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ABSTRACT

We describe the results of 3D numerical simulations of oxygen shell burning and hydrogen core burning in a 23M�
stellar model. A detailed comparison is made to stellar mixing-length theory (MLT) for the shell-burning model.
Simulations in 2D are significantly different from 3D, in terms of both flow morphology and velocity amplitude.
Convective mixing regions are better predicted using a dynamic boundary condition based on the bulk Richardson
number than by purely local, static criteria like Schwarzschild or Ledoux. MLT gives a good description of the
velocity scale and temperature gradient for shell convection; however, there are other important effects that it does not
capture, mostly related to the dynamical motion of the boundaries between convective and nonconvective regions.
There is asymmetry between upflows and downflows, so the net kinetic energy flux is not zero. The motion of con-
vective boundaries is a source of gravity waves; this is a necessary consequence of the deceleration of convective
plumes. Convective ‘‘overshooting’’ is best described as an elastic response by the convective boundary, rather than bal-
listic penetration of the stable layers by turbulent eddies. The convective boundaries are rife with internal and interfacial
wave motions, and a variety of instabilities arise that induce mixing through a process best described as turbulent
entrainment.We find that the rate at whichmaterial entrainment proceeds at the boundaries is consistent with analogous
laboratory experiments and simulation and observation of terrestrial atmospheric mixing. In particular, the normalized
entrainment rate E ¼ uE/�H is well described by a power-law dependence on the bulk Richardson number RiB ¼
�bL/�2

H for the conditions studied, 20P RiB P 420. We find E ¼ ARi�n
B , with best-fit values log A ¼ 0:027 � 0:38

and n ¼ 1:05 � 0:21. We discuss the applicability of these results to stellar evolution calculations.

Subject headinggs: hydrodynamics — instabilities — nuclear reactions, nucleosynthesis, abundances —
stars: evolution — stars: general — stars: interiors — supernovae: general —
turbulence — waves

1. INTRODUCTION

As a consequence of unresolved discrepancies between stel-
lar evolutionmodels and observations of (1) stellar surface abun-
dances (e.g., Lattanzio & Lugaro 2005; Pasquini et al. 2004;
Charbonnel&Talon 1999) and (2) fundamental stellar parameters
(e.g., radius and luminosity; Ribas 2006), there is increasing inter-
est in better understanding the hydrodynamic transport processes
operating in stellar interiors. Often, observation and theory can be
brought into better agreement through the application of addi-
tional mixing. However, the current descriptions of mixing used
in evolution codes are based on woefully incomplete physical
models that have parameters that are often calibrated to match a
restricted set of observables.

The general approach used to describe stellar mixing, beyond
the homogenization of material within convective regions, is to
treat it as a diffusive process. For instance, composition is evolved
in the Lagrangian frame according to an equation of the form

dXi

dt
¼ @Xi

@t

� �
nuc

þ @

@mr

D̂
@Xi

@mr

� �
: ð1Þ

The terms on the right-hand side include composition changes
due to nuclear burning and diffusive mixing. The physical model
of mixing is encapsulated in the Lagrangian diffusion coefficient
D̂, which is in turn written in terms of the Eulerian oneD, as D̂ ¼
(@mr/@r)

2D. The formulation of the diffusivity D is generally

based on the product of a velocity and length scale D � vl, or as
the ratio of a length scale squared and a timescale D � l 2/� . The
length, time, and velocity scales used in calculating D are almost
exclusively order-of-magnitude estimates based on linear insta-
bility theory. The actual mixing being represented, however, is
almost always a nonlinear, turbulent process in reality.
A large number of fluid instabilities have been identified for

which diffusion coefficients of the type discussed have been for-
mulated. Examples include rotational instabilities (Pinsonneault
et al. 1989), the effects of magnetic torques (Spruit 2002), semi-
convection (Langer et al. 1983; Spruit 1992), and internal waveY
induced mixing (Garcı́a López & Spruit 1991; Montalban 1994;
Young et al. 2003). A fairly comprehensive discussion of imple-
menting mixing processes in this ‘‘diffusive’’ spirit can be found
in Heger et al. (2000, 2005).
Hydrodynamic simulation extends our knowledge of fluid in-

stabilities into the nonlinear regime and provides insight into the
transport processes operating throughout a stellar interior. Direct
contact between hydrodynamic simulation and stellar evolution
modeling is a very recent development and is beginning to ma-
ture alongside improved computing capabilities. One of the ear-
liest examples of directly calibrating a one-dimensional (1D) stellar
evolution code against the results of a multidimensional hydro-
dynamic simulation is the work of Herwig et al. (1997), who ex-
amined the impact of mixing on the nucleosynthesis in asymptotic
giant branch (AGB) stars. In this work, a diffusion coefficient was
used that represented the exponentially decaying ‘‘overshoot’’
velocity field seen in the two-dimensional (2D) convection simu-
lations of Freytag et al. (1996). A growing but still small num-
ber of groups are now studying the hydrodynamics of stellar
interiors with three-dimensional (3D) simulation. Examples
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include simulations of the core heliumflash using the full-starmod-
eling code Djehuty (Dearborn et al. 2006; Eggleton et al. 2007)
and core carbon burning in a white dwarf (Kuhlen et al. 2006)
using anelastic hydrodynamic methods (Glatzmaier 1984).

In this paper we discuss new, fully compressible simulations
of 3D, turbulent, thermally relaxed, nearly adiabatic convection
(high Péclet number) relevant to deep interior regions in stars (i.e.,
to most stellar mass that is convective, but not mildly subphoto-
spheric and surface regions).We simulate oxygen shell burning on
its natural timescale and core hydrogen burning driven at 10 times
its natural rate. The simulations develop a robust quasi-steady be-
havior in a statistical sense, with significant intermittency. We
analyze this statistical behavior quantitatively and compare it to
predictions of astrophysical mixing-length theory (MLT; Böhm-
Vitense 1958). MLT gives a good representation of many aspects
of convection but omits others (especially wave generation and
mass entrainment) that are related to the dynamical behavior of
stably stratified layers adjacent to the convection.

In x 2 we briefly summarize some results of the study of tur-
bulent entrainment in geophysics, to prepare the reader for its ap-
pearance in our astrophysical simulations. This process is not
included in the standard approach to stellar evolution (Cox &
Giuli 1968; Clayton 1983; Kippenhahn &Weigert 1990; Hansen
& Kawaler 1994). In x 3 we discuss our numerical and theoret-
ical tools. In x 4we present our simulations of oxygen shell burn-
ing, which attain a thermal steady state (this is possible because
of the rapidity of nuclear heating and neutrino cooling). In x 5 we
discuss a less advanced burning stage, core hydrogen burning,
which we are able to examine with the use of an artificially en-

hanced hydrogen burning rate (by a factor of 10). We find that
the behavior is similar to the oxygen burning shell, suggesting that
our results may have broad application for stellar evolution. In x 6
we compare our results to the assumptions of MLT, and in x 7 we
show that our results lead to a simple model of turbulent entrain-
ment, an effect not in MLT nor in standard stellar evolutionary
calculations.

This paper is the first in a series. In subsequent papers, we incor-
porate the ‘‘empirical’’ convection model developed in this paper
into the TYCHO stellar evolution code (Young & Arnett 2005)
and begin to assess its influence on stellar evolution, on nucleo-
synthetic yields, and on the structure of supernova progenitors.

2. TURBULENT ENTRAINMENT

The presence of a turbulent layer contiguous with a stably strat-
ified layer is common in both astrophysical and geophysical flows.
Turbulence in stratified media is often sustained by strong shear
flows or thermal convection and bound by a stabilizing density in-
terface. Over time, the turbulent layer ‘‘diffuses’’ into the stable
layer and the density interface recedes, thus increasing the size of
the mixed region. The basic features of this turbulent entrain-
ment problem are illustrated in Figure 1. The rate at which the
density interface recedes into the stable layer uE ¼ @ri/@t is called
the entrainment rate, and its dependence on the parameters char-
acterizing the turbulent and the stable layers has been the subject
of numerous experimental and theoretical studies. This process is
generally ignored in stellar evolutionary studies.

Experimental studies have mostly been of ‘‘mixing box’’
type, which involves a tank of fluid with a turbulent layer and a

Fig. 1.—Diagram illustrating the salient features of the density and velocity field for the turbulent entrainment problem. Three layers are present: a turbulent convection
zone is separated from an overlying stably stratified region by a boundary layer of thickness h and buoyancy jump �b � N 2h. The turbulence near the interface is
characterized by integral scale and rms velocity LH and �H , respectively. The stably stratified layer with buoyancy frequency N (r) propagates internal waves that are
excited by the adjacent turbulence. A shear velocity field v?(r), associated with differential rotation, may also be present. After Strang & Fernando (2001).
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density-stratified layer. The turbulence is generated by thermal
convection or an oscillatingwiremesh, and density stratification is
imposed by either a solute or thermal gradient (Turner 1980).
Complementary to these shear-free mixing box models are shear-
driven models. Shear-driven turbulence experiments involve ei-
ther a recirculation track that propels one layer of fluid above a
stationary layer or a rotating plate in contact with the fluid that
drives a circulation in the upper layer. Shear instabilities sustain a
turbulentmixed layer in the overlying fluid that entrains fluid from
the lower, stationary layer (Kantha et al. 1977; Strang&Fernando
2001). In all of these laboratory experiments, a variety of increas-
ingly sophisticated flowvisualization techniques are being used to
study both the overall entrainment rate uE and the physical mech-
anisms that underly the entrainment process.

One of the primary conclusions of these studies is that the
entrainment rate depends on a Richardson number, which is a
dimensionless measure of the ‘‘stiffness’’ of the boundary rela-
tive to the strength of the turbulence. In shear-free turbulent
entrainment the bulk Richardson number,

RiB ¼
�bL

�2
; ð2Þ

is most commonly studied. Here�b is the buoyancy jump across
the interface, � is the rms turbulence velocity adjacent to the
interface, andL is a length scale for the turbulentmotions,which is
often taken to be the horizontal integral scale of the turbulence
near the interface. The relative buoyancy is defined by the integral

b(r)¼
Z
ri

r

N 2 dr; ð3Þ

where N is the buoyancy frequency defined by

N 2 ¼�g
@ ln �

@r
� @ ln �

@r

���
s

� �
: ð4Þ

The entrainment coefficient E is the interface migration speed
ue normalized by the rms turbulent velocity at the interface E ¼
uE/� and is generally found to obey a power-law dependence on
RiB,

E ¼ ARi�n
B : ð5Þ

The exponent is usually found to lie in the range 1P nP 1:75
and has been the subject of many theoretical studies of the en-
trainment process. Dimensional analysis suggests that RiB should
be the controlling parameter, so long as microscopic diffusion
plays a minor role (Phillips 1966). Basic energetic arguments in
which the rate of change of potential energy due to mixing is
assumed to be proportional to the turbulent kinetic energy avail-
able at the interface lead to an exponent of n ¼ 1 (e.g., Linden
1975). This same power-law exponent has also been derived for
models of the growth of the planetary boundary layer due to tur-
bulent entrainment by penetrative convection (Stull 1973, 1976a;
Tennekes 1973; Sorbjan 1996).

The normalization of the entrainment coefficient A varies sig-
nificantly between the various laboratory and field studies con-
ducted, with recent values found in the range 0:1 < A < 0:5 (e.g.,
Stevens & Bretherton 1999). The discrepancy among the normal-
ization constants has been called the ‘‘A-dilemma’’ (Bretherton
et al. 1999). A review (up to 1991) of experimental measures of

the parameters in the entrainment law of equation (5) is tabu-
lated in Fernando (1991), and a recent review of entrainment
models used in the atmospheric sciences is discussed by Stevens
(2002).
The experimental and theoretical models discussed above are

generally motivated by geophysical problems (see, e.g., Lilly
2002a, 2002b) but are directly relevant to the conditions found in
stellar interiors. The bulk Richardson numbers that characterize
stellar convective boundaries fall within the same parameter range
(10 < RiB < 500), and the background stratifications possess
a similar buoyancy structure, so that geophysical models can
serve as a guide to better understand the stellar case.

3. THE NUMERICAL TOOLS

3.1. One-dimensional Stellar Evolution

The hydrodynamic simulations that we study in this paper are
of two distinct phases in the evolution of a 23M� supernova pro-
genitor: main-sequence core convection, and convective oxygen
shell burning. The initial conditions taken from 1D stellar models
evolved with TYCHO (Young & Arnett 2005) an open source
stellar evolution code.3 A choice of standard 1D stellar evolution
procedures is used. The MLT as described in Kippenhahn &
Weigert (1990) is used with instantaneous mixing of composi-
tion in the convectively unstable regions. The limits of the con-
vection zones are determined using the Ledoux criterion, which
incorporates the stabilizing effects of composition gradients. Semi-
convective mixing has been turned off. Nuclear evolution is fol-
lowed with a 177 element network using the rates of Rauscher
& Thielemann (2000). Opacities are from Iglesias & Rogers
(1996) and Alexander & Ferguson (1994) for high- and low-
temperature regimes, respectively. The solar abundance of Grevesse
& Sauval (1998) are used. Although more recent abundance de-
terminations have been made (Asplund et al. 2005), the impact
on the stellar structure of the models presented here is small, and
minor variations in the abundances have a negligible influence
on the development of the hydrodynamic flow.

3.2. Multidimensional Reactive Hydrodynamics with PROMPI

The core of our multidimensional hydrodynamics code is the
solver written by Fryxell et al. (1991), which is based on the di-
rect Eulerian implementation of the piecewise parabolic method
(PPM; Colella & Woodward 1984) with generalization to non-
ideal gas equation of state (Colella & Glaz 1985). This code
solves the Euler equations, to which we add nuclear reactions and
radiative diffusion through an operator-split formulation. The
complete set of combustive Euler equations, including diffusive
radiative transfer, can be written in state-vector form,

@Q

@t
þ:=% ¼ S; ð6Þ

with the state vector

Q �

�

�u

�E

�Xl

2
6664

3
7775; ð7Þ

3 See http://chandra.as.arizona.edu/~dave/tycho-intro.html.
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the flux vector

% �

�u

�uuþ p

(�E þ p)uþ Fr

�Xlu

2
6664

3
7775; ð8Þ

and the source vector

S �

0

�ggg

�u = gggþ ��net

Rl

2
6664

3
7775; ð9Þ

where E ¼ EI þ EK is the total energy per gram, consisting of
internal and kinetic energy components, and �, p, u, ggg, and T
are the density, pressure, velocity, gravitational force field, and
temperature, respectively. The net energy source term due to nu-
clear reactions and neutrino cooling is �net ¼ �burn þ �cool, and the
time rate of change of composition Xl due to nuclear reactions is
denoted Rl. The radiative flux is Fr ¼ �kr9T , with radiative
‘‘conductivity’’ kr ¼ 4acT 3/(3�R�) and Rosseland mean opacity
�R. Self-gravity is implemented assuming that the interior mass at
each radius is distributed with spherical symmetry. The mass in-
terior to the inner boundary of the hydrodynamics grid is adopted
from the TYCHO stellar model.

The stellar models, which are calculated on a finely meshed
Lagrangian grid, are linearly interpolated onto the Eulerian hydro-
dynamics grid taking into account the subgrid representation of
mass used in the PPM scheme.Mapping themodels leads to small
discrepancies in hydrostatic equilibrium. An equilibration to hy-
drostatic balance occurs through the excitation and then damping
of low-amplitude, standing, predominantly radial pressure waves
within the computational domain. These low-amplitude waves,
which are well described by the linearized wave equation, have a
negligible effect on the convective flow.

To save computational resources, we simulate carefully chosen
subregions of the star. Thus, these calculations are local models of
convection in the box in a star tradition. The advantage of local
convection models is that higher effective resolution can be used
than is currently possible in global circulation models. This ap-
proach, however, precludes investigation of the lowest order
modes of flow, and we do not yet include rotation or magnetic
fields, which are best studied using global domains. The boundary
conditions used are periodic in angular directions and stress-free
reflecting in the radial direction.

Our simulation code, dubbed PROMPI, has been adapted to par-
allel computing platforms using domain decomposition and the
sharing of a three-zone layer of boundary values and uses the MPI
message passing library to manage interprocess communication.

4. OXYGEN SHELL BURNING

We have evolved a 23M� stellar model with the TYCHO code
to a point where oxygen is burning in a shell that overlies a
silicon-sulfurYrich core. Approximately 60% of the oxygen fuel
available for fusion has been depleted at the time we begin the
hydrodynamic simulation, when the star is �2 ; 106 yr from
the zero-age main sequence. Carbon-, helium-, and hydrogen-
burning shells are also present contemporaneously at larger radii
in the classic ‘‘onion skin’’ structure (Hoyle 1946). In one of
the models presented here (ob.2d.e), which is also discussed in
Meakin & Arnett (2006), we adopt an outer radius that encom-
passes both the oxygen- and carbon-burning shells. In this paper,

however, we restrict our analysis to the oxygen shell burning
convection zone and the stable layers that bound it.

The oxygen shell burning model affords us the opportunity
to study a thermally relaxed model because the thermal balance
is determined by the very large neutrino cooling rates rather
than the much lower radiative diffusion timescale (Arnett 1996,
pp. 284Y292). Neutrinos dominate the energy balance in the
stable layers so that the stellar structure and the nature of con-
vection are determined by the interplay between nuclear burning
and neutrino emission (Aufderheide 1993; Arnett 1972). The
effects of radiative diffusion are both unresolved and energet-
ically unimportant during these evolutionary phases and have
not been included in the oxygen shell calculations for compu-
tational efficiency.

The radial profile of the simulated region is presented in Fig-
ure 2. The temperature and density profiles betray the complex
structure of the model, including the narrow burning shell that
resides at the very base of the convection zone, which is coin-
cident with the temperature peak. The initial extent of the con-
vection zone can be identified by the plateau in oxygen mass
fraction at 0:43 < r9 < 0:72 (where r9 ¼ r/109 cm). Character-
istic of shell-burning regions, the entropy gradient is quite steep
at the boundaries of the convection zone and gives rise to peaks
in the buoyancy frequency at those locations. The initial location
of the upper convective boundary is coincident with a small
stable layer at r � 0:72 ; 109 cm, which is overwhelmed by the
convective flow that develops in the simulation (see x 4.1). A
new boundary forms where the stratification again becomes sta-
bilizing at rk 0:8 ; 109 cm. This mixing is shown in the change
in 16O abundance (Fig. 2, top right panel ) after 400 s.

In Table 1 we list the 25 nuclei used in our network. This
network reproduces to within 1% the energy generation of the
full 177 element network used to evolve the 1D TYCHOmodel
for the simulated conditions, including oxygen- and carbon-
burning shells. During carbon burning the dominant reactions
are 12C(12C, �)20Ne and 12C(12C, p) 23Na, leaving an ash of
20Ne, 23Na, protons, and alpha particles. 20Ne is photodisinte-
grated through the 20Ne(�, �)16O reaction. The dominant reac-
tions during oxygen burning are 16O(16O, �)28Si, 16O(16O, p)31P,
and 16O(16O, n)31S, leaving an ash of predominantly 28Si and 32S.
Neglecting the nonalpha chain species 23Na, 31P and 31S can affect
the net energy generation rate during carbon and oxygen burning
by a factor of a few under the conditions studied here. The reaction
rates, including 12C(�, �)16O, are from Rauscher & Thielemann
(2000).

Nuclear evolution is time advanced using the same reaction net-
work subroutines as the TYCHO code and uses implicit differenc-
ing (Arnett 1996). We include cooling by neutrino-antineutrino
pair emission, denoted �cool , which results fromphoto, pair, plasma,
bremsstrahlung and recombination processes (Beaudet et al. 1967;
Itoh et al. 1996).

The Helmholtz equation-of-state code of Timmes & Swesty
(2000) is used to represent the ion and electron pressure with an
arbitrary degree of electron degeneracy. With our 25 nuclei net-
work, the initial conditions are thermodynamically consistentwith
the initial TYCHO model to better than a few percent at all radii
after mapping to the hydrodynamics grid.

We calculate oxygen shell burning models in 2D and 3D. Our
baseline model, labeled ob.2d.c, is a 90� wedge embedded in the
equatorial plane with radii encompassing the oxygen-burning
convective shell and two stable bounding layers. The effects of
dimensionality on the oxygen-burning convective shell are ex-
plored with a 3D model ob.3d.B, which has an angular extent of
27 deg2. The influence of the upper boundary was studied with
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model ob.2d.e, which includes the overlying carbon-burning con-
vective shell as well (additional details concerning this model are
presented in Meakin & Arnett 2006). A preliminary resolution
study is undertaken with model ob.2d.C, which uses the same
domain limits but twice the linear resolution of the baselinemodel.
Properties of the oxygen shell burning models presented in this
paper are summarized in Table 2.

4.1. The Correct Mixing Boundary

Convection is initiated through random low-amplitude (0.1%)
perturbations in density and temperature applied to a region in
the center of the convectively unstable layer on a zone-by-zone
basis. (Two additional simulation models with the same charac-
teristics as ob.2d.c were calculated that used perturbations with
larger amplitudes [1%] and a low-order mode distribution. The

development of the convective flow was found to be insensitive
to these differences.) The role played by the perturbations is to
break the angular symmetry of the initial model and seed rising
and sinking plumes whose growth is driven by nuclear burning,
neutrino cooling, and the slightly superadiabatic background
gradient imprinted in the initial TYCHO model. As the plumes
rise, they penetrate the original convective boundary, which was
determined in the TYCHO code using the Ledoux criterion. The
initial evolution of the flow is presented in a time series of snap-
shots in Figure 3; the light yellow contour shows the initial outer
convective boundary.
The location of the initial outer boundary can be seen as a small

bump in the initial profile of the buoyancy frequency presented in
Figure 2 at radius r � 0:72 ; 109 cm. The reason the boundary is
stable in the 1Dmodel but did not survive in the multidimensional

Fig. 2.—Radial profile of the simulated region for the oxygen shell burning models. The thin lines indicate the initial conditions, and the thick lines indicate the 3D
model at t ¼ 400 s. Top left: Temperature and density. Top right: Mass fraction of 16O. Bottom left: Squared buoyancy frequency. Bottom right: Buoyancy.
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simulation is because of the local nature of the Ledoux criterion
used. This can be appreciated by the fact that although the buoy-
ancy frequency at this location is positive, and hence locally stable
to convective turnover, the buoyancy jump across this region is
very small, �b � 3 ; 106 cm s�2, compared to the turbulent
kinetic energy in the adjacent flow, by which it is easily over-
whelmed. This type of inconsistency can be relatively easily re-
moved from 1D simulations by using a parameter akin to the bulk
Richardson number (eq. [2]) to characterize convective bound-
aries in place of the Ledoux or Schwarzschild criteria. For the
original outer boundary RiB P1, a condition under which a bound-
ary is expected to mix on an advection timescale, akin to the ex-
pansion of turbulence into a homogenous medium.

The relationship between RiB and the traditional Schwarz-
schild and Ledoux criteria can be elucidated by writing the buoy-
ancy frequency in terms of the well-known ‘‘nablas’’ used in
stellar evolution,

N 2 ¼ g�T

HP

9ad �9s þ
’

�T

9	

� �
; ð10Þ

where9 ¼ (d ln T /d ln p),9s is the gradient of the stellar back-
ground, 9ad is the gradient due to an adiabatic displacement,
9	 ¼ (d ln 	/d ln p) is the mean molecular weight gradient, and
the thermodynamic derivatives are �T ¼ �(d ln �/d ln T ) and
’ ¼ (d ln �/d ln 	). Therefore, the Ledoux criterion is simply

N 2 > 0: ð11Þ

The Schwarzschild criterion is the same, but with the stabilizing
effect of the mean molecular weight gradient9	 neglected. For
comparison, the bulk Richardson number can be written as RiB �
N 2hL/�2, where h is some measure of the boundary width. A
convective boundary will start to become stabilizing when

N 2 k�2= hLð Þ: ð12Þ

This criterion is based on a finite threshold for stability that
takes into account the strength of the convective turbulence. In
addition, the bulk Richardson number is more than a simple sta-
bility criterion; it is also an indicator of the rate at which boundary

erosion will proceed. We conclude that the correct criterion for
determining the extent of a convective zone is neither the Ledoux
nor the Schwarzschild criterion, which are both static, linear,
and local criteria, but a dynamic boundary condition, based on
the bulk Richardson number, which we discuss in more detail
in x 7.

4.2. Time Evolution

The rich dynamics taking place at the convective boundary is
apparent in the time evolution of the 3D flow presented in Fig-
ure 4, which provides a global view of the evolution. The top
panel shows the evolution in time and radius of the oxygen abun-
dance gradient, represented by a color map in which light is large
and dark is small. At the beginning of the simulation ( far left) the
colors are smooth as the turbulence has not yet developed. The
light line near the bottom of the panel is the lower boundary of
the convective shell, where oxygen is separated from the silicon-
sulfur core below. The short horizontal band at r � 0:72 ; 109 cm
is the initial weakly stable convective boundary discussed above;
it is overwhelmed in the first 100 s by convection. After �300 s
the abundance distribution has approached a quasiYsteady state,
with slowgrowth of the convective region. The bottomof the con-
vection zonemoves downward, but at a much slower rate than the
upper boundary moves outward. The mottled appearance in the
convection zone is due to the ingestion of new oxygen entrained
from above, followed by turbulent mixing. At the top boundary of
the convection zone an oscillatory behavior can be seen, and in the
overlying stable region wave motions are apparent.

The bottom panel in Figure 4 shows the radial profile of the
kinetic energy, which illustrates a major feature of the convec-
tion: intermittency. While these simulations are well described
by a statistical steady state over a few convective turnover times,
at any instant the fluctuations are significant. The flow is episodic,
with bursts of activity followed by lulls. The bursts in kinetic en-
ergy in the convection zone are seen to induce wave trains in both
the upper and lower stable layers. Characteristic of g-modes, the
phase velocity (orientation of the wave crests) is orthogonal to the
group velocity (direction of energy transport) in these wave trains,
which can be seen by comparing the composition and kinetic en-
ergy profiles.

4.3. Quasi-steady Oxygen Shell Burning Convection

Following the transient readjustment of the outer boundary,
the oxygen-burning convective shell attains a quasi-steady char-
acter. In Figure 5 we present the time evolution of the integrated
internal, gravitational, and kinetic energy. The energy is calculated
by forming horizontal averages of the flow properties and then

TABLE 2

Summary of Oxygen Shell Burning Models

Parameter ob.3d.B ob.2d.c ob.2d.C ob.2d.e

rin, rout (10
9 cm)................ 0.3, 1.0 0.3, 1.0 0.3, 1.0 0.3, 5.0

�
, �� (deg).................... 30, 30 90, 0 90, 0 90, 0

Grid zoning ....................... 400 ; (100)2 400 ; 320 800 ; 640 800 ; 320

tmax (s)............................... 800 574 450 2,400

vconv (107 cm s�1) ............. 0.8 2.0 1.8 1.8

tconv (s) .............................. 103 40 44 44

Ṁiju
a (10�4 M� s�1) ......... 1.1 1.33 1.25 1.3

Ṁijl
a (10�4 M� s�1).......... �0.23 �0.52 �0.5 �0.5

a The subscripts u and l refer to the upper and lower convective shell bound-
ary, respectively.

TABLE 1

Nuclei Included in Reduced Nuclear Reaction Network

Element Charge Atomic Weight

Helium.................................... 2 4

Carbon.................................... 6 12

Oxygen................................... 8 16

Neon....................................... 10 20

Sodium ................................... 11 23

Magnesium............................. 12 24

Silicon .................................... 14 28

Phosphorus............................. 15 31

Sulfur...................................... 16 32, 34

Chlorine.................................. 17 35

Argon ..................................... 18 36, 38

Potassium ............................... 19 39

Calcium .................................. 20 40, 42

Titanium ................................. 22 44, 46

Chromium .............................. 24 48, 50

Iron......................................... 26 52, 54

Nickel ..................................... 28 56

Note.—Network also includes electrons, protons, and neutrons.
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assuming a full spherical geometry. The gravitational energy con-
tribution from material on the computational grid is calculated
according to

EG �
Z

GM rð Þ dM
r

dr; ð13Þ

where the mass increment is dM ¼ 4�r 2h�i and the integral is
taken over the radial limits of the grid.
The total kinetic energy levels off in all of the models by t �

300 s. The 2D models are characterized by a much larger overall
kinetic energy. The total kinetic energy settles down to a slow in-
crease as the oxygen shell evolves; this is true for both 2D and
3D.
The radial profiles of the rms velocity fluctuations are presented

in Figure 6 for the 2D and 3D models. The velocity fluctuation
amplitudes in all of the 2D models are higher than the 3D model
by a factor of �2. The 2D models also assume a significantly
different radial profile than the 3Dmodel and a flow structure that
is dominated by large convective vortices that span the depth of
the convection zone. The signature of these large eddies is ap-
parent in the horizontal velocity components, as well as the fairly
symmetric shape of the radial velocity profile within the convec-
tion zone. The velocity components in the 3Dmodel reveal an up-
flowing and downflowing circulation with horizontal deflection
taking place in a fairly narrow layer at the convective boundaries.
Although significant differences exist between 2D and 3D

models, the 2D models are found to be in good agreement with
each other to the extent that the statistics have converged, which
are calculated over the time period t2½300; 450� s. The time
period for calculating statistics was limited by the model ob.2d.C,
which was only run as far as t � 450 s. The agreement among the
2D models shows that the outer boundary condition (tested by
model ob.2d.e) and the grid resolution (tested by model ob.2d.C)
are not playing a decisive role in determining the overall structure
of the flow, at least in these preliminary tests. The agreement in
overall velocity amplitude in the upper stable layer in model
ob.2d.e indicates that the stable layer velocity amplitudes are not
strongly affected by the details of themodes that are excited in that
region. This gives credence to the analysis in Meakin & Arnett
(2007), which assumes that the stable layer velocity amplitudes
are determined by the dynamical balance between the convective
ram pressure and the wave-induced fluctuations.
The convective turnover times tc ¼ 2�R/vconv for the 2Dmod-

els are all of order tc � 40 s, and they span between 10 and 55
convective turnovers. The turnover time for the 3D model is
tc � 100 s, and the model spans approximately eight convective
turnovers.

Fig. 4.—Time evolution of the 3D oxygen shell burning model. Top: Mag-
nitude of the oxygen abundance gradient is shown and illustrates the migration of
the convective boundaries into the surrounding stable layers. Interfacial oscil-
lations are also apparent in the upper convective boundary layer (r � 0:85 ; 109

cm), and internal wavemotions can be seen quite clearly in the upper stable layer.
Bottom: Kinetic energy density is shown and illustrates the intermittent nature of
the convective motions. The upwelling chimney-like features in the convective
region are seen to excite internal wave trains in the stable layers, which propagate
away from the boundaries of the convection zones. See also Fig. 25.

Fig. 3.—Time sequence showing the onset of convection in the oxygen shell burning model. The first 200 s of the 2D model (ob.2d.c) is shown, including the initial
transient and the settling down to a new quasiYsteady state. The light yellow line indicates the location of the convective boundary as defined in the 1D TYCHO stellar
evolution model (Ledoux criterion), which was used as initial conditions for the simulation.
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The radial profiles of the net enthalpy flux carried by the 2D
and 3D convective flows are found to be in good agreement with
each other andwith the 1DTYCHOmodel, despite the differences
in the morphology and velocity amplitudes of the flow. In the 2D
models, it is found that although the net enthalpy flux is consistent
with the 3D model, the fluxes in the up- and down-welling flows
are significantly larger than in the 3D model. This can be ex-
plained by a lower turbulent mixing efficiency in the 2D sim-
ulations, a property of the 2D flows that is also indicated by the
significantly larger composition inhomogeneities that arise and
persist during boundary layer entrainment events (Meakin &
Arnett 2007).

4.4. Stable Layer Dynamics during Shell Burning

In both the 2D and 3D models, the stably stratified layers are
characterized by velocity fluctuations throughout their extents
(Fig. 6). These fluctuations are the signature of g-modes that are
excited by the convective motions. In the 2D model, the ampli-
tudes of the stable layer velocity fluctuations are higher. In the
lower stable layer, the 2D models also have a much smaller ratio

of horizontal to radial velocity amplitude. The velocity amplitude
ratio is roughly proportional to the ratio of the mode frequency
and buoyancy frequency, vr/v? � !/N (Press 1981), so that the
waves excited in the 2D model are of lower frequency. The ve-
locity ratios in the upper stable layer are comparable between the
2D and 3D models, although the 2D amplitudes are higher by a
factor of �2.

During late burning stages, multiple concentric convective
shells form that are separated by stably stratified layers. These
intervening stable layers act as resonating cavities for g-modes
that are excited by the turbulent convection. In Meakin & Arnett
(2006) it was shown that the stable layermotions inmodel ob.2d.e
can be decomposed into individual g-modes that are well de-
scribed by the linearized nonradial wave equation (Unno et al.
1989). Meakin & Arnett (2007) showed that a good estimate for
the amplitudes of the wave motions (and the associated thermo-
dynamic fluctuations) in both the 2D and 3Dmodels can bemade
by assuming that the pressure fluctuations associated with the
g-modes balance the ram pressure of the turbulent convection. In
the latter paper, a single mode (frequency and horizontal scale)
was assumed, based on integral properties of the turbulence (con-
vective turnover time and mixing-length scale). In this section we
present the spectrum of motions present in the stable layers and
turbulent regions for the more realistic 3D model.

For a given background structure, a spectrum of eigenmodes
exist that are solutions to the nonradial wave equation and bound-
ary conditions. Individual modes can be uniquely identified by a
horizontal wavenumber index l and oscillation frequency !. In
Figure 7, l-! diagrams are presented for the convection zone
and the two bounding stable layers. The individual l-! compo-
nents have been isolated through Fourier transforms of a time
sequence of the simulation data.

Several modal components or ‘‘branches’’ can be identified in
the stable layer diagrams (left and right panels). These include
(1) p-modes, seen as a series of points at the lowest l-values that
extend to high frequencies; (2) g-modes, which appear as ridges
that are bound above by the buoyancy frequency; and (3) f-modes,
which appear as a ridge separating the g- and p-modes. The
f-modes are interfacial waves and are most prominently seen
in the lower boundary diagram at a radius r ¼ 0:4 ; 109 cm. The
f-mode signature is due to interfacial waves running along the
convective boundary at r � 0:43 ; 109 cm, where there is a spike
in buoyancy frequency.

Fig. 6.—The rms velocity fluctuations for oxygen shell burning. Left: 3Dmodel, with velocity components vr (thick solid line), v
 (thin solid line), and v� (thin dashed
line).Right: 2Dmodels, with velocity components vr (thick line) and v� (thin line) for simulations ob.2d.e (solid line), ob.2d.c (dashed line), and ob.2d.C (dot-dashed line).

Fig. 5.—Time evolution of the energy budgets for the oxygen shell burning
models: the 3Dmodel (thick line) and the three 2Dmodels (thin lines) are shown,
including ob.2d.c (thin solid line), ob.2d.e (thin dashed line), and ob.2d.C (thin
dotted line). The energy budget includes the internal energy EI, the gravitational
energyEG, and the kinetic energyEK. Note that the energy scale is logarithmic, so
that the 3D kinetic energy is much smaller than the 2D values.
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In the convection zone, the spectrum is dominated by power at
low temporal and spatial frequencies. This strong nonmodal con-
vection signature is also present, although at lower amplitude, in
the stable layers. This ‘‘turbulence’’ spectrum extends from the
lower left corner of the diagrams and is similar to that seen in the
simulations of He shell burning by Herwig et al. (2006).

5. CORE CONVECTION

Are the hydrodynamic features of oxygen shell burning of
more general applicability? To investigate this, we examined core
convection during hydrogen burning. Because of the long thermal
timescale for radiative diffusion in such stars, we focus on the hy-
drodynamic behavior of a model inwhich the inner boundary pro-
vides a driving luminosity about 10 times larger than natural. This
allows us to simulate the convectionwith our compressible hydro-
dynamics code; an anelastic method (if multifluid) would allow
this to be done in the star’s natural timescale. While our calcula-
tion is not thermally relaxed on a Helmholtz-Kelvin timescale, it
does relax dynamically and provides some clue as to the convec-
tive behavior.

We have previously evolved a 23 M� star onto the main se-
quence with TYCHO, to an age of 2:4 ; 105 yr, at which point
hydrogen is burning in a convective core. The model is then
mapped onto the PROMPI hydrodynamics grid for simulation.
This model represents an early point in main-sequence evolu-
tion, in which the core hydrogen content has been depleted by
only 1.7% (Xcore ¼ 0:689, X init ¼ 0:701, �X ¼ 0:012). The in-
ner radius of the simulationwas chosen such that the convectively
unstable region covers�1 pressure scale height (convective cores
are usually only of order a pressure scale height because of the di-
vergence of the scale height toward the stellar center). The entire
domain covers �5 pressure scale heights and �3.3 density
scale heights. The density contrast across the computational
domain is �30 with a contrast of �2 across the convectively
unstable region.

The radial profile of the simulated region is presented in Fig-
ure 8, including the run of temperature, density, composition,
buoyancy frequency, and relative buoyancy. The entropy jump at
the edge of the convective core, due to the fuel-ash separation,
gives rise to a buoyancy jump (spike in buoyancy frequency).

The equation of state for the main-sequence model is well de-
scribed by an ideal gas with radiation pressure component. The
ratio of gas to total pressure lies in the range 0:85 < � < 0:95,
with an increasing contribution from radiation pressure as the
stellar center is approached. A single composition representing

hydrogen has been evolved to keep track of nuclear transmuta-
tion and the mean molecular weight of the plasma. A metallicity
of Z ¼ 0:01879 has been used to represent the additional 175
species in the initial TYCHO model, and helium is calculated
according to Y ¼ 1� (X þ Z ), where X is the self-consistently
evolved hydrogen mass fraction.
The luminosity due to nuclear burning in the computational

domain is a small fraction of the total stellar luminosity (2.4%),
which is dominated by burning in the inner regions of the core
and Ltot ¼ 7:8 ; 104 L�. Core burning is incorporated into the
simulation as an input luminosity at the inner boundary of the
computational domain.
TheKelvin-Helmholtz timescale for thismodel is tK-H � 105 yr,

which ismany orders ofmagnitude longer than the dynamical time-
scales that are feasible to simulate. In addition, the small luminosity
of the star produces a convective velocity scale that is very subsonic
(M � 10�3). Since we are not interested in the thermal relaxation
of the model, we have boosted the input luminosity by a factor of
10 to increase the velocity scale of the flow. This was necessary
because our fully compressible code is limited by the sound
crossing time.
Radiation transport is treated in the diffusion limit. Opacities

are approximated by Thomson scattering, which agrees well with
the OPAL opacities ( Iglesias & Rogers 1996) used in the 1D
TYCHO model for the region simulated. The effects of radia-
tive diffusion, however, are found to be unresolved in the cur-
rent simulation (with the diffusion time across a single zone
�rad ¼�2/k rad3 tconv, with grid zone size�), and therefore en-
ergy transport in the convection zone occurs primarily on the
subgrid level due to numerical diffusion. This is a high Péclet
number simulation.
A 2D model and a 3D model have been calculated. The sim-

ulated wedges have angular extents of 30
�
in both the polar and

azimuthal directions and are centered on the equator to avoid zone
convergence problems near the poles. This minimal angular do-
main size was chosen by calculating models of increasing angular
size in 2D domains until the flow pattern converged. The angular
domain size used in the present simulations encompasses a large
convective roll in 2D. Smaller 2D domains were found to distort
the convective roll, while domains larger by integermultiples con-
tained proportionally more rolls of the same flow amplitude and
morphology. The boundary conditions in the radial direction are
reflecting and stress-free, and periodic conditions are used in both
angular directions. The grid zoning, domain limits, and simulation
run times are summarized in Table 3 for the 2D and 3D models.

Fig. 7.—Mode diagrams for several radial positions in the oxygen shell burningmodel showing the dominant spatial scales and timescales onwhichmotions occur. The
abscissa measures k, which is related to the wavenumber index l of the mode by l ¼ 12k. The three locations shown here include the following: lower stable layer, just
beneath the convective shell r ¼ 0:4 ; 109 cm (left ); middle of convective shell, r ¼ 0:6 ; 109 (middle); and upper stable layer, just above the convective shell
r ¼ 0:9 ; 109 cm (right).

MEAKIN & ARNETT456 Vol. 667



5.1. Quasi-steady Core Convection

Convection is initiated through random low-amplitude (0.1%)
perturbations in density and temperature applied as in the oxygen
shell simulation. In order to save computing time, the 3D model
was initiated on a domain one-quarter as large in azimuthal angle,
which was then tiled 4 times in angle once convective plumes be-
gan to form. The initial development of the flow in the 3Dmodel is
presented in Figure 9 as a time sequence of velocity isosurfaces.
The turbulent structure of the convective flow, as well as the ex-
citation of internal waves that radiate into the overlying stably
stratified layer, is clearly illustrated. A comparison of the flow
morphology between the 2D and 3D models is presented in Fig-
ure 10. The 2D convective flow is much more organized and
laminar and is dominated by a single large convective cell, while
the 3D convection is composed of many smaller scale plumelike

Fig. 8.—Radial profile of the simulated region for the main-sequence core convection model. The thin lines show the initial conditions, and the thick lines show the
state of the 3Dmodel at t ¼ 106 s. Top left: Temperature and density. Top right: Hydrogen abundance. Bottom left: Squared buoyancy frequency. Bottom right: Buoyancy.

TABLE 3

Summary of ‘‘Core Convection’’ Models

Parameter msc.3d.B msc.2d.b

rin, rout (10
11 cm) ................... 0.9, 2.5 0.9, 2.5

�
, �� (deg)......................... 30, 30 30,0

Grid zoning ............................ 400 ; (100)2 400 ; 100

tmax (s) .................................... 2.0 ; 106 2.0 ; 106

vconv (105 cm s�1) .................. 2.5 13

tconv (s) ................................... 3.6 ; 105 6 ; 104

Ṁi (10
�7 M� s�1) .................. 2.72 4.73
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structures and is more obviously turbulent. In both models the
stably stratified regions are rife with internal waves excited by the
convection.

The 3D convective flow attains a quasi-steady character after
approximately 6 ; 105 s, or approximately two convective turn-
overs. The evolution of the internal, gravitational, and total kinetic
energy components on the computational grid for the 2D and
3D models is presented in Figure 11 and is calculated in the same
way as for the oxygen-burning model. In both the 2D and 3D
models, the total kinetic energy fluctuates in timeswith excursions
from the mean as large as EK /EK � 0:4 in 3D and EK /EK �
0:6 in 2D. The kinetic energy in the 2Dmodel grows on a slightly
longer timescale and achieves a steady character after �106 s, at
which time the kinetic energy growth rate tapers off. The total en-
ergy is conserved to better than �0.2% for both the 2D and 3D
flows by the end of the calculation.

The rms velocity fluctuations are presented in Figure 12 for
the 2D and 3Dmodels. The resultant flows in both the 2D and 3D
models are similar to that found for the oxygen shell burning
model. The velocity amplitudes are higher in 2D by a factor of
�5 (see axis scale in Figure 12), and the flows are dominated by
large eddies spanning the depth of the convective region. The
horizontal deflection of matter is also found to occur in a much
narrower region in the 3D model. The hard-wall lower boundary
of the 3D model is characterized by an even narrower horizontal
flow, probably due to the absence of a stable layer that can host
the horizontal flows associated with g-modes.

The time-averaged convective flow velocity for the 3D model
is vc � 2:8 ; 105 cm s�1. The turnover time is tc ¼ 2�R/vc �
3:2 ; 105 s, and the simulation spans approximately five con-
vective turnovers. The peak velocity fluctuation is vpeak � 2 ;
106 cm s�1, corresponding to a peak Mach number ofM � 0:03,
and the maximum density fluctuations within the convective flow
are � 0.02%, which is of order M 2 as expected for low Mach
number thermal convection (Gough 1969). The time-averaged con-
vective flow velocity in the 2D model is vc � 1:3 ; 106 cm s�1,
and the convective turnover time for this model is tc � 7 ; 104 s.
The simulation spans 1:5 ; 106 s, which is�21 convective turn-
overs. The peak velocity fluctuation in the 2D model is compa-
rable to that in the 3D simulation, with vpeak � 2 ; 106 cm s�1,
and the peak density fluctuation is a little more than twice that
found in the 3D model, �0.05%. The turnover times and con-
vective velocity scales are summarized in Table 3.

5.2. The Stable Layer Dynamics Overlying the Convective Core

As in the oxygen shell burning model, the stably stratified lay-
ers in the core convection models are characterized by velocity
fluctuations throughout. Similar to shell burning, the 2D stable
layer velocity amplitudes are larger and have a smaller radial-
to-horizontal component ratio vr/v? � !/N compared to the
3D flow. The dependence of the wave spectrum on dimension-
ality seen in our suite of models suggests that one should be
cautious when drawing conclusions from 2D simulations of
wave-turbulence interactions, particularly when the turbulence

Fig. 9.—Velocity isocontours showing the development of the flow in the 3D core convection model. The turbulent convective flow excites internal waves that radiate
into the overlying stably stratified layer. By the end of the time sequence shown the stable layer cavity is filled with resonant modes.

Fig. 10.—Velocity magnitude for the core convection model at t ¼ 106 s: a slice through the 3D model (left) and the 2D model (right). The topology of the convective
flow is significantly different between 2D and 3D models: the 3D convective flow is dominated by small plumes and eddies, while the 2D flow is much more laminar and
dominated by large vortical eddies that span the depth of the layer. Thewavemotions in the stable layer have similar morphology in 2D and 3D, but the velocity amplitudes
are much larger in 2D. The computational domains have been tiled once in angle for presentation.
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is driven at a significantly higher than natural rate (e.g., Rogers
& Glatzmaier 2005a, 2005b).

The stable layer motions in the core convection simulation are
predominantly resonant modes, which compare well to the ana-
lytic eigenmodes of the linearized wave equation, and are analo-
gous to those discussed for the oxygen shell burning model. The
region outside the convective core will act as a resonant cavity,
with the outer boundary at the location where the buoyancy fre-
quency and Lamb frequency cross (Unno et al. 1989).

The amplitudes of the internal waves excited will be deter-
mined by the ram pressure of the turbulence at the convective
boundary. In Figure 13 the ram pressure and horizontal rms pres-
sure fluctuations are presented for the 3D model and can be seen
to balance at the interface between the convective core and the

stably stratified layer. Using this condition of pressure balance,
Meakin & Arnett (2007) estimate the amplitudes of the excited
internal wave velocities and the induced thermodynamic fluctua-
tions and find this to be in good agreement with the oxygen shell
burning simulations. The relationship between the density fluc-
tuations, the convective velocity scale, and the stellar structure
(i.e., N and g) was found to be

�0

h�i � M 2
c þ vcN

g
: ð14Þ

That this proportionality holds in the core convection model as
well, where fluctuation amplitudes are lower than those in the
oxygen shell burning model by an order of magnitude, is illus-
trated in Figure 14, which presents the buoyancy frequency and
density fluctuation profiles for the boundary region. The density
fluctuations in the simulation and the value calculated according
to equation (14) compare remarkably well, with �0/h�i � 0:12%.

6. SIMULATIONS AND MIXING-LENGTH THEORY

In this section we compare our 3D oxygen shell burning sim-
ulation results to the MLTof convection. We choose to compare
this particular simulation since it represents the most physically
complete model in our suite of calculations, in terms of both di-
mensionality and thermal evolution. Unless otherwise specified,
the time period over which averaging is performed on the simu-
lation data is t2½400; 800� s, which is approximately four con-
vective turnovers. We find that this period is sufficiently long
compared to the time evolution of the flow that average values are
not affected appreciably by increases in the averaging time period.

6.1. Mixing-Length Theory Picture

The physical picture underlying the MLT, which is the stan-
dard treatment of convection used in 1D stellar evolution model-
ing (see Cox&Giuli 1968; Clayton 1983; Kippenhahn&Weigert
1990; Hansen & Kawaler 1994), is one in which large eddies are
accelerated by an unstable temperature gradient, advect a certain
distance, and then suddenly lose their identity through turbulent
mixing with the background. Energy is transported through this

Fig. 11.—Time evolution of the energy budget for the main-sequence core
convection models: the 3D model (thick line) and the 2D model (thin line) are
shown. The energy budget includes the total internal energy EI, gravitational
energy EG, and kinetic energy EK on the computational grid.

Fig. 12.—The rms velocity fluctuations for the core convection model: the 3D model (left) and the 2D model (right). In each plot, the thick line indicates the radial
velocity component and the thin line is used to indicate horizontal velocity components, with the dashed line used to show the polar angle component in the 3D model.
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process because the blobs that are accelerated radially outward
have a higher entropy at their formation location than where they
dissolve. The vertical distance over which these large eddies retain
their identity is a fundamental parameter in the MLT. This mixing
length � is generally taken to be a multiple of the local pressure
scale height � ¼ ��Hp.

Within this physical picture, the MLT develops a relationship
between the convective flux, the temperature gradient, the large
eddy velocity scale, and the geometrical factors that describe the
large-scale eddies. The starting point in MLT is the expression
for the radial enthalpy flux. In terms of the turbulent fluctuations
it is taken to be (assuming a horizontally isobaric flow)

Fc ¼ vc�cPT
0: ð15Þ

The temperature fluctuations in MLT are related to the temper-
ature gradient and the distance traveled by the large eddy by

T 0=T ¼ @ ln Te

@r
� d ln T0

dr

� �
�

2
¼ �9ð Þ 1

Hp

�

2
; ð16Þ

where the subscript ‘‘e’’ indicates properties of the large eddies
and the unsubscripted temperature gradient is that of the appro-
priately averaged background stratification. The dimensionless
temperature gradient 9 is used here (see x 4.1), and the differ-
ence between the change in the eddy temperature as it moves
vertically and the averaged stellar background is written as

�9 ¼ 9�9eð Þ:

The factor of 1
2
in equation (16) represents the idea that on av-

erage the large convective eddies have traversed about half a mix-
ing length before reaching the current position.
The velocity obtained by the convective eddy is computed by

calculating the work done by the buoyancy force over a mixing
length,

v2c ¼ g�T �9ð Þ �2

8Hp

: ð17Þ

Here again, the eddy is assumed to have been accelerated over
half of a mixing length and an additional factor of 1

2
is incor-

porated on the right-hand side to account for energy lost driving
other flows, such as small-scale turbulence and horizontal mo-
tions (e.g., note that the rms horizontal velocity is of the same
order as the rms radial velocity in the simulation).
The average convective flux can then be written as

Fc ¼ �cpT
ffiffiffiffiffiffiffiffi
g�T

p �2

4
ffiffiffi
2

p
H

3=2
p

�9ð Þ3=2: ð18Þ

The temperature gradient for the convectingmaterial is found
by assuming that eddies follow isentropic trajectories 9e ¼ 9ad.
Deviations from isentropic motion have been considered in the
MLT. In the case of strong radiative diffusion losses, the eddy

Fig. 13.—Pressure fluctuations in core convection model. The time-averaged
horizontal rms pressure fluctuations are shown as the thick line, with extreme
values over two convective turnovers indicated by the shaded region. The thin
line shows the radial component of the turbulent ram pressure �v2r averaged over
a convective turnover. At the upper boundary, the lines cross at a point where the
turbulent pressure is balanced by the wave-induced pressure fluctuations in the
stable layer. This crossing point is coincident with the location of the convective
boundary. The pressure perturbations at the lower boundary are due to the input
luminosity that drives the convective flow.

Fig. 14.—Left : Density fluctuations in the 3D core convection model. The time-averaged maximum density fluctuation is shown as the thick line, with extreme values
for the averaging period (two convective turnovers) shown by the shaded region. The largest fluctuations occur at the interface between the turbulent convective region and
the stably stratified layer. Themaximumfluctuation at the interface is �0/h�i � 0:12%.Right: The buoyancy frequency is shown in units of 10�4 rad s�1. Also shown by the
dashed line is the buoyancy frequency normalized by the gravity that sets the scale of the density fluctuations at the convective boundary through eq. (14). The expected
density fluctuation is �0/h�i � vcjN j/g � 0:12%, where a velocity scale of vc � 2 ; 105 cm s�1 has been used (see Fig. 12).
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geometry (in terms of the surface areaYtoYvolume ratio) is an im-
portant additional parameter as the eddies are envisioned to leak
a fraction of their thermal energy over a mixing-length distance.
When local cooling dominates, through either radiative losses (in
optically thin regions) or neutrino losses (such as in the present
model), the geometry of the eddies is not important since en-
ergy escapes everywhere from the large eddies, not just at eddy
‘‘surfaces.’’

During the oxygen shell burning simulations being considered
here, nonadiabatic losses are small over a convective turnover
time and the convection is expected to be ‘‘efficient.’’ A quanti-
tative measure of convective efficiency is the Péclet number,
which is the ratio of the energy-loss timescale to the convective
turnover timescale for the large eddies. In the current model, en-
ergy losses are dominated by neutrino cooling �� . Therefore, we
calculate an effective Péclet number using the following convec-
tive and neutrino-cooling timescales:

�c �
Hp

vc
; ð19Þ

�� �
cpT

0

T 0@��=@T
¼ cpT

��

@ ln ��
@ ln T

� ��1

; ð20Þ

Pe ¼ ��
�c

� vccpT

Hp�̇�

@ ln ��
@ ln T

� ��1

� 104
@ ln ��
@ ln T

� ��1

; ð21Þ

where characteristic values from the simulation have been used
in equation (21), and the temperature dependence of the neutrino
loss rates is (@ ln ��/@ ln T )P 9. Therefore, the Péclet number for
the convection is Pek 103, and we should expect the convection
zone to be very nearly isentropic.

6.2. The Enthalpy Flux, Background Stratification,
and Temperature and Velocity Fluctuations

The convective enthalpy flux measured in the simulation is
presented in Figure 15. The negative values of the flux at the bot-
tom and the top of the convective shell reflect the braking of the
convective flows at these boundaries. The enthalpy flux is cal-
culated by performing time and horizontal averages on the flow.

MLT assumes that the velocity and temperature fluctuations are
perfectly correlated, so that horizontal averaging of fluctuations
is comparable to products of the averages. To test the degree to
which the velocity and temperature fluctuations are correlated,
we calculate the coefficient, �E, defined in the following way:

Fc ¼ �cpT
0v0c

� �
¼ �E �cp

� �
T 0h i v0c

� �
: ð22Þ

In computing �E, the fluctuations T
0 and v0c in equation (22) are

taken to the be the rms fluctuations in the horizontal plane in the
simulation. The radial profile of �E is shown in Figure 15. We
find h�Ei ¼ 0:7 � 0:03 averaged over the radial interval r 2
½0:5; 0:75� ; 109 cm within the convection zone. A value of �E

smaller than unity indicates that the horizontal distributions of
temperature and velocity fluctuations are not perfectly correlated.
The degree of correlation, however, is fairly uniform throughout
the convection zone.

In order to assess the validity of the MLT temperature and ve-
locity fluctuation amplitudes given by equations (16) and (17),
we calculate the correlation coefficients �T and �v, which are
defined by

T 0=T ¼ �9ð Þ�T ð23Þ

and

vc ¼
�v

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�T �9ð ÞHp

q
: ð24Þ

In Figure 16 the temperature gradient of the horizontally av-
eraged hydrodynamic model profile9sim, as well as the adiabatic
9ad and the composition-corrected (Ledoux) gradient 9Led ¼
9ad þ (’/�T )9	, are presented.

The superadiabatic temperature profile of the stellar background
�9 ¼ 9sim �9ad is presented in the right panel of Figure 16.
While the convection zone is found to have a superadiabatic profile
throughout, it is very small (�9P10�3). This confirms the effi-
ciency of the convection, in accord with our estimate for Pe.
Stability is maintained in the upper boundary layer by the com-
position gradient, where we have 9ad < 9sim < 9Led.

Fig. 15.—Left: Convective enthalpy flux, Fc ¼ h�cpvrT 0i. Right : Temperature-velocity correlation function �E calculated according to eq. (22), with mean value
h�Ei ¼ 0:7 shown by the dashed line.
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A question of practical concern is how to measure the tem-
perature and velocity fluctuations T 0 and vc in the simulations for
comparison toMLT. In the MLT, these fluctuations are identified
with the properties of large eddies. Therefore, a direct compar-
ison would entail isolating the large eddies within a complex flow
and measuring their properties. In lieu of a more complicated pro-
cedure, we identify the fluctuations in the large eddies using the
following two distinct quantities for comparison: (1) the rms
fluctuations relative to the horizontal mean, and (2) the mean
fluctuation relative to the horizontal average considering the
upflowing and downflowing material separately.

The temperature fluctuations calculated using these twometh-
ods are presented in Figure 17. The temperature fluctuations in

the convection zone follow a trend similar to the superadiabatic
gradient, i.e., decreasing with increasing radius. In the right panel
of Figure 17 the radial profile of �T is shown using both defini-
tions of the fluctuations. The nonzero temperature fluctuations
outside the convective region are due to distortions in stable layers
due to convective buoyancy braking (Meakin&Arnett 2007); the
use of separate upflows and downflows is cleaner, eliminating
these. The slopes in the temperature fluctuation profiles are slightly
overcompensated for by the superadiabatic gradient when form-
ing the ratio �T . Within the scatter, however, �T is fairly well
represented by a constant value. The mean value within the body
of the convection zone (taken to be r2½0:5; 0:75� ; 109 cm) is
larger for the rms fluctuations h�T (rms)i ¼ 0:73 compared to

Fig. 16.—Left: Dimensionless temperature gradients: the stellar interior9sim, adiabatic9ad, and Ledoux9Led gradients are shown. Right: Superadiabatic temperature
gradient (9sim �9ad) horizontally and time averaged.

Fig. 17.—Left: Time-averaged rms temperature fluctuations: the thick solid line shows the rms fluctuations; the thin solid and thin dotted lines show the fluctuations in
the upward- and downward-directed flow components, respectively. Right: Radial dependence of the ‘‘thermal mixing-length’’ parameters �T defined by eq. (23) shown
using the temperature fluctuations presented in the left panel, using the same line types. The mean values, averaged over r2½0:5; 0:75� ; 109 cm, are shown by the thin
dotted lines.
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h�T (up)i ¼ 0:45 and h�T (down)i ¼ 0:40. In all cases the corre-
lation departs most from the mean value at the base of the convec-
tion zone, rP 0:52 ; 109 cm, where the nuclear flame is driving
the convective flow.

The corresponding analysis for the velocity fluctuations is
presented in Figure 18. The overall trends are similar for �T and
�v . The mean values of �v within the body of the convection
zone are h�v(rms)i ¼ 1:22, h�v(up)i ¼ 1:08, and h�v(down)i ¼
0:96. The largest departure from constancy is again found to be
at the base of the convection zone (the flame region).

The sharp decrease in the effectivemixing length near the lower
boundary is not entirely surprising. The distance to the convective
boundary provides an upper limit to the mixing length, while
farther away from the boundaries the mixing length is limited by
the distance over which eddies can maintain their coherence. This
effect is possiblymore exaggerated at the lower boundary because
of the steep gradient in velocity that is needed to move the energy
out of the burning zone. In contrast, the upper boundary is char-
acterized by a more gentle deceleration of material and a ‘‘softer’’
boundary (i.e., lowerN 2). Ignoring this boundary effect and using
the same mixing-length parameter throughout the convection
zone would result in a shallower temperature gradient near the
boundary. The stiff temperature dependence of the nuclear reac-
tion rates may therefore be affected.

The absolute calibrations of �T and �v are somewhat arbitrary
and are scaled by factors of order unity for a particular formula-
tion of the MLT based on the heuristic arguments discussed in
x 6.1. According to equations (16), (17), (23), and (24), the
equivalencies are ��;T ¼ 2�T and ��;v ¼

ffiffiffi
2

p
�v, where the

values subscripted by � indicate the MLT values defined by
Kippenhahn & Weigert (1990). The corresponding values for
the simulation are h��;v(rms)i ¼ 1:73, h��;v(up)i ¼ 1:53, and
h��;v(down)i ¼ 1:35 for velocity fluctuations and h��;T (rms)i ¼
1:46, h��;T (up)i ¼ 0:9, and h��;T (down)i ¼ 0:8 for temperature
fluctuations.

The ratio ��;T /��;v is 0.84, 0.59, and 0.60 using the rms, up-
flow, and downflow values, respectively. In relation to the present
simulation, a higher degree of consistency (i.e., ��;v ¼ ��;T ) can

be brought to this formulation of the MLT by scaling the velocity
fluctuation in equation (17) by the inverse of the ratio ��;T /��;v.
Physically, this translates into a higher efficiency (by a factor of
�1.2Y1.7) for the buoyancy work to accelerate the large eddies
over the value 1

2
adopted above, which is reasonable considering

the heuristic argument used. Alternatively, agreement can be
made by scaling the temperature fluctuations in equation (16) by
the same ratio, which amounts to decreasing the distance over
which eddies remain coherent and adiabatic as they move across
the convection zone. Both of the these effects are plausible, as
well as a combination of the two so long as the ratio is main-
tained. Which is operating in the present simulation? Unfortu-
nately, the degeneracy between these two parameters cannot be
broken because they combine linearly when calculating the en-
thalpy flux, which therefore does not provide a further constraint.
Finally, it is possible that the effective mixing lengths for tem-
perature and velocity fluctuations are different, a notion that is
supported by the correlation lengths that we discuss next.

6.3. Correlation Length Scales

In the top panels of Figure 19 the vertical correlation length
scales, calculated according to equation (B1), are presented for
the velocity and temperature fluctuations. The vertical scale height
is defined as the FWHM of the correlation function and can be
written in terms of the correlation length in the positive and
negative directions,LV ¼ LþV � L�V . The relative values of L

þ
V and

L�V give an indication of asymmetries in the eddies (Fig. 19, bot-
tom left panel ): LþV /L

�
V ¼ 1 is a symmetric eddy, LþV /L

�
V > 1 is an

eddy flattened on the bottom, and LþV /L
�
V < 1 is an eddy flattened

at the top. Based on this simple diagnostic, both the temperature
and velocity correlations indicate that the eddies near the lower
boundary are flattened on the bottom, and those at the upper
boundary are flattened on the top. The ‘‘overshooting’’ distance
(h �107 cm at the upper boundary and hP106 cm at the lower
boundary; see x 7.1), which is best described as an elastic response
to the incoming turbulent elements, is very small compared to the
correlation lengths measured here. Therefore, these eddies are
effectively hitting a ‘‘hard wall’’ on reaching the boundaries.

Fig. 18.—Left: Radial velocity amplitudes: rms value (thick solid line) and the mean upflow and downflow velocities (thin solid and thin dashed lines, respectively).
Right: Radial dependence of the ‘‘velocity mixing-length’’ parameters �v defined by eq. (24) shown for the velocity amplitudes presented in the left panel, using the same
line types. The mean values, averaged over r2½0:5; 0:75� ; 109 cm, are shown by the thin dotted lines.
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The signature of this eddy ‘‘flattening’’ is also present in the
radial profile of the full width length scale, LV . In the case of ve-
locity, which has larger correlation lengths, significant asymmet-
ries are present throughout the convection zone. The smaller
length scales associated with the temperature fluctuations permit
a broad region throughout the convection zone where the eddies
are roughly symmetric (LþV /L

�
V � 1) and appear to be uninflu-

enced by the boundaries. In this intermediate region, away from
the boundaries, the temperature fluctuation length scales are rel-
atively constant in size, even decreasing with radius, in contrast
to the pressure and density scale heights, which are increasing
with radius.

In the standard MLT, the convective eddies are assumed to be
comparable in size to the mixing length. How do the correlation
length scales compare to the mixing-length parameters found
above? The bottom left panel of Figure 19 shows the ratios of LV
to the pressure and density scale heights. None of these curves
are particularly constant within the convection zone, and bound-
ary effects are particularly strong throughout the convection zone
in the case of the velocity correlations. Interestingly, the velocity
correlation parameter �v(vr; Hp) ¼ LV (vr)/Hp is larger than the
temperature correlation parameter �v(T

0; Hp) ¼ LV (T
0)/Hp. This

is in accordwith the ratio��;T /��;v < 1 found in themixing-length
analysis above. Concerning the absolute calibration, however, the
correlation length scales are smaller than the mixing-length values
by as much as a factor of 5. In an analogous comparison by
Robinson et al. (2004) for subgiant atmospheremodels, the vertical
correlation lengths were also found to be smaller than the mixing

length used to construct the initial model, and the ratio varied sig-
nificantly throughout the convection zone.
The horizontal correlation lengths LH are shown in Figure 20,

together with the vertical scales for comparison. For the velocity,
the horizontal scale is much smaller than the vertical, indicative
of eddies that are significantly elongated in the vertical direction.
The temperature fluctuations appear to be much more symmetric,
with only a small degree of elongation in the vertical direction,
which is slightly more pronounced near the top of the convection

Fig. 19.—Vertical correlation length scales LV as defined in Appendix B. Top left: LV for velocity fluctuations, v0r . Top right: LV for temperature fluctuations, T 0. The
pressure scale heightHp and density scale heightH� are shown for comparison. Bottom left: Illustration of the relationship between eddy shape and the correlation length
scales, LþV andL�V . The gray patches represent the shapes of the eddies, and the L

þ=�
V values aremeasured in the radial direction, away from the horizontal line.Bottom right:

Correlation lengths LV scaled to pressure and density scale heights, e.g., �V (vr; Hp) ¼ LV (vr)/Hp.

Fig. 20.—Horizontal and vertical correlation length scales, LH (thick line) and
LV (thin line), shown for temperature (dashed line) and velocity (solid line)
fluctuations.
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zone. In the stable layers, the horizontal scales are larger than the
vertical, which is a characteristic of the horizontal ‘‘sloshing’’ mo-
tions associated with g-modes.

6.4. The Kinetic Energy Flux, Flow Asymmetry,
and Moving beyond the Mixing-Length Theory

The kinetic energy flux associated with convection is ignored
in the MLT since it arises from the asymmetries in the flow and
MLTassumes that the flow is symmetric. An order-of-magnitude
estimate for the kinetic energy flux, however, can be made:

FK

Fc

� �v2c =2

�cpT 0
vc
vc

� ��

8

�TP

T�cp
¼ ��

8
9ad � 0:04; ð25Þ

where mixing-length relationships have been used to calculate
vc and T 0, �� is assumed to be of order unity, and 9ad � 0:25
has been adopted from the simulation. This result tells us that

the kinetic energy flux will be a few percent of the convective
enthalpy flux. This estimate is an upper limit since upflows and
downflows will cancel to some degree (Böhm-Vitense 1992,
their x 6.1). In the simulation, the ratio of kinetic to enthalpy
flux is found to be FK;max/Fc;max � 0:01, which is of order the
simple MLT scaling, but down by a factor of a few as expected.

We can directly relate the kinetic energy flux to the flow asym-
metry in the following way. The upflow area covering fraction
fu ¼ Aup/Atot is shown in Figure 21. We can then write an esti-
mate for the kinetic energy flux as

FK;net ¼ 1
2
�0 fuv

3
u � fdv

3
d

� �
; ð26Þ

which can be rewritten in terms of the flow velocities alone,

FK;net ¼
1

2
�0

v3u þ v 3d
vu=vd þ 1

� v3d

� �
; ð27Þ

where we have used the mass conservation equation, fuvu þ
fdvd ¼ 0, assuming �u � �d , which is a good approximation in
these simulations. The kinetic energy flux in the simulation is
shown in Figure 22, together with the value calculated accord-
ing to equation (27), which shows good agreement. Here we
have used the horizontal and time-averaged values for hvi and
hv3i. The MLT, however, does not provide information about
hv3i, but only hvi. In order to find agreement with the simulation
when using hvi3 in place of hv3i, a scaling factor is needed to ac-
count for the skewness in the radial velocity field. More precisely,
the correlation coefficient � ¼ hv3u i/hvui

3
is needed, which is re-

lated to the skewness � ¼ hv3i/�3
v
. Both � and � are presented in

Figure 22. Note that the skewness is a good proxy for the down-
flow covering fraction ( fd ¼ 1� fu; see Fig. 21), and therefore its
sign is indicative of the direction of the kinetic energy flux.

Convective regions that are spanned by several pressure
scale heights are found to have kinetic energyYtoYenthalpy flux
ratios larger than the few percent found in this study. For in-
stance, the simulations of Cattaneo et al. (1991) and Chan &
Sofia (1989), which each span�5 pressure scale heights, achieve

Fig. 21.—Fractional area occupied by the upward-flowing material fu shown
as a function of radial position. The downward-flowing area is fd ¼ (1� fu),
and the dashed line at 1

2
indicates up-down symmetry.

Fig. 22.—Left: Kinetic energy flux. The thick line shows the value measured in the simulation averaged over two convective turnovers; the thin solid line shows
FK calculated according to eq. (27); the thin dashed line shows FK calculated according to eq. (27) but uses chvi3 in place of hv3i and a correlation constant of c ¼ 5.
Right: Asymmetries in radial velocity. The thick line shows the skewness in the velocity field, � ¼ hv3i/�3

v ; the thin solid line and thin dashed line show the correlations
�u;d ¼ hv3i/hvi3, where the subscripts u and d indicate upflows and downflows, respectively.
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jFK /Fcj � 35%, and the domain inChan&Sofia (1996) spanning
�7 pressure scale heights achieves jFK /Fcj � 50%. A key result
in the analysis of Cattaneo et al. (1991) is that the kinetic energy
flux is dominated by coherent, downward-directed flows that are
correlated over distances comparable to the simulation domain. In
addition, the enthalpy flux and kinetic energy fluxes associated
with these downflows essentially cancel with cpT

0 � v2c , which
was shown to follow if the downflows can be described as
Bernoulli streamlines.

Long range correlations, as well as the boundary effects that
dominate our shell-burning model, undermine the accuracy of the
basicMLTof convection. The large coherence of the flows seen in
simulations, and present even in turbulent parameter regimes,
suggests that modeling these coherent structures is a viable ap-
proach to improving the treatment of stellar convection. Already,
models incorporating multiple streams or ‘‘plumes’’ to con-
struct closure relations (e.g., Rempel 2004; Lesaffre et al. 2005;
Belkacem et al. 2006; Kupka & Robinson 2007) are beginning
to provide enticing alternatives to the MLT.

6.5. Related Studies

Although the mixing-length parameters calculated above de-
viate from constancy near the convective boundaries, a mean
value is a good approximation throughout most of the convec-
tion zone. It would be interesting if these parameters �E, �T , and
�v were universal, as assumed by stellar modelers. If we restrict
consideration to 3D compressible convection simulations for sim-
plicity and homogeneity, there are several previous studies that
have confrontedMLT towhich we can compare our results. These
studies investigate convection under diverse conditions, includ-
ing slab convection (Chan & Sofia 1987, 1989, 1996; Porter &
Woodward 2000), a red giant envelope (Porter et al. 2000), and
solar and subgiant surface layers (Kim et al. 1995, 1996; Robinson
et al. 2003, 2004, 2005).

The number of zones used ranges from 1:9 ; 104 (Chan &
Sofia 1989) to 6:7 ; 107 (Porter & Woodward 2000). The equa-
tions of state used include a gamma law (Chan & Sofia 1989;
Porter &Woodward 2000), ionized gas (Kim et al. 1996; Robinson
et al. 2004), and a combined relativistic electron plus ion gas
(Timmes&Swesty 2000) in this paper. Subgrid-scale physicswas

treated by a Smagorinsky model (Smagorinsky 1963) or by ig-
noring it. We note that Styne et al. (2000) have shown that PPM
methods solving the Euler equations converge to the same limit
as solutions to the Navier-Stokes equations, as resolution is
increased and viscosity reduced. In addition, the subgrid-scale
turbulence ‘‘model’’ implicit in the numerical algorithm of PPM
is known to be well behaved (F. Grinstein 2006, private com-
munication). Given this already inhomogeneous set of simula-
tions, determining consistent convection parameters is difficult.
Our attempt is given in Table 4, in which we summarize the con-
vection parameters found in these studies for comparison to our
own.
How well do these compare? In some respects the agreement

is striking. The parameter �E is in the range �0.7Y0.8 for all
groups. Further, all agree that for their case, the MLT gives a
fairly reasonable representation of the simulations in the sense
that the alphas are roughly constant throughout the body of the
convection zone. The difficulty is that the specific values of these
alphas depend on the case considered. The two best-resolved
simulations, ours and Porter & Woodward (2000), use the same
solution method, PPM, yet have the most differing alphas. This
suggests to us that the differences are due to the physical param-
eters of the respective convection zones. Porter et al. (2000) have
already shown that slab geometry and spherical geometry give
qualitatively different behavior for the alphas. Our shell is only 2
pressure scale heights in depth and is relatively slablike; Porter &
Woodward (2000) have a convection zone that is more than
twice as deep by this measure. There is a suggestion in Table 4
that the alphas increase with the depth of the convection zone.
This would be reasonable if a convective plume were acceler-
ated through the whole convection region before it is decelerated
at the nonconvective boundary. However, the other differences
mentioned above probably contribute to the scatter in the alpha
parameters in Table 4.
Further efforts on this issue are needed. If convection does

depend on the nonlocal, physical structure of the star, calibration
of the mixing length to fit the Sun, as is traditionally done, is not
wise. Furthermore, it is well known that the MLT is particularly
prone to problems in the surface layerswhere convection becomes
inefficient. Therefore, the empirical agreement of mixing-length

TABLE 4

Assumed and Measured Convection Parameters

Study Pea �E ��;T ��;v �� L/Hp
b Grid Zoning

MLT ....................................... 31 1 � � � . . . . . .

This studyc ............................. k103 0.70 � 0.03 0.8Y1.46 1.35Y1.73 0.87Y1.33 �2 (3.7)d 1002 ; 223 (400)b

Chan-Sofiae ............................ . . . 0.83 � 0.03 1.32Y3.75 3.39Y6.4 1.90Y4.4 4.8 202 ; (P50)

Kimf ....................................... . . . 0.80 � 0.01 2.96Y4.2 1.5Y3.4 1.4Y3.2 6 323

Robinsong............................... . . . 0.65Y0.85 . . . . . . . . . 8.5 1142 ; 170

Porter-Woodwardh ................. (10Y8) ; 104 0.7Y0.9 4.08 3.82 2.68 (3.53) 4.5 5122 ; 256

Note.—See x 6.2 for parameter definitions: ��;T ¼ 2�T and ��;v ¼
ffiffiffi
2

p
�v, where �T and �v are defined by eqs. (23) and (24) and �� ¼ (�E��;v��;T )

1=2.
a The Péclet number is shownwhen provided by the author. In all cases the regions in the simulations for which parameter values are quoted were efficient convection,

with �9P 10�2, and excluded the superadiabatic layers in the surface convection models where parameters deviate significantly from those quoted here.
b The number of pressure scale heights spanned by the convectively unstable region.
c Model ob.3d.B; additional details in Table 2.
d The value in parentheses is for the region spanning the entire computational domain, including the stable bounding layers, with the other value referring to the

convective region.
e In Chan& Sofia (1989) the range in �T and ��;v is calculated according to their Table 1 for the nearly adiabatic portion of the simulation where 10�3 < �9 < 10�2.
f In Kim et al. (1996) the coefficient �T is based on their Fig. 6. The coefficients ��;v and �� are plotted in their Fig. 9, and the range quoted in the table is for values at

least 1 pressure scale height from the boundaries.
g In Robinson et al. (2004) only the correlation between radial velocity and temperature fluctuation is provided, which is a good surrogate for �E. For the solar and

subgiant cases see their Figs. 7Y9.
h In Porter &Woodward (2000) the values for �v, �T , and �� are quoted using the same definitions as in this study. The lower value quoted by these authors for�� is a

result of subtracting the kinetic energy flux from the enthalpy flux. The value in the parentheses is the mixing length �� according to the definition in the table note above.
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calibration to the Sun and to Population II giants (Ferraro, et al.
2006) may be a fortuitous coincidence.

7. MIXING AT CONVECTIVE BOUNDARIES

The boundaries that separate the convective from the stably
stratified layers in our 3D simulations span a range of relative
stability, with 1PRiB P 420. At the lowest values of RiB , the
boundary is quickly overwhelmed by turbulence, as described in
x 4.1. Once RiB becomes large enough, the boundary stabilizes
and evolves on a much longer timescale. Snapshots of the quasi-
steady shell burning and the core convection boundaries are pre-
sented in Figure 23, ordered by RiB, which spans in the range

36PRiB P 420. The convective interface is composed of sev-
eral components, including the turbulent convection zone, the
distorted boundary layer of thickness h, and the stably stratified
layer with internal wave motions (compare to Fig. 1).

AsRiB increases, the boundary becomesmore resilient to thick-
ening and distortion by the turbulence. A region of partial mixing
exists primarily on the turbulent side of the interface, where
material is being drawn into the convection zone. The ‘‘ballistic’’
picture of penetrative overshooting (Zahn 1991), in which con-
vective eddies are envisioned to pierce the stable layer, does not
obtain. Instead, material mixing proceeds through instabilities at
the interface, including shear instabilities and ‘‘wave breaking’’

Fig. 23.—Equatorial slices showing the flow in the vicinity of the convective boundaries in the 3D simulations, ordered by relative stability: (a) upper shell convection
boundary, RiB � 36; (b) core convection boundary, RiB � 48; (c) lower shell convection boundary, RiB � 419. The color map indicates composition abundance, where
the darker tones trace stable layer material entrained across the interface. The velocity vectors have been sampled every third zone in each dimension.
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events (Alexakis et al. 2004; Biello 2001), which break the
boundary up into wisps of material that are then drawn into the
turbulent region and mixed. The convective interface remains
fairly sharp in all cases, and the effective width is well described
by the elastic response of the boundary layer to incoming eddies,
h � vc /N . The convective interfaces seen in our simulations bear
a striking resemblance to those observed in laboratory studies of
turbulent entrainment of comparable RiB (see, e.g., McGrath et al.
1997, their Figs. 2Y5).

The mixing that occurs due to the instabilities and eddy
scouring events at the interface leads to a steady increase in the
size of the convection zone. In this section we quantify the en-
trainment rates at the convective boundaries, we discuss these
results in terms of the buoyancy evolution of the interface, and
we describe how the ‘‘turbulent entrainment’’ process can be in-
corporated into a stellar evolution code as a dynamic boundary
condition to be used in addition to the traditional static Ledoux
and Schwarzschild criteria.

7.1. Quantifying the Boundary Layer Mixing Rates

As evident in Figure 23, the convective boundary layers are
significantly distorted from spherical shells. To estimate the ra-
dial location of the interface, we first map out its shape in angle
ri ¼ ri(
; �). At each angular position the surface is taken to be
coincident with the radial position where the composition gra-
dient is the steepest [this is comparable to the location of mini-
mum density scale height H� ¼ (@ ln �/@r)�1]. The interface
thickness h is taken to be the rms variation of the surface ri with
angle, h ¼ �½ri(
; �)�, which provides a quantitative measure of
the amplitudes of the distortions imparted to the interface. The
mass interior to the interface is calculated according to

Mi ¼
Z
r0

rih i
4�r 2 �h i dr; ð28Þ

where r0 is the inner boundary of the computational domain, h�i
is the horizontally averaged density, and the mean interface ra-

dius is used for the upper limit on the integral. The time de-
rivative Ṁi is the rate at which mass is entrained into the con-
vection zone.
In Figure 24 the time histories of the averaged interface loca-

tion hrii and interfacial thickness h are shown for the convective
boundaries in our simulations. A 3D model and a representative
2D model are shown for each boundary. The outer shell bound-
ary layer adjusts rapidly in the first 100 s to a new position, due to
the penetration event discussed in x 4.1, after which a slow out-
ward migration ensues. For the 3D shell convection model, the
outward migration proceeds in distinct stages, labeled ‘‘a,’’ ‘‘b,’’
and ‘‘c’’ in Figure 24. Each stage is well described by a linear
increase of radius with time and ends with a rapid adjustment to a
new entrainment rate. This behavior can also be seen in Figure 4,
where the change in entrainment rate coincides with changes in
the background composition gradient and stability (compare to
the initial buoyancy frequency profile in Fig. 2).
The downward migration of the lower shell boundary is more

uniform and proceeds at a significantly reduced rate compared to
the upper boundary. The core convection boundary evolution de-
parts most significantly from a linear trend, but monotonic growth
is clearly established very soon after the simulation begins,
tk2 ;105 s.
The interfacial thickness h in the oxygen-burning models is

initially large due to the strong mixing event during the initial
transient but settles down to a relatively constant value for tk
300 s. In contrast, the boundary thickness in the core convection
model increases gradually with time until a steady state value is
achieved, due to the milder initial development. In all cases, the
time-averaged values of h during the quasiYsteady states compare
well to the boundary displacement expected for eddies impact-
ing the stable layer with the characteristic convective velocities,
h � vc/N .
The entrainment rate and the interfacial thickness are larger in

all of the 2Dmodels as a consequence of the larger velocity scales.
The interface migration rates and averaged interfacial layer thick-
nesses are tabulated for all of the models in Tables 5 and 6 and are
broken down into various time intervals over which linear growth

Fig. 24.—Time history of the convective boundary location (top panels) and the thickness of the convective interface (bottom panels) for upper shell burning boundary
(left panels), lower shell burning boundary (middle panels), and core convection boundary (right panels). The thick line identifies the 3D models, ob.3d.B and msc.3d.B,
and the thin line identifies the 2D models, ob.2d.e and msc.2d.b. The dashed lines show the averaged interface thickness for t > 300 s for oxygen burning and
t > 6:0 ; 105 s for core convection. The letters a, b, and c in the top left panel mark times when the outward migration rate of the convective boundary rapidly adjusts to a
new value in the 3D model.
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of the boundary is a good approximation. Time-averaged mass
entrainment rates are also included in Tables 2 and 3.

7.2. The Entrainment Energetics

In order for entrainment to take place at a convective bound-
ary, the buoyancy increment of the stable layer material over that
of the mixed layer material must be overcome. This can happen
in two distinct ways. First, nonadiabatic processes can change
the relative stability of the stable layer. For example, heating the
convective region will cause an increase in its entropy, and the
buoyancy jump separating the overlying layer will decrease.
The rate at which the convective boundary will grow due to heat-
ing is us ¼ ṡ/(@rs), where @rs is the radial gradient of entropy at
the boundary and ṡ is the time rate of change of entropy in the
shell. This process will cause both the upper and lower boundaries
to migrate to larger radii: the upper boundary will be weakened,
while the lower boundary will become stiffer. Nonadiabatic pro-
cesses in the boundary layers will affect their stability in the same
way: cooling in the upper and heating in the lower boundaries
will weaken their stratification.

A related but distinct process is turbulent entrainment, whereby
turbulent kinetic energy does work against gravity to draw ma-
terial into the turbulent region. In this process, the stratification is
weakened at a convective boundary by the turbulent velocity fluc-
tuations. This is quantified in terms of the buoyancy flux q ¼
g�0v0/�0. In the absence of heating and cooling sources the buoy-
ancy in the interfacial layers will evolve according to the buoy-
ancy conservation equation,

@tb ¼ �div qð Þ; ð29Þ

and a positive flux divergence at the boundary will lead to a
weakening of the stratification. The relationship between tur-

bulent entrainment and the weakening of a boundary through
heating and cooling can be understood in terms of the enthalpy
flux that attends the buoyancy flux. In fact, the buoyancy flux is
directly related to the enthalpy flux across the interface,

Fc ¼ �0cp T 0v0r
� �

¼ cpT0

�T

�0v0r
� �

¼ �0cp
T0

�Tg
q; ð30Þ

and is equivalent to heating and cooling processes operating in
the boundary layer (note the downward-directed enthalpy flux
within the boundary layers in Fig. 15).

What drives the entrainment seen in the present simulations?
Can the entrainment in the outer shell boundary be explained by
the heating of the convection zone by nuclear burning? Com-
paring the entropy growth rate of the shell to the entropy gradient
at the boundary, we find us � 0:8 ; 104 cm s�1, which is at most
17% of the measured growth rate for this boundary, and typically
of order a few percent. Shell heating will reduce the growth rate
of the lower boundary byus � 0:04 ; 104 cm s�1,which is of order
a few percent of the rate measured. Therefore, the overall heating
and cooling of the shell contribute very modestly to the growth of
the shell over the course of the simulation. The long thermal time-
scale in the core convection model reduces this effect even more,
where it is lower by several orders ofmagnitude. Therefore,we turn
to the turbulent hydrodynamic processes operating in the boundary
layer to understand the growth of the convection zones.

In Figure 25 we present the buoyancy flux profiles for our 3D
simulation models, including both time series diagrams and time-
averaged radial profiles. The properties of the buoyancy flux
can be divided into three distinct flow regimes: (1) the body of
the buoyant convecting layer, which is dominated by positive q;
(2) the convective boundary layers, with negative q; and (3) the
stably stratified layers, where q is oscillatory but has a nearly
zero mean (in both a horizontal and time-average sense).

TABLE 5

Convective Boundary Layer Properties for Oxygen Shell Burning Models

Model

Time Interval

(102 s)

ri
(109 cm)

h

(107 cm)

ṙi
(104 cm s�1)

vexp
(104 cm s�1)

�½vH �a
(107 cm s�1)

�bb

(107 cm s�2) logE RiB

ob.3d.B....................... [1.5, 2.7] 0.816 1.287 25.766 � 0.869 0.6 0.313 0.574 �1.095 21.8

[2.7, 5.5] 0.842 0.797 8.252 � 0.180 0.6 0.316 0.966 �1.616 36.0

[5.5, 8.0] 0.861 0.586 5.171 � 0.179 0.6 0.281 1.062 �1.789 50.0

ob.2d.c........................ [3.5, 5.7] 0.857 0.191 10.620 � 0.816 0.9 1.385 1.422 �2.154 5.9

ob.2d.C....................... [2.0, 4.0] 0.830 1.776 19.117 � 0.988 0.5 1.436 1.010 �1.887 3.2

ob.2d.e........................ [3.5, 8.0] 0.868 1.900 10.021 � 0.319 2.5 1.464 1.334 �2.289 4.4

ob.3d.B....................... [3.0, 8.0] 0.429 0.057 �0.700 � 0.009 0.50 0.479 30.686 �2.601 418.6

ob.2d.c........................ [3.5, 5.7] 0.428 0.201 �1.686 � 0.058 1.05 1.769 33.739 �2.811 86.3

ob.2d.C....................... [2.0, 4.0] 0.430 0.193 �1.625 � 0.072 0.65 1.434 32.160 �2.780 101.7

ob.2d.e........................ [3.5, 8.0] 0.429 0.162 �0.975 � 0.018 1.20 1.645 32.620 �2.879 84.4

a The rms fluctuations in the horizontal velocity at the interface location.
b The buoyancy jump across the interface.

TABLE 6

Convective Boundary Layer Properties for ‘‘Core Convection’’ Models

Model

Time Interval

(105 s)

ri
(1011 cm)

h

(109 cm)

ṙi
(103 cm s�1)

vexp
a

(102 cm s�1)

�½vH �
(105 cm s�1)

�b

(102 cm s�2) logE RiB

msc.3d.B .......... [6.0, 10.0] 1.374 0.949 1.754 � 0.080 . . . 2.011 6.07 �2.0594 66

[10.0, 12.0] 1.378 0.897 �0.020 � 0.140 . . . 1.878 5.83 . . . 72

[12.0, 15.0] 1.382 0.998 2.731 � 0.099 . . . 2.411 5.70 �1.9459 48

msc.2d.b ........... [6.0, 10.0] 1.369 1.319 1.401 � 0.390 . . . 8.070 6.43 �2.7604 9.2

a The expansion velocity in these models remains very small with vexp < 10 cm s�1.
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The buoyancy driving of the convective flow in regime 1 can
be appreciated by comparing the flow velocity to the commonly
used buoyant convection velocity scale v3	 ¼ 2:5

R
hqi dr, where

integration is taken over the radial extent of the convection zone
(see, e.g., Deardorff 1980). In the 3D shell-burning and core con-
vectionmodels v	 � 107 and�3 ; 105 cm s�1, respectively,which
compares well with the turbulent radial velocity fluctuations mea-
sured in the simulation (Figs. 6 and 12).

In regime 2, which occurs in the convective boundaries, the
buoyancy flux is negative. A negative value of q indicates that
turbulent kinetic energy is being converted into potential energy.
The mixing associated with this negative buoyancy flux under-
lies the entrainment that is taking place at the boundaries through
equation (29). We demonstrate this by showing that the entrain-

ment speeds measured in the simulation are consistent with the
measured buoyancy fluxes. The interface migration speed is
incorporated into the conservation equation by writing the time
derivative as an advective derivative,

@tb � ue@rb ¼ ueN
2; ð31Þ

where we have used the relationship @rb ¼ N 2. Using this time
derivative in equation (29) and solving for ue, we find

ũe ¼
�q

hN 2
; ð32Þ

where we have approximated the divergence of the buoy-
ancy flux with the difference �q/h. We use the symbol ũe to

Fig. 25.—Buoyancy flux. Time series diagrams and time-averaged radial profiles are shown for the 3D oxygen shell burning model (top panels) and the 3D core
convection model (bottom panels).
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distinguish the calculated rate from the values measured in the
simulation.

If we adopt the buoyancy flux at the interface for�q (Fig. 25),
the measured interface thickness h, and the buoyancy frequency
at the boundary, we find the following entrainment rates. For the
upper shell boundary, lower shell boundary, and the core con-
vection boundary we have ũe � 5:1 ; 104, 1:1 ; 104, and 2:2 ;
103 cm s�1, respectively. These are to be compared with ue ¼
jṙi � vexpjmeasured in x 7.1 and presented in Tables 5 and 6. The
values corresponding to the same time period are ue ¼ 4:6 ; 104,
1:2 ; 104, and 2 ; 103 cm s�1. Although these calculated rates
are only order of magnitude estimates (e.g., we use the crude ap-
proximation for the time derivative in eq. [31]), they compare
well to the values measured in the simulations, and the buoyancy
flux due to turbulent entrainment can account for the growth of
the convective layers seen here.

7.3. Whence q?

The buoyancyflux q appears as a term in the turbulent kinetic en-
ergy (TKE) equation,whichwe present inAppendixA (eq. [A13]).
In our notation, the buoyancy flux is related to the buoyancy work
term by q ¼ hWBi/�0. The buoyancy flux, therefore, is related to
the rate at which turbulent kinetic energy is advected into the stable
layer FK, the rate at which it dissipates through viscous forces "K ,
and the rate at which energy is transported through the boundary
layer by pressure-velocity correlations Fp. In essence, entrainment
is the process bywhich the turbulent kinetic energy in the boundary
layer does work against gravity to increase the potential energy of
the overall stratification.

Two theoretical approaches have been taken to study entrain-
ment. The first approach ignores the TKE equation and instead
posits an ‘‘entrainment law.’’ The entrainment law ismerely a func-
tional form for the rate at which stable layer mass will flow into the
turbulent region and is therefore a dynamic boundary condition.
These laws are usually parameterized by the stability properties
of the interface and the strength of the turbulence through RiB
(see, e.g., Fedorovich et al. 2004). Once an entrainment law is
adopted, the enthalpy flux can be calculated and the evolution of
the boundary can be self-consistently solved for. The advantage
of such an entrainment law is the simplicity with which it can be
incorporated into global circulation models of the atmosphere,
for instance.

An alternative approach to adopting an entrainment law is
an explicit physical model for the terms in the TKE equation
(eq. [A13]). For example, general forms for the buoyancy flux
profile within the stable layer have been applied with some suc-
cess in reproducing the growth of the atmospheric boundary layer
and the deepening of the oceanic thermocline (Stull 1976b;
Deardorff 1979; Fedorovich & Mironov 1995). In some re-
spects, however, these models are glorified entrainment laws
since the buoyancy flux is prescribed in a simplified, parame-
terized way. Moving beyond assumptions concerning the turbu-
lence profiles within the interfacial layer are theoretical models
that take into account the interactions of waves and turbulence
and incorporate nonlinear models for the evolution of instabilities
(e.g., Carruthers & Hunt 1986; Fernando & Hunt 1997). The ap-
proach adopted in these theoretical studies is general enough that
any adjustable parameters may turn out to be universal and a pre-
dictive model can be developed. In addition, the framework em-
ployed is general enough that the production of turbulence by
mean flows (i.e., stellar rotation) can be incorporated, as well as
long-range effects due to internal waves. The internal waves are
incorporated through the pressure correlation flux, Fp, and play a

central role in the evolution of the buoyancy flux when wave
breaking is important.

7.4. An ‘‘Empirical’’ Entrainment Law

The development of a sophisticated turbulence model to ex-
plain entrainment is beyond the scope of the present work. In-
stead, we ask, to what extent do the entrainment laws used in
geophysical models apply to our simulations and stellar interiors?
Guided by laboratory study and geophysical large eddy simula-
tion, we study the dependence of the entrainment rate on the bulk
Richardson number.

We calculate RiB according to equation (2), using the horizon-
tal correlation length scale L ¼ LH defined in Appendix B. The
buoyancy jump is calculated by performing the integration in
equation (3) over the interface in the interval r2½ri � h; ri þ h�.
The normalized entrainment rates E ¼ ue /�, the buoyancy jumps
�b, and RiB are listed in Tables 5 and 6. The dependence of the
entrainment coefficient E on RiB is presented in Figure 26.

The 2D and 3D data are found to obey similar trends ( lower E
for higher RiB) but occupy significantly different regions of the
diagram. This can be explained by the much higher rms velocities
in the 2D simulation. The velocity scale in 2D is apparently an
artifact of the reduced dimensionality of the problem, which sig-
nificantly influences the flow morphology. Although the velocity
scale is higher in the 2D models, it is much more laminar and ac-
companied by less turbulent mixing. The arrow in Figure 26 in-
dicates the direction that the 2D data points wouldmove if a lower
effective rms velocitywere assumed. Inwhat followswe focus our
attention exclusively on the entrainment data found for the more
realistic 3D models.

We find that the entrainment coefficient E is well described by
a power-law dependence on RiB of the form in equation (5). Our
best-fit values for the parameters are log A ¼ 0:027 � 0:38 and
n ¼ 1:05 � 0:21. This entrainment law is shown by a dashed
line in Figure 26. Remarkably, the power law is of order unity,
in agreement with geophysical and laboratory studies. The fact
that the entrainment in our simulations is governed by the same,
fairly universal dependence on RiB as these other studies may
have been anticipated, considering the striking degree of sim-
ilarity between the buoyancy profiles and the character of the
developed flow in the vicinity of the boundary (Fig. 23).

Fig. 26.—Normalized entrainment rate plotted against bulk Richardson
number RiB. The 3D models are marked with squares, and the 2D data with plus
signs. The best-fit power law to the 3D model data is shown by the dashed line.
The 2D entrainment rates fall everywhere below the 3D trend. The arrow in-
dicates the direction in the diagram that the 2D data points would move if the
effective rms turbulence velocity were lower.
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7.5. A Dynamic Convection Zone Boundary Condition

Mass entrainment is a fundamentally different phenomenon
from diffusion, the typical treatment used to incorporate newmix-
ing mechanisms into a stellar evolution code. Therefore, how
might we incorporate this new process? Schematically, the idea is
very simple. For each convective boundary, initially found with
the traditional stability criteria (@s/@r ¼ 0, @ 2s/@r 2 6¼ 0), we can
calculate the associated bulk Richardson number based on the
background stratification and an approximation of the turbulence
characteristics (e.g., from MLT). With RiB in hand we can then
input this into our entrainment law, E ¼ E (RiB), which returns
to us the entrainment rate. The entrainment rate, therefore, is the
boundary growth rate as a function of RiB and possibly other pa-
rameters of the system. The function E(RiB) can be broken up
into at least three regimes for convenience:

1. Low stability:RiB < Rimin
B .—For lowRiB it is observed that

mass entrainment happens very quickly, on an advection time-
scale (x 4.1). Therefore, we can define a minimum Rimin

B at which
the expansion of the convection zone will proceed rapidly, elim-
inating convective boundaries that are too weak to support the
adjacent turbulence.

2. Intermediate stability: Rimin
B < RiB < Rimax

B .—For an in-
termediate range of stability, we can use the fairly universal
entrainment law that matches our simulation data, defined by the
two parameters A and n. Although the mixing rates are found to
scatter around the best-fit law, the general monotonic, power-law
dependence is found to be robust. We can incorporate this physics
into the stellar evolution code as a mass entrainment rate,

ṀE ¼ @M

@r
uE ¼ 4�r 2i �i

� �
�H fA ; 10 �n log RiBð Þ; ð33Þ

where the normalization factor is written as fA ¼ 10( log A) and
represents the turbulent entrainment mixing efficiency. More so-
phistication can subsequently be incorporated as our under-
standing of the entrainment process improves.

3. High stability: RiB > Rimax
B .—The entrainment process will

cease to operate at some upper limit RimaxB , above which the bound-
ary evolution will be controlled by diffusive processes on the mo-
lecular scale. Following Phillips (1966), we have

Rimax
B ’ uE

�

� �
�L

�

� �
; ð34Þ

which is based on the condition that the kinetic energy in the tur-
bulence is sufficient to lift the material from the interface, ��2 k
�N 2�2. Here the interface thickness is taken to be that due to
molecular diffusion with �k �/uE. The relatively small diffusion
rates in stellar interiors imply that turbulent entrainment will con-
tinue to operate to very high Richardson numbers. For com-
parison, the entrainment process in the ocean is estimated to
operate up to RiB � 105Y106.

Additional details concerning the implementation of this type
of boundary condition into TYCHO will be presented in a sub-
sequent paper.

8. SUMMARY AND CONCLUSIONS

In this paper we have presented the results of 3D, reactive, com-
pressible, hydrodynamic simulations of deep, efficient stellar convec-
tion zones inmassive stars. Our models are unique in terms of the
degree towhich nonidealized physics have been used and the evo-
lutionary stages simulated,with fuel and ash clearly distinguished.

We find several general results regarding the basic properties
of the convective flow:

1. The flow is highly intermittent but has robust statistical
properties.
2. The 2D and 3D velocity scales differ by a factor of several,

and the flow morphologies are completely different.
3. Stable layers interact with convection to decelerate plumes

and consequently distort these layers, which then generate waves.
4. Mixing is found to occur at convective boundaries in a

manner best described as turbulent entrainment, rather than the
traditional picture of convective overshooting wherein turbulent
eddies ballistically penetrate the stable layers.

We have compared our oxygen shell burning model toMLTas-
sumptions.We show that, while a reasonable representation of the
superadiabatic temperature gradient and velocity scale can be fitted
with a singlemixing length, the values of the inferredmixing-length
‘‘constants’’ differ from other simulations. This was already implied
in Porter et al. (2000), who found differences for slab and spherical
geometries. There may be a dependence on the depth of the con-
vection zone as well, and possibly on the nature of the stable
boundary regions and/or the nature of the driving process (burn-
ing or radiative loss).
Why dowe care aboutMLT in regions of efficient convection?

The reasons are as follows: (1) the temperature profile can affect
the burning rates, which have a stiff temperature dependence;
(2) the velocity scale can affect the nucleosynthesis (such as
s-process branching ratios in double shell burning AGB stars)
by dictating the exposure time of the plasma to varying condi-
tions throughout the burning region; and (3) the velocity scale
and the kinetic energy flux are an important input needed for cal-
culating the mixing at convective boundaries.
We have found that the extent of mixing is better represented

by an integrated Richardson number rather than the conventional
Schwarzschild or Ledoux criteria alone. This incorporates physics
related to the resistance of stiff boundaries to mixing. Related to
the definition of boundary stiffness, we have identified an im-
portant physical process that is missing from the standard the-
ory of stellar evolution: turbulent entrainment. This process is
well known in the meteorology and oceanographic communities
and has been extensively studied experimentally. We show that
the rate of entrainment in our simulations is well represented by
a simple function of the buoyancy jump in a manner similar to
that measured in relevant experiments.
The long-term consequences of convective boundary incon-

sistencies such as the one illustrated by the initial transient in our
simulation, and for which the conditions are common in 1D stellar
models, can significantly alter the size of convective cores and thus
the subsequent explosion and nucleosynthetic yields of the resultant
supernova. In a subsequent paper in this series, wewill present case
studies that incorporate the physical insight gained through these
simulations into the TYCHO stellar evolution code. We expect to
see effects in solar models, s-processing in AGB stars, stellar core
formation (white dwarfs, neutron stars, and black holes), stellar
nucleosynthesis yields, stellar ages, and H-R diagrams.
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at theUniversity of Chicago.C.M.would like to acknowledge the
stimulating discussions at the 2006 Los Alamos Summer Hydro
DaysWorkshop,made possible byFalkHerwig,which influenced
the writing of this paper. D. A. wishes to thank the Aspen Center
for Physics for their hospitality.
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APPENDIX A

THE ENERGY EQUATION

A1. TOTAL ENERGY

The primitive energy equation solved by PROMPI is

@t �Eð Þ þ:= �E þ pð Þuþ Fr½ � ¼ �u = gggþ ��net; ðA1Þ

where the total energy is composed of the internal and kinetic components, E ¼ EI þ EK . We decompose the velocity, density, and
pressure fields into mean and fluctuating components according to

’ ¼ ’0 þ ’0; ðA2Þ

where h’i ¼ ’0 and h’0i ¼ 0. The overbar and brackets indicate time and horizontal averaging, respectively. The pressure-velocity
correlation term is

:= puh i ¼ := p0u0h i þ:= p0u0h i þ:= p0u0h i þ:= p0u0h i: ðA3Þ

The gravity term is

�ggg =uh i ¼ �0u0gggh i þ �0u0gggh i þ �0u0gggh i þ �0u0gggh i: ðA4Þ

The averaging operator eliminates terms that are first order in fluctuations (by definition), and we have

@t �Eh i þ:= �Eu0h i þ �Eu0h i þ p0u0h i þ p0u0h i þ Fr

h i
¼ �0u0gggh i þ �0u0gggh i þ ��neth i: ðA5Þ

We can further simplify this expression using the condition of hydrostatic equilibrium, which holds to a high degree of accuracy in the
simulation (:p0 ¼ �0ggg). The background velocity in this case, u0, is a slow, highly subsonic expansion or contraction that is driven on a
thermal timescale. The background velocity field has only a radial component (i.e., there is no rotation in the current model), u0 ¼
(u

0;(r); 0; 0). The energy equation can be then simplified to read

@t �Eh i þ:= �Eu0h i ¼ �:= Fp þ FI þ FK þ Fr

� �
� p0:=u0h i þ Wbh i þ ��neth i; ðA6Þ

where we have used the following definitions:

Fr ¼ �kr:T ; ðA7Þ
FI ¼ �EIu

0; ðA8Þ
FK ¼ �EKu

0; ðA9Þ
Fp ¼ p0u0; ðA10Þ

Wb ¼ �0ggg =u0; ðA11Þ

with radiative ‘‘conductivity’’ kr ¼ 4acT 3/ 3�R�ð Þ and Rosseland mean opacity �R.

A2. KINETIC ENERGY

The kinetic energy equation is derived by forming the scalar product of the velocity with the equation of motion (e.g., Shu 1992,
pp. 14Y24). The kinetic energy equation can be written in vector form as

@t �EKð Þ þ:= �EKuð Þ ¼ �u = :pþ �u = ggg: ðA12Þ

Again, we decompose the fields into mean and fluctuating components, employ the hydrostatic equilibrium condition, and perform
averages. The result is

@t �EKh i þ:= �EKu0h i ¼ �:= Fp þ FK

� �
þ p0:=u0h i þ Wbh i � "K : ðA13Þ

Here "K is the viscous dissipation of kinetic energy. In our simulations, this term is not modeled explicitly and arises due to numerical
dissipation. The term p0:=u0 represents the compressional work done by turbulent fluctuations, and the other terms are as defined
above.
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APPENDIX B

CORRELATION LENGTH SCALES

The vertical correlation of the horizontal distribution of fluctuations in a quantity X 0 ¼ X � hX i at radial position r and offset
position r þ r is calculated according to

CV r; rð Þ ¼ 1

��

R
X 0 r; 
; �ð ÞX 0 r þ r; 
; �ð Þ d�

�X rð Þ�X r þ rð Þ ; ðB1Þ

where the integral is taken over the angular direction with d� ¼ sin 
 d
 d�. The correlation is normalized by the product of the
horizontal rms value of the quantity at the two levels being compared �X .

The horizontal correlation of fluctuations at radial position r is calculated using the autocorrelation function,

CH s; rð Þ ¼ X 0 r; sð ÞX 0 r; sþ sð Þh i
�X rð Þ2

; ðB2Þ

where the angle brackets denote averaging over all horizontal locations s and fixed offset s. The horizontal correlation is normalized by
the variance of the quantity �2

X .
Characteristic length scales are defined as the offset position where the correlation function drops to a value of 0.5. For horizontal

correlations, we define this length asLH . We also define a value that is twice this length, the FWHM,which we denote by LH. [The value
LH provides a good approximation to the integral scale,

R
CH (s; r) ds.]

In the vertical direction the sign of the offset r is retained and a separate length scale is defined where the correlation function drops to
0.5 for positive and negative offsets, which we denote by LþV and L�V . The full width is denoted LV ¼ LþV � L�V .
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