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Plan:

1. Structure equations
2. Microphysics

3. The Sun & the main-sequence evolution



T he structure equations

e Stars are self-gravitating objects of hot plasma;

e emitting energy in the form of photons from the
surface;

e spherical symmetry (absence of rotation and mag-
netic fields);

—one-dimensional problem with radius r being the
natural coordinate (Euler description).

Mass and radius

Eulerian description: mass dm in a shell at » and of
thickness dr is

dm = 4nr?pdr — 4nr?pudt

From the partial derivatives of this equation one can
derive:
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(continuity equation in 1-dimensional form and Eule-
rian description)



Lagrangian description: mass elements m (mass in a
concentric shell).

= r =r(m,t)

Variable change (r,t) — (m,t):
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This is the first structure equation (mass equation or
mass conservation).
Contains transformation Euler- — Lagrange-description
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Gravity

Gravitational field

Vb = 4nGp
(G=6.673-10"8dyncm?g~2).
In spherical symmetry:

19 (r28£> = 4nGp
or

g= %;f — g = (f;” is solution of Poisson’s equation.

Potential ® vanishes for r — oo.
—fooo ddr is the energy required to disperse the com-
plete star to infinity.



Hydrostatic equilibrium
On layer of thickness dr two forces:

gravity —gpdr and pressure AP = —2EAr.

If shell is at rest (hydrostatic equilibrium):

or _ _Gm
or  r2

in Lagrangian coordinates:
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om  4nrd
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Second structure equation (hydrostatic equilibrium).



Estimates for central values of the Sun:

Replace derivatives in the hydrostatic equation by dif-
ferences between center (P.) and surface (Pp ~0) —

2 2
P~ GM
R4

(M/2 and R/2 were used for mean mass and radius)
Sun: P.=7-10% (cgs units).

With p = £ and p = (3M)/(4nR3) =



Motion:
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1. P=0 — free-fall Gm/r? = 7.

2. Tff — \/R/|7.“'| ~ \/R/g.
3. G=0, Tezp = Ry\/p/P (isothermal sound speed)

4. hydrostatic timescale Tpyaro ~ S(Gp)~Y/?

5. Examples: Thydro =
e 27 minutes for the Sun
e 18 days for a Red Giant (R = 100R)
e 4.5 seconds for a White Dwarf (R = Ry/50)

Conclusion: stars return to hydrostatic equilibrium
within an extremely short time.



Energy reservoirs:

1. Thermal (or internal) energy (for an ideal gas)

R
P =—pT
i
R 2

_=CP_CU=§C’U

v
The thermal energy per mass unit is u = ¢, T

and therefore the total energy the integral over mass
of u

0

For the Sun, with (T) ~ 10" K — Ets ~ 5 x 10%® erg

2. Gravitational energy

M 2
GM, GM
Ey = —/ dM, ~ —
0

r R

For the Sun, Ego = —4 x 1048 erg

Generally,

Why?



The Kelvin-Helmholtz timescale

~ dEQ P |E9| ~ Et
L~ | TKH -=— 7"~ T~
|Eq| ~ SR = T ~ 3pr-

Sun: 7«p = 1.6-107 yrs.

= Sun could shine only for about 10 million years,
if gravitational potential or the thermal energy would
have been its only energy source!



The Virial Theorem

Integrate eq. (2) after multiplying it by 4mr3:
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Right hand side is obviously total gravitational energy

M
GM
Egz—/ dm
0

r

defined to be O at infinity. —FEg is energy released at
assembly of star from parts at infinity.

Left hand side solved by integration by parts:
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On right hand side, the term in brackets vanishes, if
P(M) =~ 0, and the integrand becomes [eq. (1)] 3P/p

So finally:

M p
3 _dm — —Eg
o P



Meaning of left hand term:

For ideal gas:
P R
—=-—T=(cp—cp)T =c,(v— 1T
P K

v = 5/3 for mono-atomic gas
(4/3 for photon gas).

; e P __ 2 — 2
With this F == §CvT == §’U,

u: specific internal energy =E; := [udm and

M p
3 —dm = 2Ei
o P



In summary, we obtain the Virial Theorem

= E, = —2E; (3)

For a more general ideal gas, 3(P/p) = Cu (( = 3(v —
1)); for monatomic gas ¢ = 2 (y = 5/3) and for
photon gas 1. —

CE;+ E, = 0.

Total energy W (< 0 for bound system):
W=E+E, = (1—C)EZ-=<_T1Eg

But luminosity L of star must come from this energy
reservoir:

— dw _ dFE;
L=-" = L[L=(-19%

(=2 = L=-—2=E&, (4)



Interpretation:

star loses energy — decrease in gravitational energy
(contraction) — but same amount goes into increase
in internal energy (heating)

Stars become hotter, because they lose energy!

Note: remember assumptions!
Hydrostatic equilibrium, ideal gas.

White dwarfs lose energy and get cooler! Why?



Energy conservation

dL, = 4nr?pedm,

e (erg/gs): specific energy generation rate

Sources for e€:

e in a stationary mass shell: ¢ = e,(p, T, X) :
clear energy generation;

e in non-stationary mass shell: interaction with sur-
rounding via PdV

(en — aL’") dt = dg= du-+ Pdv
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€q: gravothermal energy

oT 0 0P 1 (9T Vaiq OP
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Energy loss due to plasma neutrinos: —e,. energy
conservation equation reads

oL,
om

=€, + €5 — €. (6)




Global energy conservation

The change in the total energy reservoir equals the
loss of energy due to escaping neutrinos and photons:

. d
W = a(EG + E; + En) — _(L + Lu)a

Integration of the energy equation (6) over m should
recover this. Some terms can easily be identified:

L = f%dm, L, = fe,,dm, fendm = —dﬁ".

This leaves the integration of eg:

We use the formulation

ou . Pop
€g = —"—"—"T —=—.
I ot p? ot
The first term is easily identified as —dE;/dt.

M
The second term, [3" £%dm needs more work:

From the virial theorem derivation we know that
(Eg = grav. energy)

M p
EG - —3/ —dm,
o P

dE, __ P PO
and compute ¢ = —3f;er + 3f;?a—§dM7“




Taking the deriative w.r.t. t of the hydrostatic equa-
tion and integrating it over M,, we get that

M
19P dE
—3/ LOP i, = 495€
o P ot dt

using this in the previous equation we arrive at

M
) i Po
o p?ot
or
M
PO .
/ —Pam, = —Eg
o peOot

T herefore

M . -
/ e dM = —F, — Eg
0

and all terms in the global energy conservation equa-
tion have been recovered!



T he nuclear timescale

Nuclear energy reservoir: mass of fuel times the erg/g
of fuel.

Sun is in hydrogen burning, which has a heat release
of g=6.3-10% ergg!

or a total nuclear reservoir of 8.75 - 10°! erg for the
whole Sun.

=7 =7-10"yrs

Tn > TKH > Thydr

This is the timescale most important for most stars
in most evolutionary phases. % ~ €, to high preci-
sion is an equivalent statement. It implies that ¢, = 0O
or that the star is said to be in thermal equilibrium.
Together with the mechanical equilibrium this is also
called complete equilibrium, because all terms involv-
ing dt are missing. Of course, complete equilibrium
cannot be achieved accurately, as will be discussed

later.



Energy transport

The energy created in the centre must be transported
outwards. This is possible only along a temperature
gradient.

T-gradient in Sun: AT/Ar ~ 107/10t = 10~* (K/cm).

Energy tranport is possible by radiation, convection
and conduction, the latter process being usually unim-
portant except in the case of degenerate electrons.

Formal equation for the temperature gradient:

oT T Gm
om  P4mrt

Determine V in all cases!
Transport by radiation

Radiation intensity I weakened by intervening matter
according to

din/ 1
= Kp = —

dl = —Ikpdr = —
r

Opacity (T, p, X) (cm?/g).

Values for solar interior:
po = 1.4g/cm3, ko = 1cm?/g = Il =~ 1 cm!



Because of this very short mean free path the radiation
field is highly isotropic, the stellar interior everywhere
in Local Thermal Equilibrium, and the monochromatic
intensity well described by Planck-function B,(T).

Anisotropy (of Planck radiation):

. AF AT AT 1 T 1 l
FroT"—» —=4—=4— =~ 4—— =~ —
F T Ar'T RT R

For the Sun, this is of order 10~191 Therefore radia-
tion diffuses outwards only extremely slowly (timescale
about 10°...107 years).

Radiation transport by diffusion:

In analogy to Particle diffusion equation:
Diffusive flux 5 of particles (per unit area and time) is

- - 1 -
j=—-DVn = —gfvlan

(D is called the diffusion constant; v the diffusion ve-
locity; [, is the particle free path length and n the
particle density).

We now use U := aT* for the radiation density in place
of particle density, I = 1/(kp) for the photon mean free
path, and cjnstead of v. In a 1-dimensional problem,
we get for VU

T
(9_U — 4aT38_

or or



and for the radiation flux F (replacing j)

p— _tacT?0T

or F'= —KradVT.

Krag = %Z—; is the radiative conductivity.
Its value for the solar center is ~ 3x10°ergK—1s1cm—1,
compared to values of 107 for typical metals or 104
for concrete.

= Transport by photon gas is extremely efficient; even
a small T-gradient allows excellent heat transport [Lg
transported by AT/Ar ~ 107/10% = 1074 (K/cm)]

With L, = 4nr2F, we obtain

or 3 kpL,
or  16macr2T3
or, in Lagrangian coordinates
oT 3 KL,
—— = (7)
om 64acm2r*T3

However, this is — so far — only true for monochromatic
radiation. k = k(v).



The Rosseland mean opacity

We would like to have
or 3 KL,
om  6dact2riT3
with kK being a suitable mean over frequency of x(v).

This mean turns out to be

1 A

E' fooaBdV

2h13 hv -1
B,(T) = > (exp (kT) — 1)

is the Planck-function for the energy density flux of a
black body. (U = aT* = (47T/c)fB dv).

where

Kk is the Rosseland mean for opacity, mostly called kg
or simply k.

Note that the Rosseland mean is dominated by those
frequency intervals, where matter is almost transpar-
ent to radiation, i.e. where transport efficiency is high-
est.

Note: Eq. (7) can also be derived rigidly within radi-
ation theory (see, e.g. Cox & Giuli).



Conduction

In regions of degeneracy, the mean free path of elec-
trons is very large, because the probability for mo-
mentum exchange is very small due to the fact that
all energy levels are occupied!

The flux of energy is the sum of the radiative and the
conductive heat flux:

F = Fraqd + Feond = —(Krad + Kcond)vT

If we introduce formally kcond:

dac T3
Keond = — )
3 KcondpP
this allows to replace « in (7) by
1 1 1
I _I_

K Krad Kcond

The mechanism with the smaller opacity k manages
the transport!

Effevtive V in transport equation:

3 kL, P

V=V =
rad 16macG mT*#




Perturbations and stability: convection

For radiative transport, if x and/or L, is large, %—f will

be large and the question arises whether the stratifi-
cation is stable against small displacement?

Consider moving mass elements; assume no heat ex-
change with surrounding (adiabatic movement); Dif-
ferences between element and surrounding denoted by
D, e.g. DT = Te — TS

P+AP,T+AT

r+Ar: p+Ap

Illustration of blobs moving in unperturbed sur-
rounding

The figure illustrates the picture we have in mind: the
temperature excess DT is positive, if the element is
hotter than its surrounding. DP = 0 due to hydro-
static equilibrium. If Dp < 0 (ideal gas), the element
is lighter and will move upwards. Take an element
and lift it by Ar:

oo=[(2) - (3)]



The stability condition therefore is

5] 0
(20).-(&).>©
or)., or )
If it is fulfilled, the drop in p of the element during
the upward movement is smaller than that of the sur-
roundings (% < 0!), so the element will gradually be-

come as dense as the surrounding or denser and will
finally experience a downward force and return.

With the EOS dinp = adIn P —ddInT — dInu, the
stability condition changes to

() - () - (52) >
T dr /. Tdr/, pdr )
(Here we have used the fact that DP = 0.) Multiply
this by the pressure scale height

dr dr P

Hp = — = P =">0=
r din P dP ~ pg

dinT dinT p (dIinp
(dInP s < (dInP>e+5(dlnP)S

V. < vad+§vu

Viaa < Vad+§vp

The last equation holds in general cases and is called
the Ledoux-criterion for dynamical stability. If V, = 0,
the Schwarzschild-criterion holds. Note that V, will
stabilize.

If the stability criterion is violated, convective insta-
bility will set in and convection will transport energy.
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Illustration of the various temperature gradients
in a convectively unstable region

In an unstable layer, the following relations hold:

Viad >V > Ve > Vg (8)

V is the actual gradient that will result in the convec-
tive layer. The first inequality arises from the fact that
only part of the flux can be tranported by radiation,
since convection is carrying some in any case. The
last is due to the fact that the element will cool more
than just adiabatic, because some energy will be lost
by other means (radiation, conduction). The middle
one is just the stability criterion for the blob not to
be pushed back. The task of a convection theory is
it to derive V!



The chemical composition

The chemical composition of a star enters p, k, €. It
can change due to nuclear burning, diffusion, convec-
tion and other mixing processes.

Notation:

relative element mass fraction: X; := % Zi X, =1;
special cases:

hydrogen X, helium Y, “metals" Z=1-X —-Y.
typical values:

X~07---0.75;, Y =0.24---0.30; Z~0.0001---0.04
m; = u;m, and n; are particle masses and densities.

Changes due to nuclear reactions:

aXi my

P = —[Z Tji — Z Tik]
t P I k

r;; indicating that species ¢ is created from species j,
and r;, that ¢ is destroyed to create k. In most cases
more than one input or output particle is involved, e.g.
p +12C 13N,

Energy released is ¢;; = %rijeij. r;j number of reactions

per second, and e;; the energy released per reaction,
per particle mass it is g;; = e;j/m;.

In the simplest case, for the conversion of hydrogen
into helium, we get

0X _ (2 _ oYy

ot qH ot
eH.He ~ 26.7 MeV /reaction = 4.72:107° erg and gy pe =
2.5-10%/4 =6.44-10"18 erg/g.



Changes due to convection:

Usually, the convective timescale 7. < 1,, and there-
fore the mixing can be assumed to be instantaneous.
The composition after mixing is simply the mean com-
position of the convective layer.

If there is nuclear burning happening in the convective
layer (e.g. in the convective core of a star), the change
in composition is

ot - fC.z.er ,

(c.z. indicates the convection zone) but
0X;
oM,

0

Complication, if convection zone moves into a chem-
ically different region.

Above equation is sometimes considered the 5" equa-
tion of stellar structure theory.



Changes due to diffusion:

Treated by diffusion equation; the general expression
for the diffusive velocity is:

1 /. B B
ip=—-D <Vn-|—kTV|nT-|-kaIn P)
C

D is the diffusion constant, n the particle density, and
k; suitable scaling constants (for D).

Fick's law is jp = nip = —DVn, where jp is the dif-
fusive particle flux.

And the continuity equation states
on

Pl —Vip = V(DVn) = DV?n

With corresponding equations for the other two terms,
and kr and kp describing relative diffusion speeds w.r.t.
concentration diffusion, the first equation is obtained.

The three terms correspond to concentration, ther-
mal, and pressure diffusion, the latter better known
as sedimentation. It often is the dominating effect.

The calculation of the diffusion constants is non-trivial,
because it involves interactions on the quantum and
electromagnetic level.



Estimate for diffusive timescale in Sun:

Diffusion is random walk; therefore distance l4iff re-
lated to number of scatterings N by

laifr = A\WN

with A being the mean free path and N = %
7. is the mean time between interactions. From this

we can write
2
o Laier
' 3 A

A is related to the particle density n and the interaction
Cross section o by

Assuming elastic scattering by Coulomb-forces, os is
of order 10729cm? for hydrogen in the solar interior
and therefore A\~ 4-10"" cm.

The thermal velocity of the particles is (v) = /3kT /m.
We can compute 75 from
A
T = —=~8-10"1°s,

(v)
Sun: Tdiff ~ 1013 yrs for laiff = R@!

However, within the solar age lyir is of order 1% of the
solar radius, and therefore small effects are present.

In general, diffusion is unimportant except for (a) high
precision models (Sun, high-resolution spectroscopy),
and (b) thin surface layers of high temperatures (hot
horizontal branch stars, young white dwarfs).



The equations - summary

m IS the Lagrangian coordinate;

r, P, T, L, are the dependent variables;

X, are the composition variables; ~
p, K, €, ...are physical functions, all depending on (P, T, X).

The four structure equations to be solved are:
or 1

I — 9
om 4rr2p ©)
oP G 1 02
g = =0 r (10)
om Anrt  Anr2 Ot2
OL, oT  §0P
= €, — € —Cp— + —— 11
om e~ = Cpg p Ot (11)
oT GmT
oo Ty (12)
ot Arr4 P
with V depending of the type of energy transport:
3 kL, P
rad 16macG mT* (13)
V. = Vecon(® Vad) (14)

Finally, for the composition, we have (schematically)

=n D = T (15)
p j A

which may include a diffusive term (here: representa-
tive for concentration diffusion)

0X; = 0 [(47r7“2p)2D%] (16)
r

0X;
ot

ot om



Solving the structure equations

Step 1

We have I4+4 equations for the I species under
consideration plus the 4 dependent variables —
system can be solved!

The equations are non-linear partial differential
equations in t and M, (m). We need additional
boundary conditions at M, = 0 and M (for the
spatial part) and intial conditions for t = 0 (for
the temporal part). Stellar structure is an initial
and boudary value problem.

We call a stellar model the spatial solution for the
structure at a given time tg (r(M,,to), T(M,,to),
o X (M, t0)).

Initial values: needed for all variables at ¢t = O.
How to obtain them? Possible ways: a previously
computed model, a simplified model, a good guess.

If the initial model is a bad guess, but close enough
to the real solution, it will converge over 7y to
this.

The problem can be separated into a spatial and
a temporal part:

solve eqgs. (9)—(12) for fixed t1 (X;(M,,t1) given)

Step 2 solve eqa. (15) and (16) for fixed spatial struc-

ture from t; to to = t1 + At using e(M,,t1)

Step 3 update composition:

Xi(t2) = X;(t1) + (%)tl At — Step 1



Boundary conditions

at center: M, =0 — r(0)=0, L, (0)=0

at surface: different possibilities

(1) “zero” b.c.: for M\, = M: P(M) =0, T(M) = 0;
gives inner parts of stars approximately correct, but

outer parts are unrealistic; cannot be compared to
observations

(2) photospheric b.c.: b.c. taken at photosphere,
i.e. at optical depth tpon = 2/3, where T = Ty

Stefan-Boltzmann law:

L = 4o R*TS (17)

This is the first photospheric boundary condition. It
relates three of the four dependent variables.

Temperature relation for gray (% = 0) Eddington-
atmosphere:

T*(r) = > The(7 +2/3)

mass in atmosphere < 10719 My — M (7) = M (7pn)



We still need a second relation that involves pressure.

The optical depth definition is

(0.0}
dr = kpdr — Tpn =/ Kkpdr
R

for simplification, replace x(r) by k, and 7o =2/3 —

2 (0@
—ZFL/ pdr
3 R

From the hydrostatic equation one can integrate the
pressure gradient to get

Py = dr = — dr
ph /R gp R2 - P
which results in the second outer b.c., for Fpp:
2GM1
= 18
h= s - (18)

This is the second relation for the outer b.c., and the
system is closed and can be solved.

Eq. (18) can be obtained by more realistic integrations
using «(r) = x(P,T) and g(r), or even by using non-
gray atmospheres. In general, gray atmospheres are
accurate enough.



Note on influence of outer b.c.:

If outer stellar layers are radiative, the solutions will,
independent of the outer b.c., quickly converge to the
identical inner structure. Hot stars have radiative en-
velopes.

If they are convective, in particular with V > V,q, they
remain different for different outer b.c., and influence
the interior. In the extreme case (almost fully convec-
tive stars) the central conditions depend on the atmo-
spheric conditions. Cool stars have deep convective
envelopes.



Note on numerical methods for solving
structure equations:

1. Integrator-type methods (like Runge-Kutta)

Idea: A(xz + Ax) = A(x) + Am%

Complication: b.c. not at one boundary, but two of
them at each.

Start from M, = 0 and M, = M using boundary val-
ues for two variables and trial values for the other
two. Integrate all equations from boundaries to some
matching point. If variables at matching point do not
agree, go back with new trial values. Iterate until
match is good enough. Fitting method

Advantage: does not need previous model; works well
for homogenous chemical composition; useful for ini-
tial main-sequence models and for pre-main sequence
models. Accuracy control of solution.

Disadvantage: slow or no convergence if steep gra-
dients are present; convective envelopes require ex-
tremely well known outer b.c.



2. Newton-Raphson type methods (like Henyey-method)

Idea: divide star in N shells, and define variables on
grid points; replace differential equations by difference
equations, e.q.

oOP AP G M,

— = —
oM, AM, 4rrd

The AP etc. are the differences between values at

neighbouring grid points and on the r.h.s. suitable

means over the shell between these neighbouring grid

points are used. Equations solved by Newton-Raphson-

type methods.

Advantage: reasonable convergence; can handle all
evolutionary phases (depending on grid resolution);
changing outer b.c. part of iteration process

Disadvantage: results in system of coupled linear equa-
tions, which requires inversion of 4(N — 1) x 4(N — 1)
matrix (for 4(N — 1) unknowns; N of order 1000); re-
quires good starting values for each model at each grid
point for Newton-solver to converge. (What about
very first model?)

Henyey-method: clever handling of matrix, which can
be split up into many 8x4 matrices. Method of
choice for almost all stellar evolution codes

Use model at t; as first guess for new model at t»,
even if X;(M,) have changed. Number of iterations
usually < 10, but can go up to =~ 100.



Simple Stellar Models

Polytropes
Definition: relation between P and p of type P x p”
Polytropic relation:

P = Kpl—l—l/n
K: constant of polytrope; n: polytropic index; both
constant throughout star.

The polytropic relation is not identical to an equa-
tion of state of that type! It requires only that T is
changing with radius in such a way that the polytropic
relation is maintained.

Examples:
1. Isothermal ideal gas: T'= const; — n = o©
2. Adiabatic stratification:

T = const PV= (in case of convection)

For ideal gas, it follows that
P = consty, pt/(1-Va) and — n =

FOr Vaq = 0.4 — n = 3/2.

1-Vq
vad )

A polytropic equation of state automatically results
in a polytropic stellar interior, e.g. the completely de-
generate electron gas:

— non-relat. complt. deg. — P = constp5/3 —mn=23/2

— relativ. complt. deg. — P =constp*3 - n =3

In this case, the constant K is known (from equa-
tion of state); if only stratification is polytropic, K is
unknown and depends on T



Emden’s equation

With a polytropic relation the two “mechanical equa-
tions” (9) and (10) can be solved independently, by
combining them into one.

From (10), written in Euler-coordinates we get an
equation for M,, which, when we differentiate it w.r.t.
r gives

d M, 1d [r2dP 5
=———|——) =4nrr°p
dr Gdr \ p dr

The left hand side is the Euler version of eq. (9) and
we obtain Poisson’s equation.

Using the polytropic equation, the derivative of P is
dP 1 d
—=KQ+)pE
dr n dn

and using this in Poisson’s equation yields

1\ 1 1
K (TL + ) _d (r2p;—1%> — —47TGP

n r2dr dr

With the following substitutions and definition:

2 . K(n+1)Ar!

r — ax p— AyYy" « ppre

we get Emden’s equation

1d > dy d?y = 2dy
x2dx (a; daz) dx? + xdx Y (19)



Discussion of solutions of Emden’s equation —
Lane-Emden-functions

e )\ is one free parameter; choose A = p.

e at center x = 0 and y(x = 0) = 1; <g—z> =0
0

e R = axg corresponds to first root of y(xo)

o M =—4C(K)ps 2 (gg)

e for n = 3, M independent of p. (important for
White Dwarfs)

e Solved eitheg num4erical|y or by power series:
y(x) =1-%+ {55

e analytical solutions for n = 0 (see above),
n=1" y(x) _ Sln(m)

e for n <5 polytropes have finite radius

, mn=5 y— 0 for x — o0

e if equation of state is polytropic, K is fixed, and
a mass-radius-relation results

e oOtherwise Lane-Emden-functions scalable with one
more free parameter

e from polytropes Chandrasekhar could derive the
critical mass (of his name) for completely degen-
erate stars, above which even electron pressure
can no longer balance the gravitational pull:
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Simple stellar models

Homology

for chemically homogeneous (i.e. undeveloped, zero-
age, main-sequence) stars.

Basic homology assumption:

Two stars are called homologous to each other, if

my — mo _, i — To
atMl—Mo_U%l_RO

this gives scaling functions:
r (1) = Rf, ()

Ly (37) = LI (1)

P (§7) = Pefr (37)

T (§7) = Tefr (37)

where f; are independent of M, but the constants (R,
P., etc.) are dependent on M and pu.

Assume simple laws for the physics functions:

R

p = Zor (20)
L

e = eop'T" (21)

kopT~*° (22)

=
I



From the (radiative) structure equations we get simple
scaling relations, for example for pressure (x := m/M):

dp _ , dfpde _ Padinfp 1 _ PPMdinfp _ Pdinfp

dn  “drdm  fp dinz M PmM dinz mdlinz

and equating this with the structure equation for P
we obtain the following relation, and similar ones for
the other variables:

dP _ Pdinfp  Gm m

r (23)
J— — - AN —
dn mdlnx 4rs m r
dr r din f, 1 r 1
dm mdlnz  4nr?p m  r2p
dT  Tdin fp 3k L, T L
dm mdingx 64macrdT3 - m  r*T3 )
dL,  L.dinfr L

= — —~e (26)
dm m dlinx m



From (23) and (24) expressions for P and p as func-
tions of r and m can obtained; taking the ratio of these
and using the same ratio from the ideal gas EOS it
follows that

P m T

pT W
(or »T'= pm) and with equation (25) for L,
= L, ~ p*m3

in particular, for x =1 or m = M, we have

L~ pu*M3,

which is the mass-luminosity relation for main se-
quence stars. It does not depend on energy genera-
tion, but the proportionality is determined mainly by
opacity!

Since also L, ~ me ~ mp ¥, we obtain (again for
x =1, using p~m/r3 and T ~ um/r)

v—4 Av—2
R ~Y MV+3AM v+3A

For A=1 and v ~ 5 (pp-cylce) =
R ~ ;0125105

For A\=1 and v~ 15 (CNO-cycle) =
R ~ ;06124078

These are mass-radius relations for the two main
nuclear cycles on the main sequence. A representative
value for v is 13, which gives 0.75 for the M-exponent.



This slide is about the main-sequence and lines of
constant radius in the HRD, and about MS-lifetimes
derived from the relations obtained above.

— see 2nd exercise sheet!



Central values on the main sequence:

Set A =1 and pu=const.
PP~ P28 and T~ T~

fr(x)

M M2 (&)
Also TNE, PNﬁ, chi,

T(x)
fr(x)

v—1
and R ~ M3,

(27)
(28)
(29)
(30)

=
T. M
P, -
_2w=3)
pC v+3
_2
T Pc -
T. is rising with M; but p is falling with M for v > 3
(M > 0.8 Mp)!
7.6
2.o M/My=
10 .
v4 b
CNO: nu =15 °
Lo 2
507.27 (I
08
pp: hu ~4
ol
05 *
| oﬁ5 | 1ﬁ5 - ‘2



Two different types of stars on the main sequence

| MS15Ms MZ1.5Mg
Tefr low high
core radiatve convective
envelope convective radiative
H-burning pp-chain CNO-cycle
v > 10 <7
gas pressure | small significant




Theoretical and observed M-L-relation:
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Theoretical and observed M-R-relation:
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T he Microphysics

EOS, opacity, energy generation
Equation of State

Ideal gas: (see tutorial handout)

R
P =nkpT = —pT
o
with p = num,; p: molecular weight, mass of particle

per my.

Several components in gas with relative mass fractions

Xi=&—>n¢= P
p My i

P=P.+>» P=(n.+» n)ksT.
Completely ionzied atom:

X:(1+ Z; R
P=nkpT =R _ 1+ )pT=—pT
i ' K

i

1

po= (Zi %) . mean molecular weight
1

For a neutral gas, p = (Zi %) .

[In computation of u, for the metals with abundance
Z one assumes (for complete ionization) that Z;/A; =
1/2, so their contribution is Z/2.]

The mean molecular weight per free electron is

~1
B X:Z\ 2
““‘(Z uz-) CEEY

1




Radiation pressure: (see tutorial handout)

1 er
Prea = 3U = %T“ (a —7.56.10°15 —g)

cm3K4
B = %.
o] _ _4-p) op _ 0-B
(3_T)p__ 7 and (3_P)T_ r -
Furthermore

Q; :>
I
tb

T ( =5
(3ns) -

(p pr—
o _[ 3(4+B)(1—6) L 438
R 32 32
RE
Va —
‘ Bucp

L dinP . 1
Yad = dinp ad_a—5vad



For 8 — 0, cp — 00, Vag — 1/4 and ~yq — 4/3.
For 3 — 1, cp — % Vad — 2/5, and yaq — 5/3.

Note: there are further thermodynamic derivatives in
use in the literature, the so-called gammas. Here is a
list of relations:

Yad = 1
>—1
Vada =
o
dinT
3 = +1
dinp /4
M1 o




Ionization

Boltzmann-equation: occupation numbers of different
energy states in thermal equilibrium. Applied to atoms
being ionized, taking into account the distribution of
electrons in phase space = Saha-equation

M1, ur_|_12(27rme)3/2
=

(KT)? exp(—x/kT),

ny, Uy h3
with n,: number density of atoms in ionization state r;
Xr i0nization energy; wu, partition function; P. = n.kT
the electron pressure (kK = kg)

Application: hydrogen ionziation in Sun

n=mng+ni, Ne=mny, r.= —2

no+n;,
Pe:PgasnfLﬁ:Pgasx_l_il
2 3/2
L _wm 2 (2mme)3/ (kT)5/2e /KT
1-— CUQ uo Pgas h3

uop = 2, w1 = 1 are ground-state statistical weights;
X1 = 13.6 eV.

Solar surface, T = 5700 K, Pgas = 6.8-10%, — z =
1074, at Pyas = 1012, T =7-10°, — x ~ 0.99.

The mean molecular weight for a partially ionized gas
uw = po/(E + 1), where uo is the molecular weight of
the unionized gas, and E the number of free electrons
per all atoms. With p again the ideal gas equation
can be used.
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Illustration of ionization of hydrogen and helium within
a stellar envelope. In panel (b) the corresponding run
of Vg is shown. The depression is due to the increase
in cp due to ionziation. Since V4 is getting smaller,
convection will set in.

Note the following defect of the Saha-equation: the
ionization increases with T' and decreases with P. When
T =~ const., as in stellar cores, the ionization degree
should decrease, which is unphysical. The explana-
tion lies in the fact that the ionization potential is
suppressed, if the atoms approach each other, and
individual potentials overlap. This is called pressure
ionziation, and is treated in practice by “complete
ionziation” -conditions or a change in the ;.



Electron degeneracy

The distribution of electrons in momentum space (Boltz-
mann equation; p is momentum):

47Tp2 p2
dpdV = n, ex — dpdV
f(p)dp " (2mm kT )3/2 p( 2m.kT p

Pauli-principle:

8 2
J(p)dpdV < = -dpdV

fﬁp)

10720 10718



Completely degenerate gas:

8mp?
fp) = —5- for p=<pro ng/3
= 0 for p>pr
Er = zp_;ie X n§/3 is the Fermi-energy; for Er ~ m.c?,

ve & ¢ — relativistic complete degeneracy.

1. pr < mec (nONn-relativistic)

5/3 5
P, = 1.0036-10"3 <ﬁ> P.= U,
He 3

2. pr > mec (relativistic)

P, = 1.2435.105 (ﬁ) P = U,
He 3

Pi < Pe
Partial degeneracy:.

Finite T — Fermi-Dirac statistics:
8mp? 1
3 E
h3 1+exp (55— V)
v = 11’;;2 is the degeneracy parameter.
At constant W, T x p?/3 for the non-relativistic case,
and « p'/3 in the relativistic one.

f(p)dpdV =

dpdV




For Fermions, the following relations are valid:

8w [ p2dp

Ne = —
h3Jo 1+4exp (L& — W)
8r [*  pu(p)dp

Pe — —3 B
3h3 Jo 1+4exp (% —W)

U — 8w [ Ep?dp

hJo 1+exp (L& —w)

Flp}

b
8n 10"5'- f‘z‘

I |
10°°F !
|||||| 1 L 1

f(p) for partially degenerate gas with n. =
1022 cm=3 and T = 1.9 .- 10’ K corresponding

to v = 10.

The equation of state for normal stellar matter:

P = Pon+ Pe+ Pag

R 8m Su(p)d a
- Ry 3/ p (pazp 4 e
Lo 33 Jo 1+4exp(H—WV) 3
4 >0 EY2dE
p = 7T(QTne)3 2'mu,LLB/
h3 0o 1+exp(&—Ww)



Further effects:

1. Non-ideal effects (Coulomb screening in Debye-
Hiickel theory; van-der-Waals forces)

2. Collective effects like crystallization (White Dwarfs)

3. At nuclear matter densities, neutronisation (neu-
tron stars)

In practice:

use of precompiled tables (“OPAL", “Mihalas-Hummer-
Dappen’) for different mixtures, or modified in-line
EOS (“Eggleton-Faulker-Flannery” ), which mimic non-
ideal effext.



Opacity

Physical effects determining «:

1.

Electron scattering: (Thomson-scattering)
ks = L1 = 0.20(1 + X) cm?g~1

3 m.m,

Compton-scattering:
T > 10% momentum exchange — k < Ksc

. free-free transitions:

ki < pT~7/2 (Kramers formula)

bound-free transitions:
kor x Z(1 4+ X)pT—7/2

b-f for H -ion below 6000 K (major source);

electrons for H—-ion from metals with low ioniza-
tion potentials

k- = const qnepT?~7/2, v7---10

bound-bound transitions: below 10° K. No sim-
ple formula.

e~-conduction: k¢ oc p—2T?

molecular absorption for T < 104 K

. dust absorption for 7' < 3000 K



Opacity tables used in calculations

e Cox & coworkers (Los Alamos) started in late
60’'s with calculations of tables for Rosseland mean
opacity

e Calculations include: detailed EOS and atomic
physics

e Opacity Project (Seaton et al. 1994 ...2006):
updated opacities for solar exterior conditions and
variable compositions

e OPAL: Rogers & Iglesias (LLNL, 1992-1996):
updated opacities for extended range of stellar
conditions and fixed set of compositions; T >
6000 K

e OPAL & OP agree very well in common (T, R)-
range (R = p/T2)

e Alexander & Ferguson (1998, 2006): updated
molecular opacities (T > 103 K) for fixed set of
compositions

e Itoh et al.; Potehkin: fitting formulae for electron
conduction opacities



Sample table of Rosseland-opacity for ‘“solar’” compo-
sition (X = 0.70, ¥ = 0.28, Z = 0.02); only atomic
absorption; source: OPAL

W)

<>

~

N
NS

T
R RTRRRS
NN

A A TRHHIs

N

R =4, Te = T/10° K (because massive stars are
approximately n = 3 polytropes)
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Two tables, combined from atomic, molecular, and

“conductive” opacities for the solar (left) and a metal-
poor (right) composition.

Note: lower metallicity — lower opacity — lower Vg

— higher surface temperature. Pop. II stars are gen-
erally hotter than Pop. I!



Nuclear Energy Production
Mass defect — energy

Example:
4 'H (protons) : 4-1.0081m, *He: 4.0089m,,.
Difference (0.7%) : 26.5 MeV =

the Sun can shine for 101! yrs.

Binding energy:
Ep = [(A— Z)my + Zm, — Mnyc]c?

B.E. per nucleon f := Ep/A (of order 8 MeV). Its
maximum (8.4 MeV) is reached for °°Fe,

Fe

The "iron group”
of isctopes ara the
mos! tightly bound

 yiekd from

¢ puclear fission

. [T 55Ni tmostughty bound) :

g :

§ = 6} EE: Fe | Elamenis heavier

o - 58 Fe ! than iron can yield

i ._g M 26" have 88 Med | anergy by auckar

mo M per nucleon | fission.

@5 44 yieldfrom binding energy, |

o i nuclear fusion i

= m

= i

il

ma 2 i

" Average mass
i 1 of fission fragments a '
I 1is aboit 118. 35U :
i 1 | | | | 1 | | | | 1 EI | | | 1 | | | | 1 | | :
100 150 200

Mass Number, A



Nuclear fusion:

Non-resonant reactions:

Coulomb barrier V = %ﬁ]@ MeV cannot be over-
0

come by particles with average thermal velocity at
107-.-10% K (energy Ein ~ 10% eV).

ro is radius off effective core (Yukawa-)potential:

ro ~ AY31.44.1071% cm.

In high-energy tail of Maxwell-distribution only 10~43
fraction of particels.

Solution: quantum-mechanical tunneling effect (Gamow),
which yields a maximum cross section at Eg which is
around stellar temperatures.

Maxwell-Boltzmann-distribution of temperature 17" and
tunnelling probability:

The Gamow peak (strongly magnified); the
dashed line is the Maxwell-distribution, the dot-
dashed one the tunnelling probability



Nuclear cross sections
Non-resonant reactions; general form:

1 271 Z>e?
— 1 _—mn —_
with m = ™2

mi+mo

S(FE) is the astrophysical cross section and has the
advantage of being a smooth function of 71'. Lab-
oratory measurements are usually at energies above
stellar energies, but can be extrapolated in S(E).

Dip Y e

g

£

Axtrop hysical 5-factor (¥ barm)
g £

&

O LUNA {000
Schmid ct aL (1757}

o1 [ & Griffiths etal. (1963)

P S T T R
40 B0

Center Maz= Energy {keV)

Thermonuclear reaction rate
n;ng

= T+o, (ov)

(no. of reactions per unit volume and time);

(ov): reaction probability per pair of reacting nuclei
and second, averaged over the Maxwellian velocity dis-
tribution:

Tjk:

2 E
f(E)dE = vE e FIFTd R

VT (KT)3/2
(ov) = /o oc(E)vf(E)dE




The energy released by the reaction is then

1 qjk
1 —|— 5jk: My

ij —_—

pXZ'X]{;<O'U>

with g;. being the energy released per reaction.
Approximation: e & €x.0 (%) .
H-burning: v =5...15; He-burning v = 40.

Non-resonant reactions:

If nucleus has energy level close to incoming parti-
cle's energy, reaction rate (dramatically) increased.
No simple formula; depends on theoretical models for
nucleus structure and/or experimental measurements
of energy levels and their width.

Electron shielding

clouds of negatively charged electrons reduce repulsive
Coulomb-potential of bare nuclei and can increases rj
by about 10%.

Approximative formula by Salpeter for the Weak limit:

Ep = 222 < kT

rp = *_ is the Debye-Hiickel length and x an

4me’xn

average particle density)

Fii = i) (1 + 0.18821 72> %)

6



Major burning stages in stars

Sequence of phases: hydrogen — helium — carbon/oxygen
— neon — silicon — iron.

Hydrogen-burning

'H+ 1H S 2H+E:++LJ
‘H+ '"H > *He s~

T

*He + He —%He + 2'H He + *He — "Be +
(ppl) /\ (18.62)
"Be+e™ — TLi+w Be+ 'H— B4~
Li+ '"H & *He + ‘He 5B . *Re 4 et 4

The pp-chain for the fusion of hydrogen to helium

Energy per completion: 26.20 (ppl), 25.67 (ppll),
19.20 MeV (pplll).



The CNO-cycle
The eT reactions happen instantaneously.

The complete cycle is dominated by the slowest
reaction, which is YN (p,v)®0.

qCNO ~ 25MeV

In equilibrium, ~ C & O = 14N,



12C/13C =~ 3...6 (solar: 40)

At low T (solar center), the cycle is too slow to
be important, but the ¢ — N transformation is
working.

Equivalent cycles involving Na and Mg exist and
operate partially at higher temperature (= 5- 107
K).

With increasing temperature, the CNO-cycle be-
comes more dominant.

g Ey
A

S




3He production in stars

e 3He can achieve an equilibrium abundance in the
pp-chain

e this abundance is higher for lower T
e the time to reach it is also larger for lower T

— more massive stars quickly reach (low) equilib-
rium abundances of 3He, which are lower than
the primordial value (=~ 107°)

— low-mass stars can produce 3He, if they live long
enough

e BUT: observations indicate NO 3He-production
in the galaxy!
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0.0 020 040 060 080 1.0 12
Mr/MO

SHe-abundance in a 1.25 M, star during its evolution



Helium-burning

burning temperature: > 108 K; reactions:

1. 3 — a-process: 2a(a,v)'?C; actually two steps:
a(a,v)8Be and 8Be(a,v)?C; ¢ = 7.27 MeV.

2. 2C(a,v)0O: reaction rate uncertain by a factor
of 2! q=7.6MeV

3. %0(a,v)?°Ne: important only during the end of
helium burning; q = 4.77 MeV

4. final core composition: C/O = 50/50 ... 20/80



The core He-flash in low-mass stars

o for MS2.2M H-exhausted He-core becomes highly
degenerate

e Mmaximum 7' not in center, but slightly below H-
shell (v-cooling!)

e at T =~ 10% K, 3a-reactions set in

e due to degeneracy, released energy cannot be
used for expansion, but for further heating

— thermal runaway
e ends only, when raised T lifts degeneracy

e Lpe can reach 10°L. (for some days); is used for
expansion of the core



Burning times of burning phases:

H : 10 (yrs)
He : 108
C : 1074

Si : hrs



Plasma neutrino emission

Stellar plasma emits neutrinos, which leave star with-
out interaction and lead to energy loss L,.

Processes are:

1. Pair annihilation: e~ 4+ et — v+ 7 at
T > 109 K.

2. Photoneutrinos: v+e~ — e~ +v+ v (as
Compton scattering, but with v-pair in-
stead of ~).

3. Plasmaneutrinos: v, — v+ v; decay of a
plasma state p.

4. Bremsstrahlung: inelastic nucleus—e™ scat-
tering, but emitted photon replaced by a
v-pair.

5. Synchroton neutrinos: as synchroton ra-
diation, but again a photon replaced by
a v-pair.
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The regions in the p—T plane, where the
different plasma-neutrino processes are
dominant



Evolution of Low-Mass Stars
0.1SM/My 2.5, mostly 0.8 SM/Ma S1.5

On the main-sequence

e long lifetime (billion years)

e core hydrogen burning via pp-chains (M S1.3Mp)
and CNO-cycle (in Sun only 1.5%)

e radiative core, convective envelope (M S0.2Mq:
convective envelope extends to center; fully con-
vective star)

e gradual consumption of H; faster towards centre
(higher T')

0.8 ‘

0.0 0.2 0.4 0.6 0.8
m/M

H-profile developing in 1M, star on main sequence



Evolutionary tracks and shell burning

e stars initially evolve almost parallel to zero-age
main sequence

e later turn to cooler temperatures (core contracts,
envelope expands)

e evolve on nuclear timescale at almost constant L
(subgiant branch) to bottom of red giant branch

35r
tqLiLle
30t

25r

20F

0.5

Y 15
~— g T

Evolution of a low-mass star in the HRD

e and then up the Red Giant Branch
(this is an evolution along the Hayashi-line, the
location of the coolest stars with fully convective
envelopes in thermal and hydrostatic equilibrium)



e at end of main-sequence hydrogen-burning shell
around core established

50
40 F
30F

20
T

0.0 . . 0.6

energy production in 1M during main sequence evolution

e Internal structure from main sequence to Red Gi-
ant Branch Tip

ergg; =/

2 H & 22 73 74 746 747
— = time in 107 yeass

(hatched: energy production, clouds: convec-
tion; dots: composition change)



Influence of composition

e lower Z: stars are hotter and brighter (lower k)
e live shorter (higher L)
e lower X (higher Y): hotter and brighter (lower k)

e live shorter (higher L and less H)
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25F e | 425
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On the RGB and He ignition

e evolution determined by He-core mass: L ~ M/
(from homology for thin shells)

e core isothermal 4+ contraction energy (negative
T-gradient) 4 cooling by plasma neutrinos (pos-
itive T-gradient) — T-maximum below H-shell!

e coreincreasingly degenerate; p. — 10°---10°g/cm3
o Thax also function of M.,

e He ignites off-centre at Tmax ~ 108 K

e at ~ the same M. ~ 0.48 My and L for all stars!

= tip of RGB used as standard candle and distance
indicator

e He-ignition very violent because of high degener-
acy; Lpe > 10° Ly for short time

e degenerate gas only heating due to energy input
from He-burning — thermonuclear runaway



e only later energy used to expand matter, decrease
degeneracy
IgT
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Evolution of the helium-shell during the flash



After the RGB:

e on the RGB mass loss small (a few 0.1 My) fol-
lowing Reimers mass loss formula:

LM Rg
R LoMs

M= —4x 103y Mg /yr

e expansion of core to p ~ 10%2g/cm?3 and quiet he-
lium burning in (convective) core

e location: higher Tef, lower L (= same for all M)

— Horizontal Branch; Tes depends on envelope mass
left (less = hotter)

e evolution from RGB-tip to HB in few million years

22> I B B L B BN I I IR

M. =0.85M
mnl
7Z=107*

2.0

]

1.8

log L/L

1.6

) O I I I RPN PR S R

43 42 41 40 39 38 37 36
log Teff

Evolution to horizontal branch for models evolved from the
main sequence but with different Reimers mass loss pa-
rameter n as indicated. ZAHB models are indicated with a
star.



After the Horizontal Branch:

e end of core He burning
e He-shell around C/O core + H-shell as before

e evolution to giants — Asymptotic Giant Branch
(see intermediate mass stars)

e depending on remaining envelope mass departure
from AGB, crossing of HRD, cooling to White

Dwarf
a7 ‘
B 12.219 Gyr
3=
g 12.2 Gyr
2 Y
E 12 Gyr
S r
N 1B
— C
o £ 12.24 Gyr
o E 10 Gyr
oF 5
g A
=
= 12.25 Gyr
-2 12.4 Gyr
C | | | | | | | | | | I I I |
5.0 4.5 4.0 3.5

log Tey

Evolution of model for Sun from ZAMS to White Dwarf



Evolution of Intermediate-Mass Stars

General properties:
e mass range: 255 M/Ma <S8

e carly evolution differs from M/Mg S 1.3 stars; for
1.3 M/Mg S 2.5 properties of both mass ranges

e MS: convective core and radiative envelope
e CNO-cycle; enuc x pX ZcnoT8

e rapid transition from MS to RGB (Hertzsprung-
gap)

e Helium-core non-degenerate — quiet He-ignition

e after core helium burning: degenerate C/O-core
and two nuclear shells (H and He)



Main-sequence phase

e convective core burning: mixing and burning mainly
at central temperature

— gradual exhaustion of convective core // (Fig:
5M star)

0.8 7 77

0.0 0.2 0.4 0.6 0.8 1.0
m/M

e development of off-center H-burning shell (within
former H-burning core!)
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Schonberg-Chandrasekhar mass:

e with increasing mass of exhausted core the ideal
gas pressure alone can no longer sustain pressure
of (massive) envelope

e critical core mass is (M./M)sc = 0.37 (e/1c)?

e core contracts on thermal timescale (fast), while
envelope expands — fast crossing of HRD to gi-
ants = low probability to observe such star —
Hertzsprung-gap

e at RGB further expansion at constant Tefr

e evolution stopped when core becomes degenerate
or helium ignites

e core is not isothermal (due to contraction energy)



Evolution of 5 M.-star
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ion; longer lifetime — clump

id-instability strip, details de-

pending on internal chemical structure
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evolution

RGB: Asymptotic Giant Branch



The AGB-Phase

e double-shell burning phase, most important for
intermediate mass stars

e special features: thermal pulses (TP), nucleosyn-
thesis of rare-earth elements (Ba, Sr, ... ) through
slow neutron capture chains (s-process); strong
mass loss removing up to 90% of stellar mass
within 10° years, returning synthesized elements
to interstellar medium

e [ hermal pulses:

— runaway events in helium shell

— duration: few hundred years

— interpulse time: few thousand years
— strong luminosity variations in shell
— variable convective zones

— mixing between He- and H-burning regions
and envelope (3rd dredge-up)



Luminosity variations during TPs in a 2.5M star:
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Interior structure changes in a 2 M. star:
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Chemical profile in the 2 M, star:

convective envelope

C/O core
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Nucleosynthesis and mixing due to convection:

the convective mixing between He-shell and envelope
leads to

e enrichment of envelope with carbon — formation
of carbon stars

e entrainment of protons into hot C-rich regions,
which results in production of neutrons:

2Cp, NN(BTV)PC — (p, 1) *Nor (a,n)°O

e alternatively, C and O converted in H-shell to *N
and then

YN (o, ) PR (B11) PO (@, v)**Ne(a, n)*> Mg
(C-13 and Ne-22 neutron sources)

e neutrons start neutron-capture nucleosynthesis

e more likely for: later pulses, lower metallicity,
lower stellar mass, more mixing efficiency



s-process neutron capture nucleosynthesis

e T he s-process is a sequence of neutron captures
and - (electron-) decays, in which the former
happen slower than the latter ones (there is also
a r(apid)-process in the opposite case).

e It begins on seed nuclei at the Fe-group elements
and creates rare-earth elements
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Path of the s-process through cadmium (Cd), indium (In),
antimony (Sb); for stable isotopes the isotop-fraction is
given, for those that decay by (-decay the half-life time

e Other s-process elements are Ba, Bi (last 3-stable
element), Pb, Ag, In, ...

e the abundances of such elements in meteorites
and on Earth can partially be explained with this
stellar source



After the AGB:

e envelope lost quickly by superwind with M ~ 1075 My /yr
(radiation pressure on dust grain)

e if almost all envelope is lost — star crosses HRD
to hot Tefr

e may illuminate former envelope, now expanding
shell — Planetary Nebula

e then former stellar He-core cools to White Dwarf



Evolution of Massive Stars

M 2, 8Mg; upper mass limit (stability limit) around
100 M,

large convective cores on main-sequence (up to
80% or more of M)

effect of convective overshooting very important:
— larger convective cores

— extends lifetime on main-sequence

— leads to higher luminosity and broader MS

radiation pressure and electron scattering domi-
nant

strong mass loss on main-sequence due to radiation-
driven winds from hot and luminous surface

both convection and mass loss decisive for evolu-
tion

e.g. can uncover H-burning or He-burning regions
(Wolf-Rayet stars)

central evolution up to Fe

then Supernova of type II because of collapse of
core and formation of central neutron star



Sample evolution up to end of H-burning including
some overshooting and large mass loss
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Note: evolution quite uncertain because of lack of
physical knowledge about mass loss and convection
(overshooting and other effects), the influence of ro-
tation (an active area of research), instabilities in the
atmospheres and more as well as due to the low num-
ber of objects that can be observed (initial final mass

function and short lifetimes).
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