arXiv:0804.1873v1 [nucl-ex] 11 Apr 2008

On the coefficients of the liquid drop model
mass formulae and nuclear radii

G. Royer!

Laboratoire Subatech, UMR: IN2P3/CNRS-Université-Ecole des Mines,
4 rue A. Kastler, 44307 Nantes Cedex 03, France

Abstract

The coefficients of different mass formulae derived from the liquid drop model and
including or not the curvature energy, the diffuseness correction to the Coulomb
energy, the charge exchange correction term, different forms of the Wigner term
and different powers of the relative neutron excess I = (N — Z)/A have been de-
termined by a least square fitting procedure to 2027 experimental atomic masses.
The Coulomb diffuseness correction Z2/A term or the charge exchange correction
Z4/3 /Al/ 3 term plays the main role to improve the accuracy of the mass formula.
The Wigner term and the curvature energy can also be used separately for the same
purpose. The introduction of an |I| dependence in the surface and volume energies
improves slightly the efficiency of the expansion and is more effective than an I*
dependence. Different expressions reproducing the experimental nuclear charge ra-
dius are provided. The different fits lead to a surface energy coefficient of around
17-18 MeV and a relative equivalent rms charge radius rg of 1.22-1.23 fm.
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1 Introduction

The binding energy of new nuclides both in the superheavy element
region and the regions close to the proton and neutron drip lines are still
poorly known and the different theoretical extrapolations do not fully agree.
Therefore other studies are still necessary to better predict the masses of such
exotic nuclei. The atomic nucleus resembling to a charged liquid drop, semi-
macroscopic models including a pairing energy term have been firstly advanced
to determine the nuclear masses [1,2]. Macroscopic-microscopic approaches,
mainly the finite-range droplet model and the finite-range liquid drop model
[3] have been proposed to simulate the smooth part of the nuclear masses
and the non smooth part depending on the parity of the proton and neutron
numbers and the proximity of the magic numbers. Nuclear masses have also
been reproduced accurately within the statistical Thomas-Fermi model within
a Seyler-Blanchard effective interaction [4,5]. Microscopic Hartree-Fock self-
consistent calculations using the mean-field approach and Gogny or Skyrme
forces and pairing correlations [6,7] as well as relativistic mean field theories
[8] have also been advanced to try to reproduce these nuclear masses. Neural
networks have been recently used [9] in the same purpose.

Beyond the description of the nuclear ground state energy, the evolution
of the nuclear binding energy with deformation and rotation governs the fis-
sion, fusion, cluster and « decay potential barriers and the existence of the well
deformed rotating states. Within the liquid drop model approach, the main
characteristics of these barriers may be reproduced using, firstly, four basic
macroscopic terms : the volume, surface, Coulomb and nuclear proximity en-
ergy terms and, secondly, shell and pairing energy contributions to explain
structure effects and improve quantitatively the results [10,11,12,13,14,15].

In a first paper [16] some coefficients and terms of the liquid drop model
mass formula and a specific nuclear radius have been fitted using a set of 1522
experimental nuclear masses. The purpose of the present work is to extend
this investigation to determine the relative efficiency of different more com-
plex combinations of terms of the liquid drop model to reproduce the masses
[17] of 2027 nuclei and to study, particularly, the separated influence of the
curvature energy, the different forms of the Wigner term and of different pow-
ers of the relative neutron excess I = (N — Z)/A. As suggested in [18] fits on
ground state masses alone have been prefered as was done with the Hartree-
Fock mass formulae to avoid that the parameters might be distorted by the
theoretical and experimental uncertainties associated with the barriers. The
second aim is to fit the experimental nuclear charge radii by different expres-
sions and to compare with the relative charge radii ry = Ry/A'Y3 derived
from the different mass formulae. Finally, the coefficients of the mass formu-
lae using these different expressions for the charge radius are determined as



well as their accuracy. Another motivation of this work is to improve later
the coefficients of the generalized liquid drop model previously proposed [11].
Recently, the mutual influence of terms in semi-empirical formulae has been
deeply investigated [19].

2 Nuclear binding energy

The nuclear binding energy By, (A,Z) is the energy needed for separat-
ing all the nucleons constituting a nucleus. It is related to the nuclear mass
M, by

Bnucl(Ayz) = Zmp+NmN —Mnm(A,Z) (1)
B (A,Z) may thus be connected to the experimental atomic masses given
in [17] since :

Mpm(A, Z) = Mym(A, Z) — Zme + Be(Z). (2)

The binding energy B.(Z) of all removed electrons is [18]

B(Z) = aqZ** + by 2>, (3)
with ag = 1.44381 x 1075 MeV and b, = 1.55468 x 10712 MeV.

Different subsets of the following expansion of the nuclear binding energy
in powers of A~'/3 and |I| have been considered :
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The first term gives the volume energy corresponding to the saturated ex-
change force and infinite nuclear matter. I2A is the asymmetry energy of the
Bethe-Weizsacker mass formula. The second term is the surface energy. It takes
into account the deficit of binding energy of the nucleons at the nuclear surface
and corresponds to semi-infinite nuclear matter. The Bethe-Weizsacker mass
formula does not consider the dependence of the surface energy on I. This
term was originally contained in the Weizsécker formula [1]. The third term is
the curvature energy. It is a correction to the surface energy resulting from lo-
cal properties and consequently depending on the mean local curvature. This



term is considered in the Lublin-Strasbourg Drop (LSD) model [20], the TF
model [5] but not in the FRLDM [3]. In the three first terms a dependence on
|I| and I, the so-called malacodermous term, has been envisaged since they
have been proposed to better reproduce the fission barrier heights [21] and to
simulate the softening of the surface of highly neutron-rich nuclei [22]. The
A" term appears when the surface term is extended to include higher order
terms in A~'/3 and I. The fifth term gives the decrease of binding energy due
to the repulsion between the protons. In the Bethe-Weizsécker mass formula
this Coulomb energy is proportional to Z(Z — 1). Different formulae will be
assumed for the charge radius. The Z2/A term is the diffuseness correction
to the basic sharp radius Coulomb energy term (called also the proton form-
factor correction to the Coulomb energy in [3]) and the term proportional to
Z43 | A3 is the charge exchange correction term.

The pairing energy has been calculated with the following expressions

used for spherical nuclei in the recent version of the Thomas-Fermi model [5].
For odd Z, odd N and N=Z nuclei

Epaiy = 4.8/NV3 14.8/7'3 —6.6/A*3 —30/A MeV. (5)

For odd Z, odd N and N # Z nuclei

Epair = 4.8/NV3 1 4.8/7"3 — 6.6/A*3 MeV. (6)

For odd Z, even N nuclei

Epair = 4.8/ 2V MeV. (7)

For even Z, odd N nuclei

Epair = 4.8/ N3 MeV. (8)

For even Z, even N nuclei
Epair = 0. (9)

The theoretical shell effects used in the TF model (7% column of the
table in [4] and [5]) have also been retained since they allow to reproduce
correctly the masses from fermium to Z = 112 [23]. They have been calcu-
lated from the Strutinsky shell-correction method and previously to the other
coefficients of the TF model. The fits on nuclear masses depend necessarily
on the choice of the selected theoretical shell effects or the formulae chosen to



describe these shell effects. The sign for the shell energy term comes from the
adopted definition in [4]. It gives, for example, a contribution of 12.84 MeV
to the binding energy of 2°Pb.

The Wigner energy allows to reproduce the kink in the nuclear mass
surface that is not a shell effect in the usual sense. It depends on I and
appears in the counting of identical pairs in a nucleus. Different expressions
are considered. The first expression is simply W|I| [24]. Its effect is to decrease
the binding energy when N # Z.

The congruence energy term is given by :

Econg = —10exp(—4.2|1]) MeV. (10)

It represents an extra binding energy associated with the presence of congruent
pairs [5].

Within an Hartree-Fock approach [25] it has been assumed that there
is nothing compelling about an exponential representation and a gaussian
expression

E = Viy exp(—A\I?) (11)
is just as acceptable.

Another term has also been proposed in [25]

E = BIN = Z| exp |~ (A/A0)?]. (12)

We have also tested separately two other possible expressions

E=pIN = Z| exp[=(A/A)] (13)
and
[N~ 2]
T A "

The term of nuclear proximity energy does not appear in the binding energy
of the ground state since it becomes effective only for necked shapes but not
for slightly deformed ground states.



3 Coefficients of the mass formulae

To obtain the coefficients of the different expansions by a least square
fitting procedure, the masses of the 2027 nuclei verifying the two conditions
: N and Z higher than 7 and the one standard deviation uncertainty on the
mass lower than or equal to 150 keV [17] have been used. These restrictions
are not employed by all investigators [19,26]. The root-mean-square deviation
o defined by

Y [Mp), — Mg,,]?
02: [ Thn Exp] (15)

has been used to determine the relative efficiency of the different selected
sets of terms since n > f where f is the number of fit parameters. A very
efficient software has been used. The extraction of standard errors on the fit
parameters seems very difficult but the errors are surely very weak. On the
other hand, the values of the last decimals of a coefficient can be changed in
counterbalancing by a change in the last decimals of another coefficient for
almost the same rms deviation.

In Table I, the improvement of the nuclear mass reproduction when ad-
ditional contributions are added to the basic A, AI%, A%3  A?/3[2 72/A\/3
terms is clearly displayed. The curvature energy is not taken into account.
The introduction of the pairing term is obviously necessary. The introduction
of a constant term improves slightly the adjustment and changes strongly the
surface energy coefficient. It induces also a severe discontinuity during the
transition from one to two-body shapes as in fission, fusion or « emission.
The congruence energy term at least with the fixed coefficients adopted here
(as in the LSD and TF models) is much less efficient to lower o than the
Wigner term W|I|. When the coefficients before the exponential and the ex-
ponent are free the congruence energy tends to the usual Wigner term since
the coefficient before the exponential diminishes while the exponent increases.
The diffuseness correction to the Coulomb energy and the standard Wigner
term W|I| can be used separately to strongly lower o. The Wigner energy
is approximately independent of the nuclear shape [24]. In a division into 2
fragments, all with the same value of |7, the form W|I| for the Wigner energy
jumps at scission to 2 times its original value, which leads to a discontinuity
of around 6.7 MeV of the potential energy at the scission point between the
nascent fragments for 2**Fm as an example. For the congruence energy the
discontinuity is also important : 3.9 MeV for this same nucleus. The Coulomb
diffuseness correction term has the main advantage to be almost continuous
at the scission point in the entrance or exit channels. The combination of the
Coulomb diffuseness correction term and the W|I| term allows to reach the
very satisfactory value o = 0.608 [3,7,20]. The A%/3|I| term is useful to improve



the accuracy of the expansion and is more effective than the A%3* term but
when the Wigner term and the Coulomb diffuseness correction factor term are
taken into account the introduction of the A?3|I|, A%3I* and A° terms are
ineffective.

In Table II, the efficiency of the curvature energy term with different 7
dependences is investigated without taking into account the Wigner contribu-
tion. When the Coulomb diffuseness correction is disregarded the introduction
of the term in A" allows to decrease o of 0.1 MeV. When the Coulomb dif-
fuseness correction is considered the term in A'/3 is ineffective . The addition
of a AY3I? term improves slightly the results. Supplementary terms in |/|
to calculate the volume, surface and curvature energies allow finally to reach
0=0.58 MeV. They are still more efficient than the I* terms. The curvature
energy has the advantage to be continuous at the scission point at least in
symmetric entrance or decay channels. It has the disadvantage that its value
(and its sign) lacks of stability.

These two first tables show a good convergency of the volume a, and
asymmetry volume k, constants respectively towards around 15.5 MeV and
1.7—1.9 . The variation of the surface coefficient is larger but a, evolves around
17-18 MeV. Small values of the surface coefficient favors quasi-molecular or
two-body shapes at the saddle-point of the potential barriers while large values
of a, promote one-body elongated shapes. As it is well known the surface
asymmetry coefficient k, is less easy to precise.

For the Bethe-Weizsécker formula the fitting procedure leads to

Boua(A, Z) = 15.5704A — 17.1215A4%/3 (16)
Z(Z —1)
Al/3
with 0=1.30 MeV. That gives rp=1.216 fm and k,=1.506. The o value is

explained by the non dependence of the surface energy term on the relative
neutron excess I.

—0.71056 —23.44961*A — Epuir — Espen

The mass formulae including a Wigner term given by the formulae
(12),(13) or (14) are examined in Table III. The values of Ay which minimize
the mass rms deviation are respectively 48, 35 and 40 for these three expres-
sions. They are determined with an accuracy of around 5 mass numbers. These
formulas for the Wigner energy are supposed to be approximately independent
of the nuclear shape. Their discontinuity at the scission point of fission or fu-
sion barriers is less important than that of the congruence and W|/| terms. For
example, for the expressions |N — Z| exp [—(A/48)%], 1.5|N — Z| exp [—(A/35)]
and 1.6 =21 and symmetric decay of the 2*Fm the discontinuities at the

1+(A/40)?
contact point of the nascent fragments are respectively 0, 0.05 and 2.2 MeV.



The first, fifth and eighth lines of the table indicate that within the sim-
plest form for the volume and surface energies , thus with only 7 parameters,
the r.m.s deviation on the masses is less than 0.6 MeV. The introduction of
a dependence on |I| and of the curvature energy lowers o of 0.04 MeV within
the expression (12) and of 0.02 MeV for the two last ones. The surface energy
coefficients are generally lower with these forms of the Wigner energy and,
consequently, rq is generally higher.

Within the Wigner term derived from the Hartree-Fock approach [6] and
taking Ay = 28 and A\ = 485 in the formulas (11) and (12) as derived using
the BSk2 Skyrme force the following formula is obtained

B = 15.4503 (1 - 1.7463]2) A — 175701 (1 - 1.5296]2) A3

0.6 222 Z2
_m =+ 11948Z — Epair — Eshell + 1.76967485[2
—0.2197|N — Z|e~ /%) an

with o = 0.623 MeV.

The accuracy can be improved in varying Ay and A :

B = 15.4121 (1 - 1.7972]2) A — 17.3059 (1 - 1.791112) A3

0.6¢222 72
~Tomg s 089617 — Epuiy — Eope + 225"

—0.4883| N — Z|e~(A/50 . (18)

It leads to o = 0.573 MeV and produces sizable changes in several of the
other parameters which proves the importance of the Wigner term and the
mutual influence of terms in the semi-empirical mass formulae [19].

In Table IV the efficiency of the charge exchange correction term in
Z4/3 /Al/ 3 is studied. The lines can be compared respectively to the 7% line of
table 1, 2" line of table 2, 8 line of table 1, 3" line of table 2, 6'* and 12t
lines of table 1 and 1 and 5™ lines of table 3. The only change is that the
diffuseness correction term in Z2/A has been replaced by the charge exchange
correction term. It is quite interesting to observe that the introduction of
these two terms separately leads to the same accuracy, the same value of the
charge radius, almost the same values of the surface coefficients and to small
changes of the volume coefficients. So the charge exchange correction term
is as efficient as the diffuseness correction term and there is no correlation
between these two terms and the charge radius and the surface coefficients
and weak correlation with the volume coefficients. The introduction of both
these two terms does not allow to improve the accuracy of the mass formulae



and leads to spurious values of the volume coefficient.

Finally, the shell and pairing energies, the diffuseness correction term
to the Coulomb energy, the charge exchange correction term and the Wigner
energy separately lead to significant reductions of the rms deviation while
the other terms increase the accuracy by only 2 or 3 per cent. A correlation
between the surface coefficient and the radius can be extracted. The relative
radius r¢ diminishes when the surface coefficient increases.

4 Nuclear charge radius

Experimentally and for nuclei verifying N and Z higher than 7 the set
of 782 ground state nuclear charge radii presented in ref. [27] indicates a rms
charge radii of 0.94944A'/3 which leads for the equivalent rms charge radius
(denoted by Q in ref. [28]) given by

5)
Ry = \/; <r?>12 (19)

to the value Ry = 1.2257 A3 fm with 0 = 0.124 fm. Other data have been
obtained recently [29]. In the adjustment to the nuclear masses displayed in the
tables I and II the reduced charge radius ro cparge converges to 1.22-1.23 fm
in good agreement with the experimental data for the charge radius. The
introduction of the expressions (12), (13) and (14) for the Wigner term leads
to slightly higher values.

The experimental data indicate that the ratio Ry/A'/3 is not strictly
constant. For example, Ry/A'Y? = 1.312 fm for *°Ca and R,/AY3 = 1.234
for #*Ca while Ry/AY? = 1.217 for **Pb and Ry/AY? = 1.201 fm for ?4Pb.
These Ry and rg values correspond to the Coulomb energy of a charged lig-
uid drop with constant charge density and spherical sharp surface. It must
not be confused with half-density radius derived from two-parameter Fermi
function or other parameters entering in other parametrisations of the charge
distribution.

In the adjustment to the experimental nuclear masses the nuclear mass
radius is not fitted. Root-mean-squared matter radii are given in Ref. [30]
for specific nuclei. For all isotopic series a decrease of the mass rms radius
is observed with increasing neutron number as for the charge radius. In this
mass range (A = 63 — 75) the radius of the neutron and proton distributions
are very similar. Global fits lead to an overall contraction of the nuclear radius
as T = |N — Z|/2 increases [31], a so called ”isospin shrinkage”. Recently, an



estimate of the neutron skin linear in the relative neutron excess I has been
extracted from experimental proton radii and observed mirror displacement
energies [32] and the coefficients have been also determined from antiprotonic
X-rays and radiochemical data [33].

Within a simple form of the mass formula including the Coulomb dif-
fuseness correction and the Wigner term given by the formula (13) but not
the dependence on the curvature energy and on |I| and I* the introduction of
the factor ro = 1.2257 deduced from the experimental charge radius leads to

B = 15.3543 (1 - 1.7445[2) A —17.2293 (1 - 1.5765]2) A3

0.6¢22? 22
—m + 124425 — Bpuir — By = 0.T641|N = Z]e= V™ (20)

and o = 0.615 MeV'.

More accurate formulae may be used to reproduce the mean behaviour
of the equivalent rms charge radius.

The expression

Ry = 1.0996 A + 0.653 fm (21)

leads to o = 0.066 fm. Its introduction in the above-mentioned mass formula
curiously diminishes the accuracy to o = 1.16 MeV. The same behaviour

is observed when the dependence in Z?/A is replaced by a dependence in
743 | AV/3,

The formula

1.4069

— 1/3
Ry = 1.17T18AY° + A1/3

fm (22)
leads to 0 = 0.064 fm, while for the corresponding mass formula ¢ = 0.929 MeV .

The adjustment to the experimental charge radii within the form pro-
posed in Ref.[34] gives

1.5938
Ro = 1.18184"% — 0.089 + — 7= fm (23)

with o = 0.064 fm and o = 0.900 MeV while the form selected in Ref.[35]
leads to

10



1.2046  1.5908
Am T

and o = 0.064 fm for the radius and 0.88 MeV for the corresponding mass
formula.

Ry = 1.1769A'3 + fm (24)

The form of the expression given the equivalent rms charge radius pro-
posed in Ref.[36]

2.8961
A2/3

gives a good accuracy o = 0.052 fm but ¢ = 0.765 MeV'.

Ry = 1.2332A'% + — 0.18688AYI fm (25)

The fact that improved formulae for the charge radius lead to signifi-
cantly poorer fits to the masses calls into question the reliability of the equiv-
alent uniform charge distribution as a link between charge radii and Coulomb
energy.

Finally a rms deviation for the charge radius of only 0.01 fm (fitted on
362 nuclei) has been obtained in Ref. [31] in expressing the charge mean square
radius by

r*=a+bA+cT (26)

for spherical nuclei and taking into account the deformation for the other
nuclei via a nucleonic promiscuity form factor P depending on the distance of
Z and N to the proton and neutron magic numbers.

To describe the main properties of the fusion, fission, cluster and « emis-
sion potential barriers in the quasi-molecular shape path, the formula

Ry = 1.28A4Y% —0.76 + 0.8A7'/3 (27)

proposed in Ref.[34] for the equivalent rms radius has been retained in the
GLDM [10,11,12,13,14,15,16]. This formula coming from the Droplet Model
approach simulated a small decrease of the density with increasing mass. This
does not seem corroborated by the experimental data [27] at least on the charge
radius. Nevertheless without changing the surface and Coulomb energies which
are shape-dependent terms, the adjustment of the volume energy coefficients
and the introduction of a pure Wigner term leads to

B = 15.5209 (1 — 1.93412) A — 17.9439 (1 - 2.612) A2/3

0.6e2 22 72
_1'28141/3 —0.76 + 0.8A4-1/3 + 21798? — Epair

— Egpen — 27.21|1] (28)
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and o = 0.686 MeV . The introduction of other terms can still allow to dimin-
ish o.

The Fig. 1 displays the difference between the theoretical and experi-
mental masses within a formula of Table I recalled below :

B = 15.3543 (1+0.0284|1] — 1.88371%) A

~17.0068 (1+ 0.131|1| — 2.2741%) A*/?
0.6e2 22 Z?

_W + 10339Z — Epair — Eshell — 1627|]‘ (29)

with ¢ = 0.605 MeV. For most of the nuclei with A higher than 110 the
difference between the theoretical and experimental masses is less than 1 MeV.

0 50 100 150 200 250

Fig. 1. Difference (in MeV) between the theoretical and experimental masses for the
2027 selected nuclei as a function of the mass number.

5 Summary and conclusion

The coefficients of different mass formulae derived from the liquid drop
model and including or not the curvature energy, the Coulomb diffuseness
correction energy, the charge exchange correction term, different forms of the
Wigner term and different powers of the relative neutron excess I have been
determined by a least square fitting procedure to 2027 experimental atomic
masses.

The Coulomb diffuseness correction Z?/A term or the charge exchange
correction Z4/3/AY3 term plays the main role to improve the accuracy of the
mass formula. The Wigner term and, with a smaller effect, the curvature en-
ergy can also be used separately for the same purpose but their coefficients are

12



unstable. The introduction of an |I| dependence in the surface and volume en-
ergies improves only slightly the efficiency of the expansion. An I* dependence
and a constant term are not worth including. Expressions for the Wigner term
leading to small discontinuities at the scission point of the potential barriers
are as efficient as the W|I| term. Different expressions reproducing the exper-
imental nuclear charge radius are provided. The different fits lead to a surface
energy coefficient of around 17-18 MeV and a relative equivalent rms charge
radius ro of 1.22-1.23 fm.
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