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ABSTRACT

As a massive star evolves through multiple stages of nuclear burning on its way to becoming a supernova, a
complex, differentially rotating structure is set up. Angular momentum is transported by a variety of classic in-
stabilities and also by magnetic torques from fields generated by the differential rotation. We present the first stellar
evolution calculations to follow the evolution of rotating massive stars including, at least approximately, all these
effects, magnetic and nonmagnetic, from the zero-age main sequence until the onset of iron-core collapse. The
evolution and action of the magnetic fields is as described by Spruit in 2002, and a range of uncertain parameters is
explored. In general, we find that magnetic torques decrease the final rotation rate of the collapsing iron core by about
a factor of 30–50 when compared with the nonmagnetic counterparts. Angular momentum in that part of the
presupernova star destined to become a neutron star is an increasing function of main-sequence mass. That is, pulsars
derived frommoremassive stars rotate faster and rotation plays amore important role in the star’s explosion. The final
angular momentum of the core has been determined—to within a factor of 2—by the time the star ignites carbon
burning. For the lighter stars studied, around 15M!, we predict pulsar periods at birth near 15 ms, though a factor of
2 range is easily tolerated by the uncertainties. Several mechanisms for additional braking in a young neutron star,
especially by fallback, are explored.

Subject headinggs: pulsars: general — stars: evolution — stars: magnetic fields — stars: rotation

1. INTRODUCTION

Massive stars are known to be rapid rotators with typical
equatorial velocities around 200 km s"1 or more during hydro-
gen burning (e.g., Fukuda 1982). It has long been known that this
much rotation could have a significant influence on the evolution
of the star, both on the main sequence and during in its later
stages of evolution (Endal & Sofia 1976, 1978; Heger et al.
2000;Maeder &Meynet 2001; Hirschi et al. 2004). For example,
on the main sequence, surface abundance patterns are observed
(Gies & Lambert 1992; Herrero 1993; Vrancken et al. 2000;
Venn 1999) that are most naturally explained by rotationally
induced mixing in the stellar interior (Venn 1999; Heger &
Langer 2000; Meynet & Maeder 2000).

Numerical studies of of the later evolutionary stages of ro-
tating massive stars initially found that the stellar core would
reach critical (Keplerian) rotation by the time carbon ignited in
the core (Kippenhahn et al. 1970; Endal & Sophia 1976), es-
pecially when angular momentum transport is neglected. Thus,
one might encounter triaxial deformation early on, with con-
tinued evolution hovering near instability.Modern stellar models
that include more instabilities capable of transporting angular
momentum find that considerable angular momentum is lost
from the core during hydrogen and helium burning (Endal &
Sofia 1978), especially when the stabilizing effect of composi-
tion gradients is reduced (Pinsonneault et al. 1989; Heger et al.

2000; Maeder & Meynet 2004; Hirschi et al. 2004). Such stars
now evolve to iron core collapse but still form very rapidly
rotating (#1 ms) neutron stars.
However, with the exception of Spruit & Phinney (1998) and

Maeder &Meynet (2004), all studies of massive stellar evolution
to date have ignored what is probably a major effect, the torques
exerted in differentially rotating regions by the magnetic fields
that thread them. This omission has not been because such
torques were thought to be unimportant but because of the com-
plexity and uncertainty of carrying out even one-dimensional
calculations that included them. This uncertainty, in turn, related
to the absence of a credible physical theory that would even
qualitatively describe the separate evolution of the radial and
poloidal components of the field, both of which are necessary to
calculate the torque,

S ¼ BrB!

4"
: ð1Þ

Spruit & Phinney (1998) estimated these torques assuming
that the poloidal field results from differential winding and that
the radial field would, because of the action of unspecified in-
stabilities, be comparable. Particular attention was paid to the
region of large shear that separates the core of helium and heavy
elements from the very slowly rotating hydrogen envelope of a
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red supergiant star. This assumption, Br # B!, probably over-
estimated the actual Br by orders of magnitude, and the rotation
rates that Spruit & Phinney (1998) estimated for young pulsars
were thus too slow (see also Livio & Pringle 1998).

More recently, Spruit (2002) provided improved estimates for
Br and B! based on a dynamo process that takes into account the
effect of stable stratifications. Here we investigate the effect of
this prescription in a stellar evolution code used to study the
complete evolution of massive stars. Particular attention is given
to the rotation rate it implies for young neutron stars. In x 2, we
describe the physical and numerical modeling. In x 3, the results
for 12, 15, 20, 25 and 35 M! stars are presented and, in x 4,
compared with observational data. Typical neutron star rotation
rates, at birth, are#15 ms. In x 5, we discuss other possible ways
that such rapidly rotating stars might be slowed during the first
days of their evolution by magnetic winds and fallback. The
surface abundance changes due to rotationally induced mixing
are discussed in x 6, and in x 7 we give our conclusions.

2. IMPLEMENTATION OF MAGNETIC BRAKING

The treatment of magnetic torques given by Spruit (2002) was
implemented in a version of the implicit hydrodynamics stellar
evolution code (KEPLER; Weaver et al. 1978) that already in-
cluded angular momentum transport andmixing due to a number
of nonmagnetic processes. See Heger et al. (2000) for a dis-
cussion of these nonmagnetic instabilities and Spruit (1999,
2002) for a detailed description of the dynamo mechanism. Here
we discuss only the implementation of and results from that
physical model.

Both angularmomentum transport and chemicalmixing are cal-
culated by solving the time-dependent diffusion equation (Heger
et al. 2000). It is assumed that the dynamo adjusts and reaches
equilibrium field strength on a timescale that is short compared
to the evolution timescales of the star; i.e., we neglect the time
required to reach the steady state field strength and distribution
described by Spruit (2002) and only apply their equilibrium val-
ues. This should be a reasonable approximation in all but the
most advanced burning stages, which occur when the angular
momentum distribution has already been frozen in. The validity
of this assumption is revisited in x 7.

2.1. The Dynamo Process in Radiative Regions

Spruit (2002) discusses two limiting cases: stabilization by
composition gradients (Spruit’s case 0) and stabilization by su-
peradiabatic temperature gradients (Spruit’s case 1). Realistic
stellar models exhibit both kinds of gradients at same time, so the
intermediate case must also be included (see also Maeder &
Meynet 2004). Here and in Appendices A and B we derive, for
the case of a general equation of state, the expression for the
adiabatic indexes and the Brunt-Väisälä frequency.

The effective viscosity, #e, for the radial transport of angular
momentum results from azimuthal stress due to the field gen-
erated by the dynamo, S ¼ BrB! /4". Its value is given by

#e ' S=$q!: ð2Þ

See also equations (34)–(40) of Spruit (2002).We also implement
the ‘‘effective diffusivity,’’ De ' %e, given in his equations (41)–
(43). Here! is the angular velocity, q ¼ d ln!/d ln r is the shear,
r is the radius, $ is the density, and S is the stress.

For application outside the regimeof ‘‘ideal gaswith radiation,’’
where the gradient of the mean molecular weight determines

the stabilization, we replace N 2
& by a more general formulation

(N 2
comp) but do not change nomenclature. This way the discus-

sion in Spruit (2002) can be followed without further revision.
Generally, the Brunt-Väisälä frequency is

N2 ¼ g

HP

1

"1
" d ln $

d ln P

! "
; ð3Þ

where g ¼ "GM (r)/r 2 is the local gravitational acceleration, P
is the pressure,HP ¼ "dr /d ln P is the pressure scale height, and
the derivatives are total derivatives in the star. The compositional
contribution to the Brunt-Väisälä frequency is given by

N 2
& ¼ g

HP
' " (

d ln T

d ln P
" d ln $

d ln P

! "
; ð4Þ

where T is the temperature. The thermodynamic quantities ' ,
(, and "1 obey their common definitions (e.g., Kippenhahn &
Weigert 1994). Again, the derivatives are the actual gradients in
the star, not thermodynamic derivatives. The thermal contribu-
tion to the Brunt-Väisälä frequency is then given by

N2
T ¼ N2 " N 2

& ¼ g

HP

1

"1
" ' þ (

d ln T

d ln P

! "
: ð5Þ

As stated above, we use the symbolN 2
& to indicate (the square of )

the Brunt-Väisälä frequency due to the composition gradient for
a general equation of state ('N 2

comp), not just due to changes of
mean molecular weight, &. Appendices A and B give a derivation
of the general expressions. This formulation is identical with the
stability analysis for the different regimes (next section) as used in
KEPLER and is therefore necessary for consistency in regimes in
which the assumption of an ideal gas is a poor approximation.

2.2. The Dynamo in Semiconvective and Thermohaline Regions

In addition to the radiative regime, I, where both composition
gradients and temperature gradients are stabilizing, other regimes
have to be considered in which ‘‘secular’’ mixing processes op-
erate. These are secular processes, as opposed to processes such
as convection, which operate on a hydrodynamic timescale. Two
of these are semiconvection (II; where a stabilizing composition
gradient dominates a destabilizing temperature gradient) and ther-
mohaline convection, also called the salt-finger instability (III;
where a stabilizing temperature gradient dominates a destabi-
lizing composition gradient; e.g., Braun1997; Heger et al. 2000,
their Fig. 1 for an overview). The final regime of hydrodynamic
instability in nonrotating stars is that of Ledoux convection
(Ledoux 1958; regime IV; where the destabilizing temperature
gradient is stronger than any stabilization by the composition
gradient). In the Ledoux regime, effective viscosities and dif-
fusivities are given by mixing-length theory (Heger et al. 2000).
Avery approximate treatment of regimes II and III is given in the
next two sections.

2.2.1. The Semiconvective Case

In semiconvective regions (regime II), the square of the
thermal buoyancy frequency is negative, and thus the limiting
case 1 of Spruit (2002; see x 2.1) would be convection. Instead
of equation (34) of Spruit (2002), we first compute a ‘‘dynamo’’
effective viscosity by

#re ¼ #e0 f (q); ð6Þ
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with #e0 from equation (35) of Spruit (2002) and qmin ¼ q0
(eqs. [37]–[39] of Spruit 2002).

We adopt the Spruit (1992) model for mixing and transport of
heat in semiconvective regions. As in corresponding laboratory
and geophysical systems, the transport in this model takes place
by overturning motions in thin layers separated by jumps across
which the transport is by diffusion. For the sake of simplicity, an
effective turbulent viscosity is computed,

#sc '
1

3
HPvconv; ð7Þ

using the velocities according to mixing-length theory
(Schwarzschild & Härm 1958) assuming Schwarzschild con-
vection (i.e., when the & gradient is neglected),

vconv '
g(HPL

64"$cPTr 2

! "1=3

ð8Þ

(e.g., as derived from eqs. [7.6] and [7.7] of Kippenhahn &
Weigert 1994) and assuming a characteristic mixing length scale
of HP (however, see Spruit 1992). Here cP is the specific heat
capacity at constant pressure.

Finally, we assume that the actual viscosity is somewhere
between that of the case of mere semiconvection and that of the
dynamo dominated by composition stratification and take the
geometric mean between the two viscosities,

#e '
ffiffiffiffiffiffiffiffiffiffiffi
#re#sc

p
: ð9Þ

The effective (‘‘turbulent’’) diffusion coefficient De for the con-
stituents of the gas mixture is computed in a way analogous to
the effective viscosity #e. Because of the properties of layered
semiconvection (Spruit 1992), Dsc is much smaller than the ef-
fective thermal diffusivity, and it is negligible in typical stellar
environments. In the absence of a model for semiconvection in
the presence of the magnetic turbulence considered here, we
just add the magnetic and nonmagnetic contributions, i.e., D ¼
De þ Dsc. Implemented in this way, diffusion typically has a
negligible effect on the composition profiles.

2.2.2. The Thermohaline Case

In this regime (III) the compositional buoyancy frequency
becomes negative and the limiting case 0 would be Rayleigh-
Taylor unstable. We assume the limiting case 1 of Spruit (2002)
and compute #e ¼ #e1, De ¼ De1, and qmin ¼ q1, analogous to
the semiconvective case.

In massive stars, thermohaline convection typically occurs
following radiative shell burning in the fuel ‘‘trace’’ left behind
by a receding central convective burning phase. The higher
temperature of shell burning can sometimes create heavier ashes
than core burning, and the resulting compositional structure is
unstable. The contraction phase after central helium burning is
the most important domain in massive stars.

Generally, the motions associated with the growth of this in-
stability (‘‘salt fingers’’) are very slow. Thus, the interaction with
the dynamo is much more restricted than in the case of semi-
convection. Therefore, we do not employ an interpolation be-
tween the dynamo effective radial viscosity or diffusivity, as is
done in x 2.2.1.

2.3. Evaluating the Magnetic Field Strength

The most interesting result of the dynamo model is the mag-
netic field strength. Combining equations (21), (23), (35), and
(36) of Spruit (2002), one has

#e ¼ r 2!
Br

B!

! "2

: ð10Þ

Using his equation (28), the components of the field are

B4
r ¼ 16"2$2# 3

e q
2!r"2; ð11Þ

B4
! ¼ 16"2$2#e q

2!3r 2: ð12Þ

3. RESULTS INCLUDING MAGNETIC TORQUES

3.1. Implementation

Based on the assumptions in x 2, the full evolution of stars of
12, 15, 20, 25, and 35M! of solar metallicity was calculated. For
comparison, equivalent models were also calculated without
magnetic fields for three of these stars. The initial models and
input physics were the same as in Rauscher et al. (2002), but the
total angular momentum of the star was chosen such that a typ-
ical initial equatorial rotation velocity of #200 km s"1 (Fukuda
1982) was reached on the zero-age main sequence (ZAMS; see
Heger et al. 2000). Time-dependent mixing and angular momen-
tum transport were followed, as discussed by Heger et al. (2000),
with the turbulent viscosities and diffusivities from the dynamo
model added to those from the model for the hydrodynamic in-
stabilities. For the time being, possible interactions between the
two are neglected (but see Maeder & Meynet 2004). Our stan-
dard case (B) implements the description as outlined in the pre-
vious sections.

3.2. Presupernova Models and Pulsar Rotation Rates

Tables 1–6 and Figure 1 summarize our principal results. As
also noted by Maeder & Meynet (2004), the inclusion of mag-
netic torques with a magnitude given by Spruit (2002), greatly
decreases the differential rotation of the star, leading to more
slowly rotating cores.
For illustration, we consider in some detail the evolution of the

15 M! model with standard parameter settings. Table 1 shows
that, over the course of the entire evolution, the total angular
momentum enclosed by fiducial spheres of mass coordinate 1.5,
2.5, and 3.5M! decreases in the magnetic models by a factor of
100 to 200, far more than in the nonmagnetic comparison model.
In both cases most of the angular momentum transport occurs
prior to carbon ignition (Figs. 2 and 3). The greatest fractional
decrease occurs during the transition from hydrogen depletion to
helium ignition (Table 1, Fig. 2), as the star adjusts to its new red
giant structure. During this transition, the central density goes up
by a factor of about 100 (from 11 to 1400 g cm"3) with an ac-
companying increase in differential rotation and shear. Though
the angular momentum evolves little after carbon burning, mod-
ified only by local shells of convection, there is a factor of 2
change after carbon ignition (central temperature ¼ 5 ; 108 K).
The magnetic torques are sufficiently strong to enforce rigid

rotation both on the main sequence and in the helium core during
helium burning for all masses considered (see also Maeder &
Meynet 2004). The appreciable braking that occurs during hy-
drogen and helium burning is therefore a consequence of mass
loss and evolving stellar structure, especially the formation of a
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TABLE 1

Evolution of Angular Momentum inside Fiducial Mass Coordinates for 15 M! Star

Magnetic Star Nonmagnetic Star

Evolution Stage
J (1.5)

(ergs s)

J (2.5)

(ergs s)

J (3.5)

(ergs s)

J (1.5)

(ergs s)

J (2.5)

(ergs s)

J (3.5)

(ergs s)

ZAMS ...................... 1.75 ; 1050 4.20 ; 1050 7.62 ; 1050 2.30 ; 1050 5.53 ; 1050 1.00 ; 1051

H-burna..................... 1.31 ; 1050 3.19 ; 1050 5.83 ; 1050 1.51 ; 1050 3.68 ; 1050 6.72 ; 1050

H-dep........................ 5.02 ; 1049 1.26 ; 1050 2.37 ; 1050 1.36 ; 1050 3.41 ; 1050 6.37 ; 1050

He-ignc ..................... 4.25 ; 1048 1.21 ; 1049 2.57 ; 1049 1.16 ; 1050 2.98 ; 1050 4.87 ; 1050

He-burnd................... 2.85 ; 1048 7.84 ; 1048 1.83 ; 1049 7.06 ; 1049 1.85 ; 1050 3.86 ; 1050

He-depe..................... 2.23 ; 1048 5.95 ; 1048 1.21 ; 1049 4.72 ; 1049 1.26 ; 1050 2.52 ; 1050

C-ignf ....................... 1.88 ; 1048 5.52 ; 1048 1.12 ; 1049 4.69 ; 1049 1.26 ; 1050 2.46 ; 1050

C-depg ...................... 8.00 ; 1047 3.26 ; 1048 9.08 ; 1048 4.06 ; 1049 1.25 ; 1050 2.24 ; 1050

O-deph ...................... 7.85 ; 1047 3.19 ; 1048 8.43 ; 1048 3.94 ; 1049 1.20 ; 1050 1.99 ; 1050

Si-depi ...................... 7.76 ; 1047 3.05 ; 1048 7.23 ; 1048 3.75 ; 1049 1.16 ; 1050 1.95 ; 1050

PreSN j...................... 7.55 ; 1047 2.59 ; 1048 7.31 ; 1048 3.59 ; 1049 1.09 ; 1050 1.94 ; 1050

a At 40% central hydrogen mass fraction.
b At 1% hydrogen left in the core.
c At 1% helium burned.
d At 50% central helium mass fraction.
e At 1% helium left in the core.
f Central temperature of 5 ; 108 K.
g Central temperature of 1:2 ; 109 K.
h Central oxygen mass fraction drops below 5%.
i Central Si mass fraction drops below ; 10"4.
j Infall velocity reaches 1000 km s"1.

Fig. 1.—Magnetic field structure and angular momentum distribution for the standard 15 M! model at hydrogen depletion (top left), helium ignition (top right),
helium depletion (bottom left), and carbon ignition (bottom right). See Table 1 for the definitions of these times. The shaded regions are those portions of the star that are
convective. In those regions large diffusion coefficients for angular momentum lead to nearly rigid rotation in all but the latest stages of the evolution.



slowly rotating hydrogen envelope around a rapidly rotating
helium core. Typically, the more massive stars spend a shorter
time during the critical Kelvin-Helmholtz contraction between
hydrogen depletion and helium ignition and also have a shorter
helium burning lifetime. Hence, even though they actually have
a little less angular momentum at the fiducial mass points in
Table 1 on the main sequence, the more massive stars havemore
angular momentum in their cores at the end of helium burning.
This distinction persists, and the more massive stars give birth to
more rapidly rotating neutron stars.

Stars that include all the usual nonmagnetic mechanisms for
rotational mixing and angular momentum transport (Heger et al.
2000) but that lack magnetic fields have a considerably different
evolution and end up with 30 to 50 times more angular mo-
mentum in that part of their core destined to collapse to a neutron
star (Tables 1 and 3, Figs. 2 and 3). Most notable is the lack of
appreciable braking of the helium core by the outer layers in the
period between hydrogen core depletion and helium ignition.
The post–carbon-ignition braking that accounted for an addi-
tional factor of 2 in the magnetic case is also much weaker. In

Fig. 2.—Specific angular momentum distribution for the standard 15 M! model with (top) and without (bottom) magnetic fields at different evolution stages. See
Table 1 for the definitions of these times.
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fact, the inner 1.5M! of the 15M!model has only about 5 times
less angular momentum at core collapse than implied by strict
conservation from the (rigidly rotating) main sequence onward.
As noted previously many times, such a large amount of angular
momentum would have important consequences for the super-
nova explosion mechanism. Rigidly rotating neutron stars can-
not have a period shorter than about 1 ms.

Table 2 gives the magnetic field components that exist in differ-
ent parts of the star during different evolutionary phases. Themag-
netic field is highly variable from location to location in the star,
and the values given are representative but not accurate to better

than a factor of a few (Fig. 1), especially during the late stages. As
expected, the toroidal field, which comes from differential winding,
is orders of magnitude larger than the radial field generated by the
Tayler instability. The product B!Br scales very approximately as
the central density with the ratio Br /B! times #10"3 to 10"4.
Though the formulae used here are expected to break down
during core collapse, a simple extrapolation to ;1015 g cm"3 for
the central density of a neutron star suggestsB! times #1014 and
Br times #1010.

Table 3 gives the expected pulsar rotation rates based on a set
of standard assumptions (see column headed ‘‘Std.’’). Following

Fig. 3.—Same as Fig. 2, but for 25 M! stars.
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Lattimer & Prakash (2001), it is assumed that all neutron stars
(with realistic masses) have a radius of 12 km and a moment of
inertia 0:35 MgravR

2. Adding the binding energy to the gravita-
tional mass, assumed in Table 3 to be 1.4M! gives the baryonic
mass of the core that collapsed to the neutron star, 1.7 M!. Tak-
ing the angular momentum inside 1.7M! from the presupernova
model, assuming conservation during collapse, and solving for
the period then gives the values in the table.

3.3. Sensitivity to Uncertain Parameters

It is expected that our results are sensitive to several uncertain
factors, including the effect of composition gradients, the effi-

ciency of the dynamo in generating magnetic field, and the initial
angular momentum of the star. To some extent, these uncertain-
ties are reduced by the strong sensitivity of the expectedmagnetic
torques to rotation speed and differential shear (eq. [34]–[36] of
Spruit 2002). Composition gradients have very significant influ-
ence on the resulting angular momentum transport by inhibiting
the action of the dynamo. In particular, composition interfaces,
as resulting from the nuclear burning processes in combination
with convection, usually also show significant shear, but if the
dynamo action is suppressed by a steep change in mean mo-
lecular weight, angular momentum can become ‘‘trapped’’ in
a fashion similar to that observed by Heger et al. (2000). To

TABLE 2

Approximate Magnetic Field and Angular Velocity Evolution in a 15 M! Star at the Lagrangian Mass Coordinate Msamp

Evolution Stage

Msamp

(M!)

$samp

(g cm"3)

Rsamp

(109 cm)

B!

(G)

Br

(G)

!
(rad s"1)

MSa ...................................................... 5.0 1.9 90 2 ; 104 0.5 4 ; 10"5

TAMSb ................................................. 3.5 2.7 67 3 ; 104 1 2 ; 10"5

He ignitionc.......................................... 3.5 0.90 52 5 ; 103 5 4 ; 10"6

1.5 470 9.8 3 ; 104 20 4 ; 10"5

He depletiond ....................................... 3.5 150 14 2 ; 104 3.5 3 ; 10"5

C ignitione............................................ 1.5 1 ; 104 3.5 6 ; 105 250 2 ; 10"4

C depletionf.......................................... 1.2 3 ; 105 0.80 3 ; 107 5 ; 103 1 ; 10"3

O depletiong ......................................... 1.5 4 ; 105 0.73 2 ; 107 2 ; 103 1 ; 10"3

Si depletionh......................................... 1.5 2 ; 106 0.44 5 ; 107 5 ; 103 3 ; 10"3

PreSNi .................................................. 1.3 5 ; 107 0.12 5 ; 109 1 ; 106 5 ; 10"2

Evolution Stage

Msamp

(M!)

$c
(g cm"3)

Tc
(109 K)

tdeath
(s)

MS........................................................ 5.0 5.6 0.035 2.0 ; 1014

TAMS................................................... 3.5 11 0.045 6.4 ; 1013

He ignition ........................................... 3.5 1400 0.159 6.0 ; 1013

He ignition ........................................... 1.5 1400 0.159 6.0 ; 1013

He depletion......................................... 3.5 2700 0.255 1.4 ; 1012

C ignition ............................................. 1.5 3.8 ; 104 0.50 2.4 ; 1011

C depletion........................................... 1.2 7.0 ; 106 1.20 3.4 ; 108

O depletion........................................... 1.5 1.0 ; 107 2.20 1.1 ; 107

Si depletion .......................................... 1.5 4.8 ; 107 3.76 8.3 ; 104

PreSN ................................................... 1.3 8.7 ; 109 6.84 0.5

a At 40% central hydrogen mass fraction.
b At 1% hydrogen left in the core.
c At 1% helium burned.
d At 1% helium left in the core.
e Central temperature of 5 ; 108 K.
f Central temperature of 1:2 ; 109 K.
g Central oxygen mass fraction drops below 5%.
h Central Si mass fraction drops below ; 10"4.
i Infall velocity reaches 1000 km s"1.

TABLE 3

Pulsar Rotation Rate Dependence on Dynamo Model Parametersa

N 2
& N 2

T B!Br !ZAMS

Std. 0.1 10 0.1 10 0.1 10 0.5 1.5 B = 0
Initial Mass

(M!) Period (ms)

12................................ 9.9 . . . . . . . . . . . . . . . . . . . . . . . . . . .
15................................ 11 24 4.4 12 10 5.7 21 9.8 10 0.20

20................................ 6.9 14 3.2 8.4 6.4 3.3 11 7.2 6.5b 0.21

25................................ 6.8 13 3.1 7.3 4.9 2.6 13 7.1 4.3b 0.22

35................................ 4.4b . . . . . . . . . . . . . . . . . . . . . . . . . . .

a All numbers here can be multiplied by 1.2–1.3 to account for the angular momentum carried away by neutrinos.
b Became a Wolf-Rayet star during helium burning.
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illustrate the uncertainties of the dynamo model, we studied sev-
eral test cases in which the stabilizing effect of composition gra-
dients is varied by multiplying N 2

& and N 2
T by 1/10. We also

explored multiplying the overall coefficient of the torque in
equation (1) by varying B!Br by a factor of 10 and by multi-
plying the initial rotational rate by 0.5 and 1.5 (Table 3).

In three cases, the ones with 20 and 25 M! and high rotation
rate and the ‘‘normal’’ 35 M! model, the star lost its hydrogen-
rich envelope because of mass loss either during (25 and 35M!)
or just at the end (20 M!) of its evolution. The KEPLER code
was not able to smoothly run these models through the period in
which they lost their last solar mass of envelope because violent
pulsations were encountered. The last 0.5 to 1.0 M! was thus
removed abruptly, and the calculation continued for the resulting
Wolf-Rayet star. Based on the stellar mass loss rate, this remain-
ing envelopewould have beenmost on a short timescale anyway.

Since it is clear that the loss of the hydrogen envelope removes
an appreciable braking torque on the helium core, it is reasonable
that the remnants of stars that lost the envelope rotate more
rapidly (see simulations marked by footnote b in Table 3).

3.4. Variable Neutron Star Masses

Since the iron core masses, silicon shell masses, and density
profiles all differ appreciably for presupernova stars in the 12
to 35 M! range, it is not realistic to assume that they all make
neutron stars of the same mass. Ideally, one would extract real-
istic masses from a reliable, credible model for the explosion, but
unfortunately such models have not reached the point of mak-
ing accurate predictions. Still there are some general features
of existing models that provide some guidance. As noted by
Weaver et al. (1978), the remnant mass cannot typically be less
than the mass of the neutronized iron core. Otherwise, one
overproduces rare neutron-rich isotopes of the iron group. More
important to the present discussion, successful explosions, when
they occur in modern codes, typically give ‘‘mass cuts’’ in the
vicinity of large entropy jumps. The reason is that a jump in the
entropy corresponds to sudden decrease in the density. This in
turn implies a sudden falloff in accretion as the explosion de-
velops. The lower density material is also more loosely bound by
gravity. The largest jump in the vicinity of the iron core is typ-
ically at the base of the oxygen burning shell, and that has
sometimes been used to estimate neutron star masses (Timmes
et al. 1996). Recent studies by T. Janka (2004, private commu-
nication) suggest a numerical criterion, that the mass cut occurs
where the entropy per baryon equals 4 kB. In Table 4, instead of
assuming a constant baryonic mass of 1.7M! for the neutron star
progenitor (as in Table 3), we take the value where the specific
entropy is 4 kB baryon"1.

As expected this prescription gives larger baryonic masses for
the remnant (‘‘Baryon’’ in the table). The fraction of this mass
that is carried away by neutrinos is given by Lattimer & Prakash
(2001),

f ¼ 0:6)

1" 0:5)
; ð13Þ

where ) ¼ GMgrav /Rc
2. When this is subtracted, one obtains the

gravitational masses, Mgrav in Table 4. Using these, assuming
once more a moment of inertia I ¼ 0:35MgravR

2 and a radius of
12 km and conserving angular momentum in the collapse, one
obtains the period. Because the angular momentum per unit mass
increases as one goes out in the star, using a larger mass for the
remnant increases its rotation rate.

The resulting values are similar to those in Table 3 for the same
‘‘standard’’ parameter settings but show even more clearly the
tendency of larger stars to make more rapidly rotating pulsars.
They also show an additional prediction of themodel—that more
massive pulsars rotate more rapidly. The numbers in Table 4
have not been corrected for the fact that the typical neutrino,
since it last interacts at the edge of the neutron star, carries away
more angular momentum than the average for its equivalent
mass. Thus, the periods in Table 4 can probably be multiplied by
an additional factor of #1.2 (Janka 2004).

4. COMPARISON WITH OBSERVED
PULSAR ROTATION RATES

Table 5 gives the measured and estimated rotation rates and
angular momenta of several young pulsars at birth (Muslimov &
Page 1996; Marshall et al. 1998; Kaspi et al. 1994). To estimate
the angular momenta in the table, we have assumed, following
Lattimer&Prakash (2001), that themoment of inertia for ordinary
neutron stars (not quark stars) is I ) 0:35MR2 ) 1:4 ; 1045 g cm2.
Here a constant fiducial gravitational mass of 1.4 M! is assumed.

Given the uncertainties in both our model and the extrapola-
tion of observed pulsar properties, the agreement, at least for the
12–15M!models, is quite encouraging. This is all the more true
when one realizes that the periods in Tables 3 and 4 should be
multiplied by a factor of approximately 1.2–1.3 to account for
the angular momentum carried away by neutrinos when the
neutron star forms (Janka 2004). Then our standard, numerically
typical supernova, of 15M!, would produce a neutron star with
angular momentum 5:8 ; 1047 ergs s [PreSN entry J (1.5) for a
magnetic star in Table 1 divided by 1.3). It should also be noted
that the most common core collapse events—by number—are in
the 12–20M! range, because of the declining initial mass func-
tion. Moreover, stars above around 25–30 M! may end up
making black holes (Fryer 1999).

What then is the observational situation? Marshall et al.
(1998) discovered a pulsar in the Crab-like supernova remnant,
N157B, in the Large Magellanic Cloud, with a rotation rate of
16 ms. This is probably an upper bound to its rotation rate at
birth. Glendenning (1996) gives an estimated initial rotation rate
for the Crab pulsar itself of 19 ms. Estimating the initial rotation
rate of the much larger sample of pulsars that are known to be
rotating now much more slowly is fraught with uncertainty.
Nevertheless, PSR 0531+21 and PSR1509"58 are also estimated
to have been born with#20ms periods (Muslimov& Page 1996;
although 0540-69 is estimated to have P0 ) 39 ms). At the other
extreme, Pavlov et al. (2002) find for PKS 1209"51/52 a rota-
tion period of 424 ms and argue that the initial rate was not much

TABLE 4

Pulsar Rotation Rate with Variable Remnant Massa

Mass

(M!)

Baryonb

(M!)

Gravitationalc

(M!)

J (Mbary)

(1047 ergs s)

BE

(1053 ergs)

Periodd

(ms)

12............ 1.38 1.26 5.2 2.3 15

15............ 1.47 1.33 7.5 2.5 11

20............ 1.71 1.52 14 3.4 7.0

25............ 1.88 1.66 17 4.1 6.3

35............ 2.30 1.97 41 6.0 3.0

a Assuming a constant radius of 12 km and a moment of inertia 0.35MR2

(Lattimer & Prakash 2001).
b Mass before collapse, where specific entropy is 4 kB baryon"1.
c Mass corrected for neutrino losses.
d Not corrected for angular momentum carried away by neutrinos.
e Became a Wolf-Rayet star during helium burning.
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greater. Similarly, Kramer et al. (2003) argue that the initial ro-
tation rate of PSR J0538+2817 was 139 ms.

5. FURTHER BRAKING IMMEDIATELY
AFTER THE EXPLOSION

5.1. r-Mode Instability

For some time it was thought that gravitational radiation in-
duced by the ‘‘r-mode instability’’ would rapidly brake young
neutron stars. However, Arras et al. (2003) found that the r-mode
waves saturate at amplitudes lower than those obtained in previ-
ous numerical calculations (Lindblom et al. 2001) that assumed
an unrealistically large driving force. Much less gravitational ra-
diation occurs and the braking time for a rapidly rotating neutron
star becomesmillennia rather than hours. Arras et al. calculate that

*spin down ¼ 2000 yr

!
' e

0:1

""1!335 Hz

#

"11

; ð14Þ

with ' e, the maximum amplitude of the instability (for which
Arras et al. estimate 0.1 as an upper bound). A 3 ms pulsar will
thus take about 2000 years to substantially brake, and the more
slowly rotating neutron stars listed in Tables 3 and 4 will take even
longer.

5.2. Neutrino-Powered Magnetic Stellar Winds

Woosley & Heger (2004) and Thompson et al. (2004) dis-
cussed the possibility that a young, rapidly rotating neutron star
is braked by a magnetic stellar wind. This wind, powered by the
neutrino emission of the supernova, may also be an important
site for r-process nucleosynthesis (Thompson 2003).

During the first 10 s of its life, a neutron star emits about 20%
of its mass as neutrinos. This powerful flux of neutrinos passing
through the proto–neutron star atmosphere drives mass loss, and
the neutron star loses #0.01 M! (Duncan et al. 1986; Qian &
Woosley 1996; Thompson et al. 2001). Should magnetic fields
enforce corotation on this wind out to a radius of 10 stellar radii,
appreciable angular momentum could be lost from a 1.4 M!
neutron star (since j # r 2!). The issue is thus one of magnetic
field strength and its radial variation.

For a neutron star of massM and radius, R6, in units of 10 km,
the mass-loss rate is approximately (more accurate expressions
are given by Qian & Woosley)

Ṁ ) ; 10"3 M! s"1 L#;tot
1053 ergs s

! "5=3

R
5=3
6

1:4 M!

M

! "2

:

ð15Þ

The field causes corotation of this wind out to a radius (Mestel &
Spruit 1987) at which

$
$
v2wind þ !2r 2

%
) B2

4"
: ð16Þ

Calculations that include the effect of rotation on the neutrino-
poweredwind have yet to be done, but one can estimate the radial
density variation from the one-dimensional models of Qian &
Woosley (1996). For a mass-loss rate of 10"2 M! s"1 they find a
density and radial speed at 100 km of 108 g cm"3 and 1000 km
s"1, respectively. At this time, the proto–neutron star radius is
30 km, and these conditions persist for#1 s. Later, for amass-loss
rate of 10"5 M! s"1 and a radius of 10 km, they find a density at
100 km of #105 g cm"3 and velocity 2000 km s"1. This lasts
#10 s.Unless! is quite low, vwind is not critical. For! # 1000 rad
s"1 the field required to hold 108 g cm"3 in corotation at 100 km
is #3 ; 1014 G; for 105 g cm"3 it is 1013 G.
To appreciably brake such a rapidly rotating neutron star, as-

suming B # r"2, thus requires ordered surface fields of #1015–
1016 G. Similar conclusions have been reached independently by
Thompson (2003). Such fields are characteristic of magnetars
but probably not of ordinary neutron stars. On the other hand,
if the rotation rate were already slow, ! # 100 rad s"1 (P #
60 ms), even a moderate field of 1014 G could have an appre-
ciable effect. It should also be kept in mind that the field strength
of a neutron star when it is 1–10 s old could be very different than
thousands of years later when most measurements have been
made.

5.3. Fallback and the Propeller Mechanism

After the first 1000 s, the rate of accretion from fallback is
given (MacFadyen et al. 2001) by

Ṁ ) 10"7t
"5=3
5 M! s"1; ð17Þ

with the time in units of 105 s. For the accretion rate in units of
1026 g s"1, we obtain

Ṁ26 ) 2t
"5=3
5 g s"1: ð18Þ

For a dipole field with magnetic moment &30 ¼ B12R
3
6, with B12

the surface field in units of 1012 G, the infalling matter will be
halted by the field at the Alfvén radius (Alpar 2001),

rA ¼ 6:8 &4=7
30 Ṁ

"2=7
26 km: ð19Þ

At that radius matter can be rotationally ejected, provided the
angular velocity there corresponding to corotation exceeds the
Keplerian orbital speed. The ejected matter carries away angular
momentum and brakes the neutron star. This is the propellermech-
anism (Illarionov & Sunyaev 1975; Chevalier 1989; Lin et al.
1991; Alpar 2001; but see the critical discussion in Rappaport
et al. 2004).
Obviously, rA must exceed the neutron star radius (10 km

here) if the field is to have any effect. The above equations thus
require a strong field, B > 1012 G, and accretion rates charac-
teristic of an age of at least 1 day. In addition, there is a critical
accretion rate, for a given field strength and rotation rate, above
which the corotation speed at the Alfvén radius is slower than
the Keplerian orbit speed. In this case the matter accretes rather
than being ejected. Magnetic braking is thus inefficient until
!2r3A > GM , or

Ṁ26 < 5:7 ; 10"4!7=3
3 &2

30; ð20Þ

TABLE 5

Periods and Angular Momentum Estimates for Observed Young Pulsars

Pulsar

Current

(ms)

Initial

(ms)

Jo
(ergs s)

PSR J0537"6910 (N157B, LMC)....... 16 #10 8.8 ; 1047

PSR B0531+21 (Crab).......................... 33 21 4.2 ; 1047

PSR B0540"69 (LMC) ....................... 50 39 2.3 ; 1047

PSR B1509"58 .................................... 150 20 4.4 ; 1047
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where !3 is the angular velocity in thousands of radians per
second (!3 ¼ 1 implies a period of 2"ms). This turns out to be a
very restrictive condition. For a given &30 and !3, equations (18)
and (20) give a time, t5;min, when braking can begin. The torque
on the neutron star from that point on is

I !̇ ¼ &2=r 3A ¼ 1060
&2
30

r 3A
; ð21Þ

with I, the moment of inertia of the neutron star, approximately
1045 (Lattimer & Prakash 2001). The integrated deceleration is

#! ¼ 250&2=7
30 t

"3=7
5;min: ð22Þ

Putting it all together, a 1.4M! neutron star can be braked to a
much slower speed (#! # !) by fallback if &30 > 78, 43, or 25
for initial periods of 6, 21, or 60 ms, respectively. If the surface
field strength—for a dipole configuration—is less than 2 ; 1013 G,
braking by the propeller mechanism is negligible in most inter-
esting situations.

However, we have so far ignored all nonmagnetic forces save
gravity and centrifugal force. A neutron star with an age of less
than 1 day is in a very special situation. The accretion rate given
by equation (17) is vastly super-Eddington. This means that
matter at the Alfvén radius will be braked by radiation as well as
centrifugal force, and the likelihood of its ejection is greater.
Fryer et al. (1996) considered neutron star accretion at the rates
relevant here and found that neutrinos released very near the
neutron star actually drive an explosion of the accreting matter.
Just how this would all play out in a multidimensional calcu-
lation that includes magnetic braking, rotation, and a declining
accretion rate has yet to be determined but is worth some
thought.

If the accreting matter is actually expelled under ‘‘propeller’’
conditions, onemight expect that themechanism also inhibits the
accretion, so the process might be self-limiting. This traditional
view of the propeller mechanism may be misleading, however.

There is a range of conditions in which accretion accompanied
by spindown is expected to occur (Sunyaev & Shakura 1977;
Spruit & Taam 1993; for a recent discussion see Rappaport et al.
2004), as observed in the X-ray pulsars. If fallback is the way
most neutron stars are slowed, one might expect a correlation of
pulsar period with the amount of mass that falls back and that
might increase with progenitor mass.

More massive stars may experience more fallback (Woosley &
Weaver 1995) and make slowly rotating neutron stars. But, on the
other hand, as Tables 3 and 4 show, neutron stars derived from
more massive stars are born rotating more rapidly. There may be a
mass around 15M! or so at which the two effects combine to give
the slowest rotation rate. Interestingly, theCrab pulsarwas probably
once a star of #10M! (Nomoto et al. 1982) and may thus have
experienced very little fallback. The matter that is ejected by the
propeller mechanism in more massive stars could contribute ap-
preciably to the explosion of the supernova and especially to its
mixing.

5.4. Effect of a Primordial Field

As noted above, the results agree with the initial rotation
periods found in Crab-like pulsars, but not with the long peri-
ods inferred for pulsars such as PSR J0538+2817. Within the
framework of our present theory, slowly rotating pulsars must
have formed from stars with different or additional angular
momentum transport mechanisms. Another possibility is that
their main-sequence progenitors started with a qualitatively
different magnetic field configuration. The dynamo process
envisaged here assumes that the initial field of the star was
sufficiently weak such that winding-up by differential rotation
produces the predominantly toroidal field in which the dy-
namo process operates. Any weak large-scale field initially
present is then expelled by turbulent diffusion associated with
the dynamo.

Stars with strong initial fields, such as those seen in the
magnetic A stars, cannot have followed this path. In these stars,
the magnetic field is likely to have eliminated any initial dif-
ferential rotation of the star on a short timescale (Spruit 1999),

TABLE 6

Evolution of Surface Mass Fractions (15 M!)

Model Isotope H-Burna He-Burnb Pre-SN Isotope H-Burna He-Burnb Pre-SN

No-rot .................. 4He 0.2762 0.2781 0.3292 12C 2.8 ; 10"3 2.3 ; 10"3 1.6 ; 10"3

Rot....................... 4He 0.2777 0.2872 0.3401 12C 2.2 ; 10"3 1.2 ; 10"3 9.1 ; 10"4

Rot + B ............... 4He 0.2770 0.2833 0.3365 12C 2.2 ; 10"3 1.4 ; 10"3 1.0 ; 10"3

No-rot .................. 13C 3.4 ; 10"5 1.3 ; 10"4 1.0 ; 10"4 15N 3.2 ; 10"6 1.8 ; 10"6 1.3 ; 10"6

Rot....................... 13C 1.2 ; 10"4 1.7 ; 10"4 1.4 ; 10"4 15N 1.6 ; 10"6 4.9 ; 10"7 4.3 ; 10"7

Rot + B ............... 13C 1.3 ; 10"4 1.9 ; 10"4 1.5 ; 10"4 15N 1.6 ; 10"6 4.9 ; 10"7 4.3 ; 10"7

No-rot .................. 14N 8.2 ; 10"4 1.3 ; 10"3 3.3 ; 10"3 16O 7.6 ; 10"3 7.6 ; 10"3 6.3 ; 10"3

Rot....................... 14N 1.6 ; 10"3 3.0 ; 10"3 4.4 ; 10"3 16O 7.5 ; 10"3 7.0 ; 10"3 6.0 ; 10"3

Rot + B ............... 14N 1.5 ; 10"3 2.6 ; 10"3 4.1 ; 10"3 16O 7.5 ; 10"3 7.3 ; 10"3 6.1 ; 10"3

No-rot .................. 17O 3.1 ; 10"6 3.6 ; 10"6 5.7 ; 10"6 18O 1.7 ; 10"5 1.6 ; 10"5 5.7 ; 10"6

Rot....................... 17O 5.4 ; 10"6 8.2 ; 10"6 8.1 ; 10"6 18O 1.5 ; 10"5 1.0 ; 10"5 7.6 ; 10"6

Rot + B ............... 17O 4.9 ; 10"6 7.0 ; 10"6 7.2 ; 10"6 18O 1.5 ; 10"5 1.1 ; 10"5 8.6 ; 10"6

No-rot .................. 23Na 3.4 ; 10"5 3.6 ; 10"5 6.4 ; 10"5 19F 4.1 ; 10"7 4.0 ; 10"7 3.2 ; 10"7

Rot....................... 23Na 4.5 ; 10"5 6.1 ; 10"5 8.0 ; 10"5 19F 3.7 ; 10"7 3.3 ; 10"7 2.6 ; 10"7

Rot + B ............... 23Na 4.2 ; 10"5 5.2 ; 10"5 7.5 ; 10"5 19F 3.8 ; 10"7 3.5 ; 10"7 2.8 ; 10"7

No-rot .................. 11B 3.8 ; 10"9 2.6 ; 10"10 1.8 ; 10"10 9Be 1.7 ; 10"10 3.5 ; 10"13 2.4 ; 10"13

Rot....................... 11B 2.4 ; 10"10 1.3 ; 10"11 8.4 ; 10"12 9Be 9.8 ; 10"14 6.0 ; 10"16 4.0 ; 10"16

Rot + B ............... 11B 1.1 ; 10"10 6.5 ; 10"12 4.5 ; 10"12 9Be 2.9 ; 10"15 5.7 ; 10"18 3.9 ; 10"18

a The 35% central hydrogen mass fraction.
b 50% central helium mass fraction.
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after which it relaxed to the observed stable configurations
(Braithwaite & Spruit 2004). In these configurations the radial
and azimuthal field components are of similar magnitude. To the
extent that such magnetic fields also exist in massive MS stars
(where they are much harder to detect; see, however, Donati et al.
2002), they are likely to have led to a stronger magnetic coupling
between core and envelope and hence to more slowly rotating
pre-SN cores.

6. SURFACE ABUNDANCES

The abundances of certain key isotopes and elements on
the surfaces of main-sequence stars and evolved supergiants
are known to be diagnostics of rotationally induced mixing
(Heger & Langer 2000; Maeder & Meynet 2000). In particu-
lar, on the main sequence one expects enhancements of 4He,
13C, 14N, 17O, and 23Na and extra depletion of 12C, 15N, 16O,
18O, 19F, Li, Be, and B. To test these predictions and their
sensitivity to assumed magnetic torques in the present models,
we calculated three additional versions of our 15 M! model in
which a large nuclear reaction network was carried in each
zone. The adopted nuclear physics and network were essen-
tially the same as seen in Rauscher et al. (2002). One model
assumed no rotation; a second assumed rotation without mag-
netic torques; and a third, which included both rotation and
magnetic torques, was our standard model in Tables 1–4. The
initial rotation rate assumed in the magnetic and nonmagnetic
models was the same.

The results (Table 6) show the same sort of rotationally induced
enhancements and depletions on the main sequence (defined by
half-hydrogen depletion at the center) as those in Heger & Langer
(2000). Helium is up by about half a percent and nitrogen is in-
creased by a factor of 2. Carbon is depleted by about 25% and
15N is depleted by a factor of 2. The isotopes 13C and 17O are
enhanced by factors of 3 and 1.6, respectively. Be and B are
depleted.

Most important to the current discussion, we see no dramatic
differences between the surface abundances calculated with and
without magnetic torques. Maeder & Meynet (2004) obtained
larger differences and suggested that such differences might be a
discriminant, perhaps ruling out torques of the magnitude sug-
gested by Spruit (2002).

7. CONCLUSIONS AND DISCUSSION

Given the uncertainty that must accompany any first-principles
estimate of magnetic field generation in the interior of stars,
the rotation rates we derive here compare quite favorably with
those inferred for a number of the more rapidly rotating pul-
sars. Without invoking any additional braking during or after
the supernova explosion, the most common pulsars, which
come from stars of 10–15 M!, have rotation rates around 10–
15 ms (Table 3). Reasonable variation in uncertain parameters
could easily increase this rate to 20 ms. Given that the torques in
the formalism of Spruit (2002) depend on the fourth power of
the shear between layers, this answer is robust to small changes
in the overall coupling efficiency and inhibition factors. If
we accept the premise that only the fastest solitary pulsars rep-
resent their true birth properties and the others have been
slowed by fallback or other processes occurring during the first
few years of evolution, our predictions are in agreement with
observations.

If correct, this conclusion will have important implications,
not only for the evolution of pulsars but for the supernova explo-
sion mechanism, gravitational wave generation, and for gamma-

ray bursts (GRBs). For rotation rates more rapid than 5 ms,
centrifugal forces are an important ingredient in modeling the
collapse and the kinetic energy available from rotation is more
than the 1051 ergs customarily attributed to supernovae. At10 ms,
the energy is nearly negligible.
Given recent observational indications that supernovae ac-

company some if not all GRBs of the ‘‘long-soft’’ variety (e.g.,
S. E. Woosley & J. Bloom 2005, in preparation), rotation is
apparently important in at least some explosions. Otherwise, no
relativistic jet would form. Indeed, the only possibilities are a
pulsar with very strong magnetic field and rotation rate #1 ms
(e.g., Wheeler et al. 2000) and a rapidly rotating black hole with
an accretion disk (Woosley 1993;MacFadyen&Woosley 1999).
Both require angular momenta considerably in excess of any
model in Table 3, except those that did not include magnetic
torques.
We shall address this subject in a subsequent paper, but for

now we note a possible important symmetry braking condition—
the presence of a red supergiant envelope. The most common
supernovae—Type IIp— results from stars that spent an extended
evolutionary period with a rapidly rotating helium core inside a
nearly stationary hydrogen envelope. GRBs, on the other hand,
come fromType Ic supernovae, the explosions of stars that lost their
envelopes either to winds or binary companions. Whether a com-
prehensive model can be developed within the current frame-
work that accommodates both a slow rotation rate for pulsars at
birth and a rapid one for GRBs remains to be seen, but we are
hopeful.
As noted in x 2, the magnetic torques have been computed

assuming that the dynamo process is always close to steady state.
The time to reach this steady state scales as some small multiple
of the time for an Alfvén wave to travel around the star along the
toroidal field. This time is very short throughout most of the
evolution, but in the latest stages it eventually becomes longer
than the timescale on which the moment of inertia of the core
changes. After this, the dynamo effectively stops tracking the
changing conditions and the field is frozen in (its components
varying as 1/r 2 for homologous contraction). With the data in
Tables 1 and 2, we can estimate the effect this would have on
the angular momentum loss from the core. The Alfvén crossing
time first exceeds the evolution time around the end of carbon
burning. Evolving the field under frozen-in conditions from
this time on then turns out to produce field strengths that do not
differ greatly (by less than a factor of 4) from those shown in
Table 2. Since the angular momentum of the core does not
change by more than 5% after carbon burning, the effect of using
frozen field conditions instead of a steady dynamo is therefore
small.
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APPENDIX A

THERMODYNAMIC DERIVATIVES

Instead of the formulations

"1 ' +ad ¼
1

'" (9ad
;

1" 1

"2
' 9ad ¼

R)

(&cP
; ðA1Þ

for an ideal gas with radiation (R is the gas constant; Kippenhahn &Weigert 1994), the general expressions should be used for more
general equations of state, such as, e.g., to include the effect of degeneracy, which is important in the late stages of stellar evolution of
massive stars and in low-mass stars. The thermodynamic derivatives at constant entropy

"1 ' +ad ¼
d ln P

d ln $

! "

ad

; ðA2Þ

1" 1

"2
' 9ad ¼

d ln T

d ln P

! "

ad

; ðA3Þ

"3 " 1 ¼ d ln T

d ln $

! "

ad

; ðA4Þ

"1

"3 " 1
¼ "2

"2 " 1
ðA5Þ

(Kippenhahn & Weigert 1994) can be derived from ds ¼ dq/T , dq ¼ duþ Pd 1/$ð Þ ¼ du" P /$2 d$, and the total derivative on the
specific internal energy

du ¼ @u

@$

! "

T
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@T

! "

$

dT ; ðA6Þ

assuming adiabatic changes, ds ¼ 0:

0 ¼ ds ¼ dq
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(Kippenhahn & Weigert 1994). This can be transformed into
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and we readily obtain

"3 " 1 ¼ d ln T

d ln $
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as a function of the partial derivatives of u with respect to T and $. Using the equation of state for bubble without mixing or
composition exchange with its surrounding,
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where

' ¼ @ ln $

@ ln P

! "

T

¼ 1
. $

P

@P

@$

! "

T

& '
; ðA11Þ

( ¼ " @ ln $

@ ln T

! "

P

¼ T

$

@P

@T

! "

$

. @P

@$

! "

T

; ðA12Þ

EVOLUTION OF MAGNETIC ROTATING MASSIVE STARS 361No. 1, 2005



and using the thermodynamic relation (e.g., Kippenhahn & Weigert 1994)

@P

@T

! "

$

¼ P(

T'
ðA13Þ

to transform the last term, we can write equation (A7) as

0 ¼ ds ¼ 1
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and obtain
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as a function of the derivative of u and Pwith respect to T and $ only. Using equation (A5) we can solve for "2 employing the relation
for "3:

1" 1

"2
¼ "3 " 1

"1
¼ d ln T

d ln P

! "

ad

¼ T

P

dT

dP

! "

ad

¼ P " $2 @u

@$

! "

T

" #,
T$"1

@u

@T

! "

$

" #
: ðA16Þ

APPENDIX B

COMPOSITIONAL BRUNT-VÄISÄLÄ FREQUENCY

We derive the compositional fraction of the Brunt-Väisälä frequency from the following consideration: we compare a change of den-
sity if we move a fluid element to a new location and allow adjusting its pressure and temperature to its surroundings. When moving to
the new location, P will be different by dP and T be different by dT. The density change we then obtain from the equation of state,
equation (A10), for a displacement with such a change in pressure thus is

d ln $

d ln P

! "

element

¼ '" (
d ln T

d ln P

! "

element

¼ ' " (
d ln T

d ln P
: ðB1Þ

The buoyancy is obtained by comparing with a density change in the star over the same change in pressure, with the remainder then
due to compositional changes:

d ln (#$)

d ln P

& '

comp

¼ ' " (
d ln T

d ln P
" d ln $

d ln P
: ðB2Þ

For a compositionally stably stratified medium this quantity is negative since pressure decreases outward.
As an example, let us consider an ideal gas with radiation. For the surrounding, the equation of state, as a function of T, P, and mean

molecular weight, &, is given by

d$

$
¼ '

dP

P
" (

dT

T
þ ’

d&

&
; ðB3Þ

with

’ ¼ @ ln $

@ ln &

! "

T ;P

: ðB4Þ

Substituting this for the last term of equation (B2), we obtain

d ln (#$)

d ln P

& '

comp

¼ "’
d ln &

d ln P
' "’9&; ðB5Þ

and the usual expression for buoyancy in an ideal gas with radiation is recovered.
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For a displaced blob ofmaterial the square of the oscillation ‘‘angular’’ frequency (# ¼ 1/period), the Brunt-Väisälä frequency, can be
obtained by multiplication with g/HP, analogous to the harmonic oscillator, here for the case of isothermal displacements that only
consider stabilization by composition gradients:

N2
comp ¼

g

HP
'" (

d ln T

d ln P
" d ln $

d ln P

! "
: ðB6Þ
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