.29
139 WN 5+O 6V 5.21 9.3 0.824 0.936 0.0172 0.92 1785 4.96
136 WN 6b 5.73 19.1 1.235 0.866 0.0173 6.25 1605 9.20
22 WN 7+OB 6.08 55.3 1.622 0.546 0.0176 4.20 1790 3.06

105 WN 9 5.81 21.8 1.315 0.624 0.0176 2.80 1200 2.54

111 WC 5 5.31 10.6 0.891 0.381 0.619 1.00 2415 5.82
42 WC 7+O 7V 5.23 9.5 0.837 0.497 0.503 1.28 1645 6.11

103 WC 9 5.20 9.2 0.818 0.585 0.415 2.40 1190 8.75

dependence on the input parameters. In the next two sec-
tions 6, and 7, we describe models for a series of WR-stars
of different types. For the study of the mechanisms for the
triggering and driving of the wind, we have to know the
typical stellar and wind parameters of WR-stars. We will
use a few well-studied WR-stars for the detailed analysis
of the optically thick wind models.

6.1. Masses, luminosities and radii

For the detailed analysis we will use the Galactic WR-
stars with well determined stellar and mass-loss param-
eters from Nugis & Lamers (2000). Table 4 presents the
selected stars and their parameters. The table gives the
spectral types, luminosities, masses, chemical composition
of the atmospheres, mass-loss rates and terminal veloci-
ties of the winds. The masses are derived from the lumi-
nosities, using the predicted mass-luminosity relation by
Schaerer & Maeder (1992)

log
L

L�
=3.032 + 2.695 log

M

M�
− 0.461

(
log

M

M�

)2

· (53)

The radius of the hydrostatic core, Revol, is from the
evolutionary calculations by Schaerer & Maeder (1992).
They derived the following relation between luminosity
and radius

log
Revol

R�
= −1.845 + 0.338 log

L

L�
· (54)

The last column gives the value of the momentum transfer
efficiency

η = Ṁv∞/(L/c). (55)

These values are between about 2 and 10.

6.2. The radius of the sonic point, Rs

One of the key parameters of our models is the radius of
the sonic point, Rs. To get a reasonable estimate of this
value for WR-stars, we discuss the results of the empirical
studies.

Detailed spectroscopic non-LTE modeling of the winds
of WR-stars by Koesterke & Hamann (1995), Hamann &
Koesterke (1998a,1998b) and Dessart et al. (2000) results
in an estimate of the “core-radius” (here referred to as
Rτ20), which is the inner boundary of their model atmo-
spheres. The core radius is one of the basic parameters
that specify the model atmosphere and is defined by ei-
ther at Rosseland optical depth of 20 or at a small specified
wind velocity (about 1 km s−1).

The core radii can be compared with the hydrostatic
radii, Revol, of the evolutionary models. This is shown in
Table 5. We separately give the results of modeling the
WR-stars with the “standard models” used by Koesterke
& Hamann (1995) and Hamann & Koesterke (1998a,
1998b), and those with the new models by Dessart et al.
(2000). These last models for WC-stars are more realistic,
as they take into account blanketing and clumping. We see
that the ratio Rτ20/Revol increases from about 2 for early-
WN stars to about 20 for late-WN stars, and from about 2
to 5–10 from early-WC to late-WC stars. Although Rτ20

is not the same as the radius Rs of sonic point, we can
expect that Rs/Revol also increases towards later spectral
types.

Studies of the light-curves of eclipsing and spectro-
scopic binaries with WR-components indicate that the
photospheric radius Rphot at τ ≈ 1 is smaller than the
core radius Rτ20 derived from the spectrum by using
the “standard models”. See Cherepashchuk (1991, 2000)
for V444 Cyg and CQ Cep. This is due to the fact that the
standard models have a too steep velocity law of β = 1,
whereas the true velocity law is less steep (see Sect. 9).
The difference between Rτ20 and Rphot amounts to about
a factor 2. At the photospheric radius the wind velocity is
several hundred km s−1 (Cherepashchuk 1991, 2000), and
so the sonic radius, where v ≈ 30 km s−1 must be even
smaller. These arguments show that the sonic radius of
the WR-winds is uncertain, but is probably on the order
of 0.5Rτ20 for early subtypes and about Rτ20 for late sub-
types. The values of Rs/Revol adopted as a first guess of Rs

as a function of spectral type are listed in the last column
of Table 5, with the values of Revol given in Table 4. If the
ratio Rs/Revol is very uncertain, as indicated by a range
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Table 5. Core radii Rτ20 and the adopted sonic radii Rs.

Subclass Rτ20 Nr Rτ20 Nr Rs/Revol

(Revol) Stars (Revol) Stars adopted

WN 2–4 2.6± 0.3 14 H 2
WN 5 6.9± 1.2 12 H 2
WN 6 10.4± 1.6 10 H 5
WN 7 14.3± 1.0 12 H 10–20
WN 8–9 19.0± 0.4 14 H 20

WC 4 4.3± 1.9 2 K 2
WC 5 3.4± 0.4 7 K 2.0 1 D 2
WC 6 2.1± 0.2 7 K 6.0 1 D 2
WC 7 5.2± 0.9 7 K 3.6 1 D 3
WC 8 2.7± 0.3 2 K 4.4 ± 0.3 2 D 4
WC 9 10–20

H = Hamann & Koesterke (1998a): WN-stars.
K = Koesterke & Hamann (1995): WC-stars.
D = Dessart et al. (2000): WC-stars.

of values, we calculated models for both the upper and the
lower limit of this range. For the hydrostatic core radius
we adopt Rhc = Revol if Rs/Revol < 2 and Rhc = Rs/2 if
Rs/Revol > 2. Note that reliable values of Revol are only
available for WNE- and WC-stars.

7. Optically thick wind models for typical
WR-stars with fixed Rs

We have applied the method for calculating optically thick
radiatively driven wind models to the set of five WN-stars
and three WC-stars of different spectral types. The pa-
rameters of these stars were discussed in Sect. 6 and are
listed in Table 4. We have calculated optically thick wind
models with input parameters: the mass and luminosity
of the star, the chemical composition, mass-loss rate and
the terminal velocity of the wind. The sonic radius was
adopted according to the dependence between Rs/Revol

and spectral subclass (Table 5). The results of these mod-
els (variants A0 for constant L(r) and B0 for χ ∼ ρ/T 3.5)
are presented in Table 6.

We see that the sonic points are at optical depths be-
tween about 3 and 33. The temperatures at the sonic
point fall in two intervals, 40 000 < Ts < 80 000 K and
140 000 < Ts < 190 000 K. We will show below that this
is due to the dependence of the opacity in WR-stars on
density and temperature: optically thick winds of WR-
stars can only exist if the temperature of the sonic point
is near about 160 000 K or near 50 000 K. The value of
the velocity parameter β is between about 3 and 6 for the
WN-stars and between 4 and 7 for the WC-stars.

7.1. Comparison with OPAL opacities

The opacities in the vicinity of the sonic point for the mod-
els A0 and B0 can be compared with the OPAL opacities,
which are the Rosseland mean opacities for non-expanding

media (Iglesias & Rogers 1993, 1996). In the wind models
we need the flux-averaged opacities for the expanding me-
dia. In the case of optically thick winds the sonic points
are located at large optical depths (τ ′ ≈ 20) with the ve-
locities being around 30 km s−1 and at such conditions
the Rosseland mean opacities are expected not to differ
very much from the flux-averaged opacities. The models
presented above showed that near the sonic point of WR-
winds the temperatures are around 160 000 K or 50 000 K.
Therefore we only concentrate on the OPAL-opacities in
the range of 4.5 < log(T ) < 5.5.

In deriving the OPAL data we used the stan-
dard OPAL tables and the OPAL supportive
codes for the interpolation from the tabulated data
(hhtp://www-phys.llnl.gov/Research/OPAL). We used
the subroutine packet OPACGN93(Z, X , T6, R) for
WN-stars with metallicity Z = 0.02 and with a hydrogen
mass fraction X , with a temperature T6 in millions of
Kelvin, and with the OPAL parameter, R = ρ/T 3

6 . For
WC-stars we used the subroutine package OPAC(Z,
X , XC, XO, T6, R) with Z = 0.02, X = 0.0 and the
enhanced carbon mass fraction accounted for by the
parameter XC (the total mass fraction of C is the sum of
the initial amount included in the metal mass fraction,
Z, and XC), and the enhanced oxygen mass fraction
accounted by the parameter XO (the total mass fraction
of O is the sum of the initial amount included in metal
mass fraction, Z, and XO). The optically thick wind
models of the WR-stars show that the parameter R is in
the range of −7.0 < log(R) < −6.5. The OPAL opacities
for different values of X and Y with Z = 0.02 are shown
in the upper panels of Fig. 2 and those for C-enhanced
and H-free gas in the lower panels. Notice the strong
bump in opacity in all models around log T ' 5.2, which
is mainly due to many bound-bound transitions of Fe,
and a very small bump around log T ' 4.6 for some
models, especially the C-rich and H-free models.

We have compared the values of χs and (dχ/dr)s of
the optically thick wind models A0 and B0 of the WR-
stars (Table 6) with the OPAL values. We find that the
values of χs of the models are similar to the OPAL val-
ues. However, for all models there is a significant differ-
ence between the values of (dχ/dr)s of the models and
those of the OPAL opacities. In all models this gradient
is positive (this is a requirement of optically thick radia-
tion driven winds, see Sect. 4.2), whereas the gradient of
the OPAL opacities, for the temperatures and densities
at the sonic point of the models, is in some cases even
negative. We stress, however, that by changing somewhat
the sonic radius Rs for models A0 and B0 it is possible to
achieve exact agreement with the OPAL opacity χs and
the gradient (dχ/dr)s at the sonic point. This is because
the OPAL opacity has a strong peak around logT ≈ 5.2
and a small peak near log T ≈ 4.6 (for R ≈ const.). Our
models show that R is about constant near the sonic point
and so the plots of χ as function of T in Fig. 2 for constant
R show approximately at which temperatures (dχ/dr)s

can be positive.
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Table 6. Optically thick wind models for standard WR-stars: Variants A0 and B0.

Star Sp. log L∗ log Ṁ Rs τ ′s τ ′s Ts Ts β β
(

dχ
dr

)
s

(
dχ
dr

)
s

χs χs

A0 B0 A0 B0 A0 B0 A0 B0 A0 B0

WR2 WN2 5.27 −5.40 1.73 9.52 8.06 151 600 145 900 5.86 4.89 0.96 5.91 0.70 0.70
WR139 WN5 5.21 −5.04 1.65 22.6 19.2 183 700 176 800 5.92 5.03 1.45 10.4 0.76 0.76
WR136 WN6 5.73 −4.20 4.94 33.1 28.3 156 900 150 900 6.02 5.09 0.41 3.01 0.47 0.47
WR22 WN7 6.08 −4.38 16.22 9.57 8.10 79 000 76 000 5.26 4.34 0.13 0.76 0.60 0.60
WR22 WN7 6.08 −4.38 32.44 5.76 4.84 49 700 47 900 4.75 3.83 0.08 0.44 0.60 0.60
WR105 WN9 5.81 −4.55 26.3 3.67 3.05 42 900 41 300 3.77 2.93 0.12 0.62 0.44 0.44

WR111 WC5 5.31 −5.00 1.78 24.6 21.0 191 200 184 000 6.65 5.73 0.81 6.52 0.69 0.68
WR111 WC5 5.31 −5.00 2.67 18.5 15.7 145 900 140 400 6.53 5.56 0.61 4.14 0.68 0.68
WR42 WC7 5.23 −4.89 2.51 25.7 22.0 155 500 149 700 6.24 5.33 0.84 6.06 0.74 0.74
WR103 WC9 5.20 −4.62 8.18 20.6 17.5 80 300 77 300 5.89 4.89 0.48 2.74 0.76 0.76
WR103 WC9 5.20 −4.62 16.36 12.6 10.7 50 600 48 700 5.56 4.45 0.30 1.58 0.75 0.75

(1) Variants A0 and B0 are for constant L(r) and for χ ∼ ρ/T 3.5 respectively.
(2) Rs is in units of R� and Ṁ is in M� yr−1.
(3) (dχ/dr)s is in units of 10−14 cm g−1 and χs is in units of cm2 g−1.

8. Optically thick wind models with OPAL
opacities

We compute a new set of models, called A1 and B1, using
the OPAL opacities, with the abundances of the individ-
ual stars from Nugis & Lamers (2000). In these models the
sonic radius is varied (starting from the value of Table 5)
until (dχ/dr)s becomes equal to that from the OPAL
opacity tables. We were not trying to get exact agreement
of the model values of χs with the OPAL opacities, because
the opacities in our models are the flux-mean opacities
whereas the OPAL-opacities are the Rosseland-mean val-
ues. The flux-mean opacities are expected to be (slightly)
higher than the Rosseland-mean values. In Variant A1 we
assume that L(r) is constant through the sonic point (sim-
ilar to Variant A0) and in Variant B1 we assume that the
opacity behaves like a power-law of the type χ = aρ/T 3.5

at the sonic point (similar to Variant B0).
The results are listed in Tables 7 and 8 for WN- and

WC-stars. For WR105 (WN9) and WR103 (WC9) we
present several models with different values of Rs. These
will be discussed below. The tables show the adopted in-
put values for the stellar parameters L∗ and Ṁ . The out-
put values are: the radius, optical depth, temperature,
opacity gradient and opacity, all at the sonic point. The
OPAL-opacity gradient at the sonic point is per defini-
tion equal to that of the models. The opacity at the sonic
point, that follows from the models, is compared with the
OPAL-opacity at the same temperature and density. We
see that the OPAL-opacities at the sonic point are typ-
ically a few tens of percent smaller than χs (except for
WR103). This could partly be due to the difference be-
tween the Rosseland-mean and the flux-mean opacities.

For the late type WR-stars WR105 and WR103 we
present more than one model. This is because the sonic
point radius Rs is not well known for the WN9 and WC9
stars. Starting with different values, we get different an-
swers. If the resulting value of Rs, that follows from the

model calculations, differs more than a factor two from
what we think is a reasonable value, the result is consid-
ered doubtful. The doubtful models in Tables 7 and 8 are
given in brackets.

The sonic point temperatures of models A1 and B1
for each star are very similar. We see that the tempera-
tures of the models at the sonic point fall into two regions,
156 000 < Ts < 162 000 K and 37 000 < Ts < 71 000 K.
It is a consequence of the fact that the opacity gradient
dχ/dr has to be positive at the sonic point, to allow a
transonic solution. The gradient is larger for models with
a sonic point in the high temperature range, than for mod-
els with Ts in the low temperature range. However, the
values of the opacity themselves are very similar in all
cases. The models for stars with subtypes WN2 – WN6
and WC5 – WC7 all have high sonic point temperatures
of Ts ≈ 160 000 K. The star WR22 (WN7) has a solution
both in the high and in the low temperature range. The
star WR105 (WN9) has a sonic point in the low temper-
ature range.

There is a problem with the models of WC9 star
WR103. The low Ts models of this star require an opacity
at the sonic point of χs ≈ 0.75 cm2 g−1, but the OPAL
opacity at the sonic point is less than 0.30 cm2 g−1. On the
other hand, the high temperature models for this star have
about the right sonic point opacity, but the sonic point ra-
dius is much smaller than reasonable for this type. This
discrepancy points either to a higher mass and luminos-
ity than adopted for this star (this leads to a lower value
of χs) or to a significant clumping at the sonic radius al-
ready, which would increase the Rosseland mean opacity.

8.1. A bifurcation in the optically thick winds

The optically thick wind models for WR-stars pre-
sented above clearly indicate the presence of two sepa-
rate branches of solutions (bifurcation). These branches
correspond to the intervals of sonic point temperature
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Table 7. Optically thick wind models for standard WR-stars: Variant A1 (constant L(r)).

Star Sp. log L∗ log Ṁ Rs τ ′s Ts

(
dχ
dr

)
s

χs χOPAL β

R� K 10−14 cm g−1 cm2 g−1 cm2 g−1

WR2 WN2 5.27 −5.40 1.64 9.87 156 800 0.99 0.700 0.601 5.89
WR139 WN5 5.21 −5.04 2.06 19.3 158 500 1.24 0.753 0.632 5.87
WR136 WN6 5.73 −4.20 4.82 33.7 159 500 0.42 0.473 0.694 6.02
WR22 WN7 6.08 −4.38 22.7 7.49 63 100 0.11 0.597 0.369 5.04
WR105 WN9 5.81 −4.55 14.5 5.81 63 810 0.18 0.437 0.361 4.29
WR105 WN9 5.81 −4.55 32.7 3.09 37 120 0.10 0.435 0.371 3.54

WR111 WC5 5.31 −5.00 2.39 20.0 157 300 0.66 0.681 0.539 6.57
WR42 WC7 5.23 −4.89 2.44 26.2 158 300 0.86 0.737 0.568 6.24
WR103 WC9 5.20 −4.62 9.90 18.0 70 750 0.42 0.755 0.261 5.82
(WR103 WC9 5.20 −4.62 2.93 42.3 159 300 0.98 0.774 0.602 6.03)
(WR103 WC9 5.20 −4.62 23.4 9.79 39 900 0.23 0.750 0.296 5.28)

Table 8. Optically thick wind models for standard WR-stars: Variant B1 (χ ∼ ρ/T 3.5).

Star Sp. log L∗ log Ṁ Rs τ ′s Ts

(
dχ
dr

)
s

χs χOPAL β

R� K 10−14 cm g−1 cm2 g−1 cm2 g−1

WR2 WN2 5.27 −5.40 1.53 8.82 158 500 6.64 0.700 0.609 4.97
WR139 WN5 5.21 −5.04 1.91 17.3 160 100 8.91 0.753 0.650 4.98
WR136 WN6 5.73 −4.20 4.47 30.4 161 300 3.37 0.473 0.705 5.12
WR22 WN7 6.08 −4.38 5.40 17.9 158 200 2.31 0.608 0.756 4.83)
WR105 WN9 5.81 −4.55 28.9 2.82 38 730 0.58 0.435 0.374 2.84

WR111 WC5 5.31 −5.00 2.22 18.0 158 900 5.06 0.681 0.548 5.65
WR42 WC7 5.23 −4.89 2.28 23.5 159 700 6.76 0.737 0.578 5.36
WR103 WC9 5.20 −4.62 9.82 15.4 68 450 2.36 0.755 0.266 4.79
(WR103 WC9 5.20 −4.62 2.72 38.1 161 300 8.38 0.773 0.613 5.17)
(WR103 WC9 5.20 −4.62 20.8 9.03 41 510 1.32 0.750 0.300 4.26)

where it is possible to achieve positive opacity gradi-
ents ((dχ/dr)s > 0): the high-temperature regime with
T ' 156 000 K and the low-temperature regime with
37 000 ≤ T ≤ 71 000 K. The high-temperature range is
connected with the well-known iron opacity peak around
logT ≈ 5.2 and the low-temperature range is connected
with the weak opacity enhancement due to lower ions of
iron and other metals in the range 37 000 ≤ T ≤ 71 000 K.
As can be seen from the OPAL-opacity tables, these ranges
are clearly separated because dχ/dr < 0 for 71 000 ≤ T ≤
156 000 K. This means that in the case of optically thick
wind models with negligible contribution from the line
driving force due to expansion, it is not possible to have a
smooth evolution from the regime of mass loss with sonic
point temperatures in the low-temperature range to the
regime with sonic point temperatures with T ≥ 156 000 K.

9. Discussion

The optically thick radiation driven wind models for WR-
stars derived in this paper differ from the “standard” mod-
els of WR-winds (Hamann & Koesterke 1998a; Koesterke
& Hamann 1995; Dessart et al. 2000) in several ways: the
velocity-law parameter β ≈ 4 to 6 of our models is consid-
erably higher than the adopted β = 1 of the “standard”
models and the sonic point radius of the optically thick

models is smaller than the inner radius of the “standard”
models for early type WR-stars.

The low value of β is approximately correct for the
winds of O-stars (e.g. Haser et al. 1995; Puls et al. 1996;
Herrero et al. 2000), but for the winds of WR-stars β might
be significantly higher. This is because in O-star winds the
radiative acceleration is mainly due to spectral lines, and
hence the radiation force is sensitive to the Doppler shifts
produced by the velocity gradient. This results in a fast
acceleration of the wind and a small value of β ' 0.7 to 1
(e.g. Lamers & Cassinelli 1999, p. 240). However, the opti-
cally thick winds of WR-stars are largely driven by opacity
sources which are less sensitive to Doppler shifts and hence
we can expect a slower acceleration and higher values of β.
This is supported by the analysis of the spectroscopic data
of WR-stars by Lépine & Moffat (1999) (see also Moffat
& Lépine 2000). They studied the variations of subpeaks
in the line profiles of WR-stars and, assuming that these
subpeaks are due to propagating wind inhomogeneities,
they find that β ' 5 to 10. (A similar analysis of the line
profile variations of the star ζ Pup (O4If) by Eversberg
et al. (1998) gives β ≈ 1 − 1.2, in very good agreement
with β ' 1.15 derived from modeling of the Hα-profile
(Puls et al. 1996). This supports the assumption that
the study of the kinematics of the subpeaks provides a
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Fig. 2. The OPAL opacity for different abundances as a func-
tion of temperature and R ≡ ρ/(T 3

6 ). The plotted data are for
log R = −8.0, −7.5, −7.0, −6.5 and −6.0. The higher the value
of R the higher the values of χ at log T = 4.5 and 5.5. The
top figure is for models with Z = 0.02 but different H and He
abundances. The lower figure is for H-free gas with Z = 0.02
and different abundances of He and C. Notice the strong bump
near log(T ) ≈ 5.2 and the small bump near log(T ) ≈ 4.6. The
sonic points of optically thick winds can only occur in the tem-
perature regions where dχ/dT > 0.

reasonably good estimate of the value of β. Further sup-
port for the high value of β for WR-stars comes from
the study of the hydrodynamical modeling of the wind
of WN4b star HD50896 by Schmutz (1997), who derived
β ' 8. Hillier & Miller (1999) concluded that the atmo-
spheric models with values of β higher than 1 can not be
excluded, but that it is very difficult to constrain the ve-
locity law in the standard spectroscopic modeling studies,
particularly for WC-stars with severe blending of lines.

We are aware of the fact that optically thick (in con-
tinuum) wind models are more sensitive to the velocity
law in the inner part of the wind than in the outer wind
and therefore the actual value of β may be smaller in the
part of the wind where the observed spectral lines are ef-
fectively formed. We assumed in our paper that β is the
same in the whole wind. However this was not a crucial
assumption. It only allowed us to give a rough estimate

of the “mean” value of β that is needed for a sufficiently
large optical depth at the sonic point.

Support for our conclusion that the sonic radius Rs is
smaller than the inner radius (“core” radius) of the “stan-
dard” models comes from the analysis of eclipsing and
spectroscopic binaries. Cherepashchuk (1991, 2000) found
from the modeling of light curves of eclipsing binary sys-
tem V444 Cyg (HD 193576, WR139) that the optical pho-
tospheric radius where τV ≈ 1 is at Rph ' 3 R� for the
WN5-component. Hamann & Schwarz (1992) derived by
the standard atmospheric modeling that Rτ20 ≈ 6 R�
for this WN 5 star, which is twice as large. For the
another eclipsing binary system CQ Cep (HD 214419,
WR155) it is estimated from the analysis of the eclipses
and the orbital motion that Rph ≤ 10 R� for the WN6-
component (Cherepashchuk 1991; Marchenko et al. 1995;
Moffat & Marchenko 1996). On the other hand Hamann
& Koesterke (1998a) derived from the standard atmo-
spheric modeling study that Rτ20 ≈ 25 R� for this WN6-
component. The radius Rτ20 of the inner boundary of the
atmospheric models at τ ' 20 should be smaller than
the optical radius. However, we see that for both binary
systems the derived values of Rτ20 are about twice larger
than the empirically derived photospheric radii. We can
conclude that the “stardard” atmospheric models of WR-
stars overestimate the core radii of early type WR-stars by
about a factor 2 to 3. Therefore, the fact that our models
require a smaller sonic radius than Rτ20 of the “standard”
models and a higher value of β is very reasonable.

10. Summary and conclusions

The existing problems of the optically thin radiation
driven wind theory in explaining the high momentum and
the high mass-loss rates of WR-stars, has prompted our in-
vestigation of the possibility that the high mass-loss rates
of WR-stars may be due to optically thick radiation driven
winds.

Adopting the stellar parameters of the WR-stars and
their observed high mass-loss rates and terminal wind ve-
locities, we investigated the conditions at the sonic point
of the wind that are needed to explain the high mass-loss
rates. We reached the following conclusions:

1. The mass-loss rates of optically thick radiation driven
winds is approximately
Ṁ ' c1a1/2

1 R3
sT

4.5
s /GM

with c1 = 64πσ/(3c) and a1 = k(γ + 1)/(µmH), where
Rs and Ts are the radius and temperature at the sonic
point (vs = cs), γ is the mean number of free electrons
per ion and µ is the mean atomic weight of the atoms.

2. Optically thick radiation driven wind models require
that the opacity gradient at the sonic point is positive,
i.e. (dχ/dr)s > 0. The OPAL-opacities for WR-stars
show that this occurs in two temperature regimes: a
hot regime with 155 000 < Ts < 165 000 K, and a cool
regime with 37 000 < Ts < 71 000 K. The sonic points
of early-type WR-stars (WN2-WN6 and WC5-WC7)
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are in the hot regime and those of late-type WR-stars
are in the cool regime.

3. The high sonic point temperatures imply a rather large
effective optical depth at the sonic point of τ ′s ' 3 to
10 for the low temperature regime and about 10 to 30
for the high temperature regime. Such high effective
optical depths for the sonic points of WR-stars can
only be achieved if the velocity law in the supersonic
region is rather “soft”, with β ≈ 4 to 6. There is indeed
observational evidence that winds of WR-stars have
such soft velocity laws.

4. The values of the opacities at the sonic points of our
models that are required to explain the observed mass-
loss rates of the WR-stars are close to the OPAL-
opacities for the abundances of these WR-stars.

5. The sonic radii Rs of our models are smaller than the
so-called “core-radii” where τ ' 20 of the “standard”
models for early type WR-stars by about a factor two.
Studies of WR-stars in eclipsing binary systems sup-
port the smaller radii of our models.

6. Taking all these facts together, we find that the high
mass-loss rates of WR-stars can be explained by opti-
cally thick radiation driven wind models.

We point out that we did not solve the structure of the
whole wind. In fact, we only considered the conditions at
the sonic point that are needed to start the wind with
a high mass-loss rate. In particular, we did not consider
the acceleration of the wind in the supersonic region.
Therefore, if our assumption that the high mass-loss rate
of WR-stars is due to radiation pressure in the optically
thick transonic region is correct, we still have solved only
half of the problem. The continuous acceleration of the
outflowing gas up to the observed high terminal veloci-
ties still remains to be explained. The smaller radii and
the more slowly increasing velocity laws that we derived,
compared to the usually assumed values, may help in this
respect, because a smaller radius implies a larger radia-
tive flux (for the same luminosity) and a softer velocity
law requires a smaller acceleration of the wind.

In a subsequent paper we will discuss the consequences
of the possible occurrence of three types of radiation
driven wind models (optically thin line-driven winds, op-
tically thick radiation driven winds with Ts ≈ 160 000 K,
and optically thick radiation driven winds with Ts ≈
50 000 K) during the evolution of massive stars.
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