Simulations of Thermonuclear Flames in Type Ia Supernovae

Michael Zingale

in collaboration with

John Bell, Marc Day, Charles Rendleman (LBL), Stan Woosley (UCSC)

Type la Supernovae

- Bright as host galaxy, L $\sim 10^{43}$ erg s⁻¹
- Large amounts of ⁵⁶Ni produced
 - Radioactivity powers the lightcurve

- Lightcurve is robust
 - Variations can be corrected for via a single parameter function.
- Thermonuclear explosion of C/O white dwarf.
 - Must begin as a deflagration
 - Considerable acceleration required

SN 1994D (High-Z SN Search team)

Explosion Requirements

- Flame must accelerate to $\sim 1/3 \text{ c}_{c}$.
- Must produce intermediate mass elements (Si, S, Ar, Ca).
- Produces ~ 0.6 M $_{\odot}$ ⁵⁶Ni.
- How does the flame accelerate?
 - Flame instabilities (Landau-Darrieus, Rayleigh-Taylor)
 - Interaction with turbulence.

Increase surface area \Rightarrow increase flame speed.

Flames

- Begins as a deflagration
 - Subsonic burning front
 - Pressure is constant
 - Density drops in the ash region.
 - Thermal diffusion transports the heat
- Laminar speed too slow
 - Must accelerate considerably at low densities.
 - May transition to detonation

Large Scale Simulations

- Instabilities are the dominant acceleration mechanism.
- Pure deflagrations can unbind the star.

Calder et al. (2004)

Reinecke et al. (2003)

- Some flame model is required.
 - Stellar scale ~ 10⁸ cm
 - Flame width ~ $10^{-5} 10$ cm

Bottom-Up Approach

- Simulations cannot resolve the star and the flame.
- We resolve the thermal structure of the flame and work up to large scales
 - Parameter free.
 - Resolved calculations can be used to validate flame models.
- Look for scaling relations that will act as subgrid models.

Reactive Rayleigh-Taylor Instability

- Rayleigh-Taylor
 - Buoyancy driven instability.
 - Large amounts of surface area generated.
- Sharp-Wheeler model predicts mixed region growth:

$$h = \alpha A g t^2$$

 Reactions set a small scale cutoff to the growth of the instability:

$$\lambda_{\rm fp} = 4\pi \frac{v_{\rm laminar}^2}{g_{\rm eff}}$$

Calder et al. (2002)

Turbulence

- Kinetic energy cascade over a range of length scales
 - Integral scale, L: bulk of kinetic energy exists
 - Kolmogorov scale, η: inertial and viscous effects balance
 - Gibson scale, I_G: eddy turns over before burning away.

• Size of I_{G} in comparison to flame width determines the flame regime.

Transition to Distributed Burning

- Flame begins as flamelet
 - Flame is a continuous surface
 - Turbulence serves solely to wrinkle the flame, increasing the area

- Transition to distributed burning regime is proposed at 10⁷ g cm⁻³
 - Mixed region of fuel + ash develops
 - May be possible to quench the flame
 - Possible transition to detonation

Low Density Flame Properties

ρ	$\Delta \rho / \rho$	$v_{ m laminar}$	$l_f{}^{\mathrm{a}}$	$\lambda_{\mathrm{fp}}{}^{\mathrm{b}}$	М
$({ m g~cm^{-3}})$	00	$(\mathrm{cm}~\mathrm{s}^{-1})$	(cm)	(cm)	
6.67×10^6	0.529	1.04×10^3	5.6	0.026	3.25×10^{-6}
10^{7}	0.482	2.97×10^3	1.9	0.23	8.49×10^{-6}
$1.5 imes 10^7$	0.436	$7.84 imes 10^3$	0.54	1.8	2.06×10^{-5}

- Laminar flames are M \ll 1
- Around 10⁷ g cm⁻³ pass through the region where

$$\lambda_{\rm fp} = l_f$$

- Transition to distributed regime expected here (Niemeyer and Woosley 1997)
- We need to resolve both scales

Low Mach Number Hydrodynamics (Bell et al. 2004 JCP 195, 677)

- Low Mach number formulation projects out the compressible components.
 - Pressure decomposed into thermodynamic and dynamic components.

$$p(x,t) = p_0(t) + Mp_1(t) + M^2\pi(x,t)$$

- Elliptic constraint provided by thermodynamics.

$$0 \equiv \frac{Dp}{Dt} = \frac{\partial p}{\partial \rho} \frac{D\rho}{Dt} + \frac{\partial p}{\partial T} \frac{DT}{Dt} + \sum_{k} \frac{\partial p}{\partial X_{k}} \frac{DX_{k}}{Dt}$$
$$\nabla \cdot U = \frac{1}{\rho \frac{\partial p}{\partial \rho}} \left(\frac{\partial p}{\partial T} \frac{DT}{Dt} + \sum_{k} \frac{\partial p}{\partial X_{k}} \frac{DX_{k}}{Dt} \right)$$

- Advection/Projection/Reaction formulation solves system.
- Timestep limited by |v| and not |v| + c.

Simulation Method

(Bell et al. 2004 JCP 195, 677)

- Low Mach number hydrodynamics.
 - Advection/projection/reaction
 - Block structured adaptive mesh
 - Timestep restricted by |v| not |v| + c
 - Degenerate/Relativistic EOS used.
 - Single step ¹²C+¹²C rate

- Initialized by mapping 1-d steady-state laminar flame onto grid.
 - 5-10 zones inside thermal width.

Convergence Study

• 5 points in the thermal width yields converged integral quantities (speed, length, ...)

Burning sets the small scale cutoff.

Transition to Distributed Burning

(Bell et al. 2004, ApJ, 608, 883)

ρ

- As ρ decreases, RT dominates over burning.
- At low ρ , flame width is set by mixing scale.

2-D Reactive RT: Transition to Distributed Burning Summary

- Accelerations to several times the laminar speed
 - Limited only by the size of the domain.
- Transition to distributed burning occurs at density of 10⁷ g cm⁻³
- Growth of reactive region scales with mixed region
 - There does not appear to be enough time for a localized transition to detonation.
- Curvature/strain effects become quite important near the transition.

3-D Reactive RT

- 3-D analogue of 2-D runs previously studied
 - 512 x 512 x 1024 effective zones
 - Surface to volume is greater
 - Fire-polished RT dominates the early evolution.

3-D Reactive RT

- At late times, a fully turbulent flame propagates
 - No analogy to the 2-D case.
 - Evolution now dominated by turbulence, not Rayleigh-Taylor.

3-D Reactive RT

 Late time acceleration in 3-d due to interaction with flame generated turbulence

Power Spectrum

- Power spectrum can be used to determine the nature of the turbulence
 - Our domain is not periodic in all directions (inflow and outflow boundaries)
 - Velocity field is decomposed into divergence free part
 + effects of boundaries and compression

$$\mathbf{u} = \mathbf{u}_d + \nabla \phi + \nabla \psi$$

- Divergence free part is projected out.
- FFT is performed on divergence free field

k

 $t = 8.11 \times 10^{-4} s$

10

100

k

1000

 $t = 1.07 \times 10^{-3} s$

Power Spectrum

- Cutoff to power spectrum converges
 - Turbulence is fully developed
 - Inertial range of > 1.5 orders of magnitude
 - Cascade falls well below fire-polishing length

Integral Scale

$$l_t^{(x)} = \frac{1}{\int_{\Omega} \mathrm{d}\Omega \, u^2} \int_{\xi=0}^{L_x/2} \mathrm{d}\xi \int_{\Omega} \mathrm{d}\Omega \, u(x, y, z) \, u(x+\xi, y, z)$$

Turbulence is anisotropic

- Integral scale in z is 5x
 larger than in x, y
- Turbulent intensity in z is 2-3 times larger than in x,y

Gibson scale is just resolved

$$l_G = l_t \left(\frac{S_l}{u'}\right)^3$$

Turbulence on Small Scales

• Look at $E(k_x, k_y, k_z)$ to see the scales it is anisotropic

- Average over the cylindrical angle due to symmetry
- At the largest scales (small k) we are anisotropic
- At small scales (large k) we get circular \rightarrow isotropic.

3-D Reactive RT Summary

- Flame width, fire-polishing length, and Gibson scale are resolved on the grid.
- Flame becomes fully turbulent.
 - Anisotropic Kolmogorov spectrum becomes isotropic after a decade of turbulent cascade.
 - Turbulent flame models assuming isotropy will need to really resolve the turbulence.
 - Transition to distributed burning regime is at a higher density in 3-D.

Reacting Buoyant Bubbles

image produced by NASA/Ames

- Important to understanding the ignition process.
- 3-D, resolved studies have begun.
 - burning is non-uniform around the bubble
 - restricted to $\sim 10^7$ g cm⁻³

Reacting Buoyant Bubbles

- Does the bubble fragment as it evolves?
 - Initially a 7 cm radius sphere
 - It looks like we are just entering the turbulence regime.
 - Smaller bubble fragments will advect with the flow, igniting other regions of the star.

Can the Bubble Fragment?

- 2-D studies show the initial bubble quickly fragments
- Large 3-D calculations are in progress.

Flame Model Validation

Thickened flames

$$v \sim \sqrt{\kappa \dot{\omega}} \qquad l_f \sim \sqrt{\frac{\kappa}{\dot{\omega}}}$$

 $\kappa \to D\kappa \qquad \dot{\omega} \to \frac{\dot{\omega}}{D}$

(O'Rourke & Bracco 1979)

- washes out the small scale modes
- changes the effects of curvature on the flame.
- Thickening the flame misses wrinkling on the small scales
 - Efficiency functions (Colin et al. 2000)
- Resolved calculations serve as validation for flame models.

t = 0.001s t = 0

t = 0.002 s t

t = 0.003 s

Where Do We Go From Here?

- Lots of analysis for the 3-D bubble remains.
- Formulation of a subgrid model and flame model to advect the flame on large scales
 - Validation of thick flame approximation against the DNS flames is underway.
 - Comparison to the 3-D RT calculation is also possible.
- Modification of the algorithm to allow for multiple scale heights is underway.
 - Anelastic method
- Studies of the ignition process
 - Explicit codes cannot do this

Ignition Process

- Star convects for ~ 100 years.
- Highly screened carbon burning at the center
 - Ignition occurs when timescale for nuclear energy increase \sim convective turnover time (\sim 10s).
 - T ~ 7 x 10⁸ K, ρ ~ 2 x 10⁹ g cm⁻³
- Does ignition occur at a single or multiple points?
 - What is the temporal distribution?
- Studies of ignition require an implicit or anelastic hydrodynamics code.

Conclusions

- Transition to distributed burning at $\sim 10^7$ g cm⁻³
 - Transition occurs at lower density in 2-D
- Scaling of velocity with area is not purely geometric in the flamelet regime
- Mixed region grows slower than Sharp-Wheeler model.
- Turbulence dominates in 3-D
 - Anisotropic Kolmogorov cascade
 - Isotropic on small scales
- Turbulent subgrid models assuming isotropy on small scales are a reasonable approximation.