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Abstract. Mixing in semiconvective zones is treated as a double-
diffusive process. The mixing takes place by overturning cells in
horizontal layers, separated by stable interfaces across which
transport takes place by diffusion. Effective diffusion coefficients
are derived and tested against laboratory results. Easily imple-
mentable expressions for stellar evolution calculations are given.
They imply a much smaller mixing rate than assumed in other
formulations.
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1. Introduction

The problems introduced by semiconvective zones were first
noted by R.J. Tayler around 1953. Since then, many different
practical recipes have been used to deal with the mixing in such
zones in stellar evolution calculations. In one of the more widely
used recipes, the stabilizing u-gradient is smoothened such that
the resulting gradient is marginally stable to adiabatic instability
(Ledoux criterion). This implies a fair amount of mixing. One of
the more recent prescriptions, which yields less mixing, is that of
Langer et al. (1983).

The fluid mechanical problem of a stably stratified composi-
tion gradient heated from below has been studied extensively,
both experimentally and theoretically, in connection with geo-
physical observations (for reviews see Turner 1985; Huppert &
Turner 1981). The studies have yielded detailed insight into the
physics of this problem. In addition to presenting these insights
where relevant for the astrophysical parameter range, I use them
in the present paper to develop a simple theory of semiconvective
mixing. Aspects of such a theory have previously been discussed
by Spiegel (1972), and Gough & Toomre (1982). The problem is
closely related to that of enhanced diffusion is steady flows
(Batchelor 1956; Parker 1963; Weiss 1966). In the semiconvective
case, heat is the destabilizing agent and the u-gradient the
stabilizing one; the opposite can also occur and has been studied
in the astrophysical context by Wlrich (1972) and Kippenhahn
et al. (1982).

The starting point of the considerations is that the overstable
oscillations predicted by linear theory turn out to play only a very
limited role in practice because a minor (nonlinear) rearrange-
ment in the fluid can turn it into a sequence of overturning layers.
This form of motion is stable and preferred above overstable

oscillations because it can occur at values of the temperature
gradient lower than that required for linear instability®.

2. Double diffusive mixing
2.1. The formation of layers

Though the overstable oscillations predicted by linear theory
have been reproduced in the laboratory, they require very well
controlled and stable conditions. The linear growth is usually
swamped by the nonlinear development of overturning layers.
The reason is that it requires only a very small amount of energy
to overturn the initially smooth stratification into a set of layers if
these layers are thin enough. Once the layers are formed, they are
a stable form of convection. Let N be the (adiabatic) buoyancy
frequency,

i 9y v, (1)

N2=
g or H

where ¢ is the acceleration due to gravity, u the mean weight per
particle, H the pressure scale height, V the logarithmic temper-
ature gradient, and V, the adiabatic gradient. Since the stratifi-
cation is stable according to the Ledoux criterion, N2 is positive.
The energy required for overturning over a vertical distance d is of
the order

eoverturn~d2N2 (2)

(per gram). A minimum value to d is set by viscous dissipation,
d i =(v/N)'/2. Since the viscosity in a stellar interior is very small,
we can effectively make e arbitrarily small by making the layers
thin enough. This small amount of energy can derive, for example,
from internal gravity waves generated by a nearby convective
zone, or from the initial overstable oscillations. The reason why
convection in layers is so clearly preferred in the experiments is

! The process of layer formation can be demonstrated easily at
the coffee table. Fill a teaglass with (sufficiently hot) coffee, add
two teaspoons of sugar and some condensed milk or coffee cream
at room temperature (ordinary milk does not work as well). With
teaspoon or straw carefully introduce some mixing in the lower
part of the glass without mixing the entire fluid, to produce a
smooth initial sugar and milk gradient. Wait until the internal
waves have died out and observe how thin layers form and grow
into thicker ones.
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the fact that the oscillatory instability [Kato’s (1966) oscillations]
is subcritical. This means that (in the presence of some small
amount of viscosity), convection in layers is possible at values of
the temperature gradient which are still stable to the linear
oscillatory instability. In fact, Proctor (1981) has proven that in
the limit where the diffusivity of the stabilizing component is
small compared to the thermal diffusivity, the minimum gradient
for layers to be maintained is arbitrarily close to the minimum
gradient in the absence of the stabilizing component. This result
requires only that the diffusivity ratio is small, and therefore
applies also to the astrophysical case.

In the laboratory, the initially smooth gradient is indeed
observed to break up into very thin layers with a thickness of the
order d,,;,. These then slowly grow by merging with one another
(cf. Turner 1985). The process by which this merging takes place is
more complicated, so that the mean layer thickness d is not a very
well determined quantity. Since the overturning time scale within
the layers is very short compared to the nuclear burning time
scale on which the semiconvective zone as a whole evolves, I will
assume in the following that the layers are, in fact, rather thick,
may be even of the order of the depth of the semiconvective zone
itself. As it turns out, the effective diffusion coefficient is indepen-
dent of the layer thickness (at least as long as the layer thickness is
not extremely thin), so that in practice this does not introduce a
large uncertainty.

2.2. Transport at the interface between layers

The profile of entropy S and mean weight per particle u is
sketched in Fig. 1. Overturning motions that span the depth of the
layer keep its interior well mixed. The initially smooth gradients
are replaced by steep boundary layers at the interface between
two overturning layers. The process by which these boundary
layers form is a classical one referred to as convective expulsion of
a composition gradient. The expulsion of vorticity from convec-
tive cells was studied by Batchelor (1956). A closely related

0 zZ — d

Fig. 1. Profiles of entropy S and mean weight per particle u vs. depth
across a double-diffusive layer in a semiconvective zone (schematic). The
gradients of S and u are concentrated into boundary layers at the
interfaces (z=0, d) between successive layers. The transport inside the
layers is by convection, at the interfaces by diffusion

problem is the convective expulsion of magnetic fields (Parker
1963; Weiss 1966).

The composition gradient at the interface is stable against
overturning motion (Richardson criterion). This follows from the
fact that the average stratification is stable according to the
Ledoux criterion so that the kinetic energy of the flow (from the
unstable thermal gradient) is less than that required for mixing
across the interface.

The boundary layer thickness 6 is determined by a balance
between advection by the flow in the interior and diffusion across
the interface, and is therefore different for the entropy and for
each of the diffusing particle species. If v is the typical horizontal
flow speed along the interface, and « a diffusivity, the boundary
layer thickness § is

d=(x7)!’2, €)

where ©=d/v is the time scale of the convective cell. The diffusivity
of the particles is often much smaller than that of heat (up to 6
orders of magnitude), so that the composition gradients have
much smaller length scales.

I will use the name ‘solute’ for any of the constituents of the
semiconvective zone, e.g. helium, hydrogen or carbon, and whose
transport properties are the subject of this investigation.

Viscous coupling across the interface keeps the horizontal
flow speeds the same on both sides, so that the flow pattern looks
like Fig. 2. Laboratory experiments show this kind of pattern (in
fact, the entire flow in such experiments is almost mirror-
symmetric across the interface; see Fig. 1 in Turner 1985). An
upward flow towards the interface turns horizontal, cools off by
thermal conduction against the layer above it and drops away
from the interface again. During the period of contact at the
interface, the solute diffuses across as well. A part of the down-
flowing material therefore carries a lower concentration than the
mean. By advecting this fluctuation down to the base of the layer
where it can diffuse across the next interface, the flow greatly
enhances the effective rate of diffusion.

How much solute is picked up at the interface by the flow is
determined by two factors. First, it is proportional to the thick-
ness of the solute boundary layer and therefore depends on the
microscopic diffusion coefficient. Not all of this boundary layer is

Fig. 2. Thermal (light shading) and solute (heavy shading) boundary
layers at a diffusive interface. The solute boundary layer is much thinner
than the thermal boundary layer due to the lower diffusivity. Descending
and ascending plumes carry heat and solute away from the interface
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carried down, because the downflowing fluid must have a nega-
tive buoyancy. The density contrast due to the solute can
therefore not be larger than that due to cooling at the interface.
This condition determines the fraction of the solute boundary
layer that is ‘peeled off’ by the convecting cell.

In the following section these ingredients are developed into a
quantitative theory for mixing in semiconvective zones. The
theory is closely related to earlier work on convective expulsion
(e.g. Shraiman 1987; Rhines & Young 1983; Merryfield & Knob-
loch 1990). In these theories, the diffusion of a passive scalar
contaminant (‘dye’) in a prescribed, stationary or oscillatory flow
is computed. The present theory differs, on the one hand, because
the composition gradient cannot be considered as a passive
ingredient (it is strong enough to keep the convective flows
confined to layers between stable p-jumps). This turns out to have
important consequences for the derived effective mixing rate. On
the other hand, the astrophysical case differs from laboratory
situations by several physical effects (like radiation pressure) that
cannot be omitted in a practically applicable theory. Related
theoretical work (but addressing a typical laboratory case) is that
of Gough & Toomre (1982).

3. Heat transport

Since the time of contact at the interface and the rate at which
solute is advected depend on the convective flow speed, we first
need a quantitative description of convection in thin layers. The
main effect of the solute on the flow is to confine the convective
cells to layers; this should be taken into account, but I will ignore
the effect of solute inhomogeneities inside the cells themselves.
This is particularly justifiable in the astropysical (as opposed to
the laboratory) case, because the diffusion coefficient of the solute
is so small that only little solute is transported by the cells.

3.1. The convective flow

Assume that the convective flow is sufficiently vigorous. The
entropy profile then has a boundary layer structure as sketched in
Fig. 1. The thickness of these boundary layers is taken to be small
compared to the layer thickness (the opposite case is considered
in Sect. 5). The heat flux is due to the boundary layers, the
horizontal flow in these turns into vertical plumes of cool
downflowing fluid from the top of the layer and hot upflows from
its base. The interior of the cell is relatively passive in the process.

Assume the gas to be fully ionized, nonrelativistic, non-
degenerate and include the radiation pressure so that the equa-
tion of state is

R 1
P=Py+P,=—pT+:aT*, @)
u

where R is the gas constant. Since the u-gradient occurs in a thin
boundary layer well inside the thermal boundary layer, x can be
taken constant for the heat flow problem. The entropy per unit
mass is then (cf. Cox & Giuli 1968)

R( T P
S=—<ln —+4—'>+const. ©)
u P, P,

The entropy gradient can be written as

CP
VS=(V=Va), (6)
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where the specific heat at constant pressure c, and the adiabatic
gradient V, are

_R<16 12 3) V= 4-3 7
Cp_; E—F_E > a_m——fm’ "
and

ﬂ=Pg/(Pr+PS)' (8)

Let AS be the entropy difference between the center of the layer
and the top (Fig. 1). The flow brings fluid with the entropy of the
cell center to the boundary layer and cools off against the
overlying layer. It thereby develops an entropy difference

d— dc,
3S=eAS=e-VS=¢e- 2(V-V,), ©
2 2H

where VS is the mean gradient across the layers and ¢ a coefficient
of order unity, for which a value will be assigned later. The flow is
strongly subsonic so that the pressure fluctuation is negligible and
the temperature difference corresponding to S is 61n T=48S/c,.
With the equation of state the corresponding density fluctuation
is

op/p= (4 3)51 T= (4 3>dv v
plp=— p3)omT=—e{5- 2V Va)

The downward velocity of the plume is estimated, as in mixing
length convection, by equating the kinetic energy to the potential
energy associated with the density contrast p:

(10)

1 2
v =ngdl|dp/p|,

5 (11)

where #, of order unity, measures the efficiency of conversion of
potential into kinetic energy. The heat flux is given by the entropy
contrast and the mass flux. If the plumes are separated by a
horizontal distance equal to the layer depth d and each carries a
mass flux F,, the average convective heat flux per unit horizontal
area is
1
F,=—-F,T$S. (12)
d
The plume that carries this flux is fed from the boundary layer,

and therefore has a width of the order of the boundary layer

thickness ,. The mass flux is then
F,,=vd,p. (13)

For the length of time during which diffusion takes place I take
the horizontal flow time across a length of the order 4:

T=d/v,={d/v, (14)

where v, is the horizontal flow speed in the boundary layer and {
is another coefficient of order unity. The boundary layer width is
then

8= (ldx, Jv)'/2. (15)
The thermal diffusivity «, is

166T°
K,=m, (16)

where k; is fhe Rosseland opacity, and o=ac/4 the
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Stefan-Boltzmann constant. Substituting into (7) one gets
1 4 /4
Fc=5.e(ns)”4c“2(ﬁ—3) gUdH SV =V, )4l p T, (17)

whereas the radiative flux is

T
Fo=peg . (18)
Hence,
Fc/Frzful/4(V_Va)5/4V_ 19 (19)
where
1
f= 58(118)” N (20)
is a number of order unity and
a* (4
u=i—<—-3>. 1)
H 2 \p

With the definition of the radiative gradient V,/V=F_,/F .+ 1 we
have

Sut V=V, )4 +V-V,=V,—V,. (22)

Since I have assumed that the radiative flux is small compared to
the convective flux, the second term on the left-hand side is
negligible compared to the right-hand side, so that

(V=V ) =f"tu" V4V, = V,). (23)

This replaces the usual mixing length expression for V—V,. Due
to the fact that the entire heat flux is carried by the plumes, which
cover only a part of the cell, the 3/2 power of V-V, in the mixing
length formalism is replaced by the weaker 5/4 power.

F/F,is called the Nusselt number Nu. If we define a modified
Rayleigh number Ra, by

Ra, =% (4 3>(V v.) (24)
a* —-HKQZ ﬁ als
then (19) can also be written as
V-V
Nu=fRay+Y V2. 25)

v

Closer inspection shows that it is hard to justify more
complicated choices for the numerical constants than simply e=7#
={=1, which yield

f=05. (26)

3.2. Comparison with laboratory convection

Convection experiments at Rayleigh numbers up to 10!* have
been done by Libchaber & Maurer (1982) and Castaing et al.
(1989). These experiments use helium gas in a box at 5 K. The
physical conditions in semiconvective layers are similar to this in
that the density stratification is not important (unlike in other
astrophysical cases), and that the convective cells are confined
between well-defined horizontal boundaries. Different is the
Prandtl number, which is close to unity in the experiment but
very small in the astrophysical case. Different are also the
boundaries which are non-slip in the experiment whereas they are
essentially free in the semiconvection case (in part because of the

low viscosity, in part because of the symmetry of the flow across
the interface, see Sect. 2.2). The experiments are fitted by (Cast-
aing et al. 1989)

Nu=023Ra%?82 (Ra>10"), (27)

where Ra is the Rayleigh number. For a meaningful comparison
with the results given above, I rederive them for the slightly
different case of a Boussinesq fluid with thermal expansion
coeflicient o, which is closer to the experiment. The same steps as
in Sect. 3.1 then yield

Nu=0.5Ra}/*, (28)
where the modified Rayleigh number Ra,, is now defined as
Ra, =Pr Ra=goaATd?/x. (29)

Since the Prandl number of the experiment is close to unity,
Ra in (27) is equal to Ra, in (28). The two expressions are then
equal within 30% up to Ra=10"'3. Other scalings are discussed
by Castaing et al. (1989), which take into account the viscosity of
the gas, and these yield somewhat different exponents than our
value 0.25. The essential ingredient in these scalings, as in my
estimate, is the experimentally observed fact that the transport of
heat is due to the boundary layers, so that only a part of the fluid
takes an active part transporting heat. This is the cause of the
weaker dependence on Rayleigh number.

4. Mixing

The mixing can now be calculated analogously to the energy
transport. The flow pattern is assumed to be given by the previous
calculation of the energy transport. That is, the gradient in solute
is assumed to be present only in the form of steps at the interfaces
between layers, the backreaction of concentration inhomogenei-
ties inside the layer on the flow is neglected. This is justified in the
case of very small solute diffusivity, since the steps are then sharp
and the amount of solute inhomogeneities inside the cell is small.

4.1. The solute flux

The amount of solute transported across the layer is limited by
two factors. The width of the solute boundary layer at the
interface determines how deep into the overturning cell the solute
diffuses. In addition, the solute diffusing into the cell affects the
buoyancy of the fluid; the thermal buoyancy driving the flow is
able to overcome this stabilizing effect only up to a certain
maximum value of the solute inhomogeneity. This means that
only a fraction of the solute boundary layer will be carried with
the flow across the layer. The larger the overall concentration
gradient is compared to the driving thermal gradient, the more
pronounced is this effect.

If more than one solute component is present with different
diffusivities, the situation is more complicated. I assume for the
remainder of this section that there is only one component. This is
a fair approximation since the products of nuclear burning in a
particular zone (at least those that dominate the mean weight per
particle) are characterized by roughly equal mass and charge, so
that they also have roughly equal microscopic diffusivities.

Let ¢ be the concentration of the stabilizing solute, related to
the mean weight per particle by

dln u/dlnc=y. (30)
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Since the solute boundary layer is very thin compared to the
thermal boundary layer, the temperature variation across it can
be ignored. The temperature difference of the solute boundary
layer with respect to the middle of the layer is therefore just (cf.
Eq. (9) and Fig. 1)
oInT d (V-V,) (31)
nT=—(V-V,).
2H *

From the equation of state, and still making use of the fact that
the pressure fluctuation is negligible:
4
olnp=5lnpu— E_3 6InT. (32)
The maximum change in p for which the fluid still has a net

buoyancy of the right sign is therefore

4
(op/w= (E_ 3) oInT, (33)
and the corresponding concentration is
OCmax = ¢/ X(O1/Wimax- (34)

This part of the boundary layer follows the overturning cell and
forms a solute plume, inside the thermal plume (Fig. 2). The
average solute flux carried by the cell is estimated similar to the
heat flux [cf. Egs. (12) and (13)]:

1
F s=5vv5cécmx, (35)
where
.= (rs7)"/? (36)

is the solute boundary layer thickness, with 7 the cell overturning
time (14) and y a factor of order unity analogous to ¢. Substituting,
we have

1 cl/4
F. =yt (prc.d)V2- — ——3 V-V.), 37
s 2?C (vred) XH</3 )( ). (37
or, with (11):
1 4 5/4 c
Fs=5yc”2(ne)”“g”‘*dH‘5'4<B—3> V=Vl (39)
X

If V¢ is the mean concentration gradient across the layers, the
diffusive solute flux in this gradient would be

F=xVec. (39
The effective diffusivity
Ksefr = Kst/Fsd (40)
is therefore given by
4 5/4
Kseff=fs(g/H)l/4d<E_3> (V=V.)#k 2V, (41)
where
1
fs=§vC 2(ne)t/* (42)
and
dlng g

V.= ==HVec. 43

P ¢ ¢ 43)

135

This gives the effective diffusivity if the mean thermal gradient is
given. Taking the mean thermal gradient from (23), this finally
gives the simple expression

4 V.-V,
Kseff=z(KsKt)1/2<E'—3> v .
€ u

(44)

The effective diffusivity is thus proportional to the square root of
the microscopic diffusivity.

The most pleasing aspect of expression (44) is that it is
independent of the layer thickness d. This can be traced to the fact
that the maximum concentration inhomogeneity that can be
transported is related to the thermal buoyancy (Eq. 33), resulting
in a very direct connection between the two transport processes.
In deriving (44) however 1 have assumed that the thermal
boundary layers at the interfaces are thin compared with the layer
thickness. In Sect. 5 a more general result is derived; unfortu-
nately, it does not have the property of being independent of d any
more.

4.2. Comparison with observations and other theories

An important difference between the astrophysical case on the
one side, and laboratory experiments, geophysical observations,
and theories designed to interpret these on the other (for a review
see Turner 1985), is the very small viscosity. For a comparison of
our result with observations, we must first examine to what extent
the result would have to be modified to include a large viscosity,
of the order of the thermal diffusivity. The viscosity will not have a
large effect on the convective velocities in the interior of the layers
(as long as the Reynolds number is large), but near the interfaces
viscous boundary layers might develop in which the velocity is
reduced. Since the solute flux is directly proportional to the
horizontal velocity, this could significantly reduce the effective
diffusivity. This is the case for example in the calculations of
Gough & Toomre (1982), which addressed typical laboratory
conditions. In these calculations, the interfaces between successive
layers were treated as non-slip boundaries. Since the viscosity is
high (Gough & Toomre use Pr=v/k,~7, v/k,~700), the solute
boundary layer is a region of much reduced flow. From ex-
periments one knows, however, that the interface behaves much
more like a free surface, since the flow is nearly symmetric with
respect to it (see e.g. Fig. 1 in Turner 1985). For a free boundary,
the horizontal velocity would be much less affected by the
viscosity. As long as a free boundary may be assumed, the results
of this section hold for all Prandtl numbers of order unity or less,
and therefore can be compared also with the experimental results.

An important experimental result concerns the ratio of the
heat and solute flux as expressed by the ‘ratio of buoyancy fluxes’.
In our variables, this ratio is

c,pTy F,
r=—— —.
¢ F,

With (17) and (38) one finds (with the standard choice y=¢=1and

setting f=1 because radiation pressure is not relevant in the
laboratory)

K172
r={=] .
Ky

This depends only on the ratio of the diffusivities; in particular, it
is independent of the strength of the stabilizing solute gradient.

(43)

(46)
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This is just what is observed (cf. Turner 1985, p. 15). The square
root dependence is also as observed (Turner et al. 1970), and even
the coefficient in front is of the order unity in the experiments.

The simple result (46) is a consequence of the marginal
buoyancy assumption (33). The reason for assuming this was that
the density contrast due to the solute regulates itself to such a
value that it roughly balances the thermal density contrast. Parts
of the solute boundary layer with a smaller density contrast are
carried with the flow as well, but contribute less because they
contain little solute, while parts with larger density contrast than
the thermal value are too buoyant to be carried with the flow.

The square root dependence of k.. on the microscopic
diffusivity , is a very general result, and not specific to the present
model. It occurs also in the extensively studied cases of convective
expulsion and passive diffusion of contaminants in prescribed
(oscillatory or steady) flows. It is the result of the balance between
advection of the contaminant into a boundary layer, and the
diffusive broadening of this boundary layer. Calculations of this
process have been made for steady overturning flows (Weiss 1966,
Shraiman 1987; Rosenbluth et al. 1987), and oscillatory flows
(Rhines & Young 1983; Merryfield & Knobloch 1991). Details of
the time-dependent problem of the formation of the boundary
layers from an initially uniform gradient have been clarified by
Rhines & Young (1983) for fairly general flows.

5. Corrections when convection is not efficient

In Sect. 4, I have assumed that the thickness d of the overturning
layers is large compared to the thickness of the thermal boundary
layers at the interfaces. Since we do not know d very well, it is
useful to explore how the mixing rate depends on d if this
assumption is not made. In this case, the turnover time is not
short compared to the thermal diffusion time across the layer, so
that the thermal boundary layer thickness is not small compared
to the layer thickness. At the same time the buoyancy driving the
flow is reduced by thermal diffusion across the cell.

In this section I set e=n={_=1 for simplicity and because
elaborations to derive more precise values are probably not
warranted at the present level of the theory. Instead of the
boundary layer thickness (15), its maximum value must be used,

o,=d/2. 47)
If t,= d?/x, is the thermal diffusion time, and 7 =d/v the turnover
time, the typical value of the entropy fluctuation driving the flow
is reduced by a factor of the order 7,/z. Hence,
5s dc"fv Vol (g<7) (48)
=—(V-V,)— (1,<7
2H 1 '
instead of (9). The corresponding temperature fluctuationis é In T
=08/c,. With (11) the convective velocity becomes

vegd*— <4 3>(v v.) (49)
_g K‘H ﬁ alt
With (12) and (13) the convective heat flux is
1 _ 4 2
Fc=Zg2d8H‘3r<‘ *pc, T E—3 (V-V,)> (50)
With (F .+ F,)/F,=V,/V, and F, given by (18), this yields
1
V,=Zu2(V~Va)3+V, (51)

[with u given by (21)] from which V can be solved. Since we are
interested in the limit where the radiative flux dominates, we can
expand in u<1, and find

V-V, =(V,=V.) [1 —%(V,—Va)zuz] (V. =V )u<1]. (52)

To calculate the mixing, assume that the solute boundary
layer is still very thin, as before. With (34)—(36) and (48) this yields

1 1 4
Fom g del o i(ﬁ— 3)(V—Va)x“ 3 (53)
Hence, with (37)

1 4\~
Fs=§d6r<s”2g3/2H‘ 512 (E— 3) (V=V,)%2k . 5%c/y. (54)
With (34)—(36) and (48) this yields

1 4

Ks eff=5u3/2(’csxt)1/2<ﬁ_ 3>(Vr_ LA RLAN (55)

5.1. Summary of results

The two limiting cases of efficient and inefficient convection,
expressions (23) and (52), can be combined into

V-V
g oy = minll, 2457, (56)
where
—u(V.—V,) gd4<4 3>(V v.) 57
g=u\V,— a_HK'Z ,B r— Yal ( )

and I have used f=1/2 as before [Eq. (26)]. A smoother inter-
polation between the two cases could be considered but would
probably not be more accurate. For the effective diffusivity we get
from (45) and (55)

4 V.-V, . 1
'cseff=(r<sk.)”2(——3>—mm 1,-¢** |
B v, 2

Since g depends on the assumed layer thickness, the mixing
depends on it as well if ¢ <1. In practice one finds that g <1 only
for very small layer thickness d. For example in a semiconvective
zone above the helium burning core in an evolved 20M star
(9=510% H=10'°,x, =108 V,—V,=0.07, $=0.9) this would be
the case for layers thinner than 1 km. In laboratory experiments
and in geophysical cases, it is observed that the layer thickness
grows in time by merging of the layers with each other. In the
astrophysical case the lifetime of a semiconvective zone, in units of
the convective turnover time in the layers, is probably very long
compared to these experiments, so that this merging process is
probably important. Thus, it may be justified to assume that d is
large enough so that g> 1. The results (23) and (44) then hold, i.e.

(58)

V-V,<V,—V,, (59a)
and
4 V.-V,
Kseflz(KsK|)1/2 (_—3> . (59b)
B V.

In front of the right-hand side an adjustable numerical factor of
order unity may be added [see Eq. (23)] in view of the un-
certainties in the derivation. Too much freedom in the choice of
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its value does not exist, however, if we want the theory to apply
also to the experimental results (Sect. 4.2), for which this factor is
unity within a factor of two or so.

5.2. The microscopic diffusion coefficient

For convenience I summarize here some standard results. Let the
mixture consist of two ion species of charge Z, and Z, (in units of
the electron charge e) and masses m, and m,. Let the concentra-
tion ¢ of species 2 be defined as ¢=n,/n,, where n,, n, are the
number densities per unit volume. If the gradient of ¢ is the main
cause of diffusion, the drift velocity of species 2 with respect to 1 is

(60)

In addition to this, there are contributions to the drift velocity
from the temperature gradient, the pressure gradient, gravity, and
the gradient in the radiation density (for a review see Vauclair &
Vauclair 1982). In the present case of a narrow gradient in
concentration all these effects can be ignored. Further com-
plications arise if more than two species (in addition to electrons)
are present. For a discussion see Montmerle & Michaud (1976). If
¢ <1, the diffusion coefficient k, is given by its Chapman value
(Chapman & Cowling 1960; Aller & Chapman 1960; see also
Spitzer 1962; Urpin and Muslimov 1982):

b 3 <2kT>”2( 2kT )2 1
=00 T 6 Z,Z,*) InA’

where

v=—xkVinc

(61)

m=mym,/(m;+m,), n=n;+n,,

and In A is the Coulomb factor:

4dpkT \?
A=1+ 51
Z,Z,e

where dj, is the Debye length:

kT 2
dp= ,
L <4nnee2)

and n, the electron density. If ¢ is not small, corrections must be
applied which can be as large as a factor of two. Expressions for
these corrections are given in Montmerle & Michaud (1976). The
viscosity is, again for ¢<1 so that it is due mainly to species 1
(Chapman & Cowling 1960):

5 (2kT\'?( 2kT\? N
y=—-| — —— | (In A =1+1/A)  +v, (62)
16n\nm, Z3e?
where
4dpkT\?
N=1+\—35 >
Zie
and v, is the radiative viscosity (Mihalas & Mihalas 1984):
16 oT*
(63)

V=
15 xgp?c?

If the radiative viscosity is negligible and A> 1, the ratio of
viscosity to diffusivity is therefore

5/ m\Y?(Z,\?
) &)

v/K R

137

which is about 13 for helium diffusing in hydrogen. In semi-

convective zones, v, is not negligible, and v/k, can be much larger.

If the radiation pressure is a substantial fraction of the total

pressure, the diffusion of both momentum and heat is mainly due

to photons. In this case, the Prandtl number v/k, is:
1 Tc

vl’/K! =z __217'7

5 (64)

which is still small for a nonrelativistic gas.

6. Discussion

I have developed a theory for mixing in semiconvective zones
under the assumption that the layered convection observed in
similar laboratory situations takes place. Arguments are given
that this nonlinear form of motion is also preferred in the
astrophysical case. The theory takes into account that boundary
layers with steep gradients in entropy and mean weight develop at
the interface between adjacent layers. A part of the theory
describes the efficiency of heat transport (in the form of an
expression similar to that for the temperature gradient in mixing
length theory). This part is tested by comparison with recent
measurements of laboratory convection at very high Rayleigh
numbers; the expression for the heat flux agrees within a factor of
two. The mixing efficiency, in the form of an effective diffusion
coeflicient is then derived by similar arguments and tested against
the main experimental results. It reproduces, quantatively and in
functional form, the mixing rate deduced from these experiments
(though it must be recognized that these cover only a rather small
range in parameters).

The most important property of the derived mixing rate is
that it is proportional to the square root of the microscopic
diffusion coefficient. This reflects the fact that both diffusion and
advection by overturning cells play an essential role in the
transport mechanism. In its simplest form (applicable when the
thickness of the layers is larger than a rather small minimum), the
diffusion coefficient depends only on the energy flux, the thermo-
dynamic variables and the chemical composition. In particular, it
is independent of the somewhat uncertain thickness of the double-
diffusive layers assumed.

The process of layer formation, assumed here as the basis for
the calculations in this paper, is reminiscent of a curious result in
experimental stellar evolution. Langer et al. (1985), and Langer
(1991), using the Langer et al. (1983) mixing rate in semiconvective
zones, observed that semiconvective zones typically develop in
the form of a sequence of semiconvective layers sandwiched
between normal convective layers (the number of such layers
growing with time). Since the physics in the stellar evolution
models does not include the hydrodynamics that is responsible
for the actual layer formation process as seen, for example, in the
laboratory, the reason for this must be somewhat different. The
effective mixing across the stack of convective and semiconvective
layers in these models is also different from that derived above.
Yet it may reflect, at a more basic level, the same tendency for
double-diffusive systems to break up into a sequence of layers.
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